1
|
Cassani M, Seydoux G. P-body-like condensates in the germline. Semin Cell Dev Biol 2024; 157:24-32. [PMID: 37407370 PMCID: PMC10761593 DOI: 10.1016/j.semcdb.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
P-bodies are cytoplasmic condensates that accumulate low-translation mRNAs for temporary storage before translation or degradation. P-bodies have been best characterized in yeast and mammalian tissue culture cells. We describe here related condensates in the germline of animal models. Germline P-bodies have been reported at all stages of germline development from primordial germ cells to gametes. The activity of the universal germ cell fate regulator, Nanos, is linked to the mRNA decay function of P-bodies, and spatially-regulated condensation of P-body like condensates in embryos is required to localize mRNA regulators to primordial germ cells. In most cases, however, it is not known whether P-bodies represent functional compartments or non-functional condensation by-products that arise when ribonucleoprotein complexes saturate the cytoplasm. We speculate that the ubiquity of P-body-like condensates in germ cells reflects the strong reliance of the germline on cytoplasmic, rather than nuclear, mechanisms of gene regulation.
Collapse
Affiliation(s)
- Madeline Cassani
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Zhang L, Sun H, Chen X. Characterization of the long noncoding RNA transcriptome in human preimplantation embryo development. J Assist Reprod Genet 2023; 40:2913-2923. [PMID: 37770818 PMCID: PMC10656396 DOI: 10.1007/s10815-023-02951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE Infertility remains a human health burden globally. Only a fraction of embryos produced via assisted reproductive technologies (ARTs) develop to the blastocyst stage in vitro. lncRNA abundance changes significantly during human early embryonic development, indicating vital regulatory roles of lncRNAs in this process. The aim of this study is to obtain insights into the transcriptional basis of developmental events. METHODS scRNA-seq data and SUPeR-seq data were used to investigate the lncRNA profiles of human preimplantation embryos. The top 50 highly expressed unique and shared lncRNAs in each stage of preimplantation development were identified. Comparative analysis of the two datasets was used to verify the consistent expression patterns of the lncRNAs. Differentially expressed lncRNAs were identified and subjected to functional enrichment analysis. RESULTS The lncRNA profiles of human preimplantation embryos in the E-MTAB-3929 dataset were similar to those in the GSE71318 dataset. The ratios of overlap among the top 50 highly expressed lncRNAs between two pairs of stages (2-cell stage vs. 4-cell stage and 8-cell stage vs. morula) were aberrantly low compared with those between other stages. Each stage of preimplantation development exhibited unique and shared lncRNAs among the top 50 highly expressed lncRNAs. Among the between-group comparisons, the 2-cell stage vs. 4-cell stage showed the highest number of differentially expressed lncRNAs. Functional enrichment analysis revealed that differentially expressed lncRNAs and their associated super enhancers and RNA binding proteins (RBPs) are closely involved in regulating embryonic development. These lncRNAs could function as important cell markers for distinguishing fetal germ cells. CONCLUSIONS Our study paves the way for understanding the regulation of developmental events, which might be beneficial for improved reproductive outcomes.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Hailong Sun
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
3
|
Wang J, Ren J, Wang Q, Li C, Han Z, Chen T, Sun K, Feng G, Zhang Y, Han J, Zhou Q, Li W, Yu D, Hai T. Nanos3 knockout pigs to model transplantation and reconstruction of the germlin. Cell Prolif 2023; 56:e13463. [PMID: 37094948 DOI: 10.1111/cpr.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 04/26/2023] Open
Affiliation(s)
- Jing Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingwei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhiqiang Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianzhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ke Sun
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi Zhou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
KOGASAKA Y, MURAKAMI S, YAMASHITA S, KIMURA D, FURUMOTO Y, IGUCHI K, SENDAI Y. Generation of germ cell-deficient pigs by NANOS3 knockout. J Reprod Dev 2022; 68:361-368. [PMID: 36273893 PMCID: PMC9792658 DOI: 10.1262/jrd.2022-028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NANOS3 is an evolutionarily conserved gene expressed in primordial germ cells that is important for germ cell development. Germ cell deletion by NANOS3 knockout has been reported in several mammalian species, but its function in pigs is unclear. In the present study, we investigated the germline effects of NANOS3 knockout in pigs using CRISPR/Cas9. Embryo transfer of CRISPR/Cas9-modified embryos produced ten offspring, of which one showed wild-type NANOS3 alleles, eight had two mutant NANOS3 alleles, and the other exhibited mosaicism (four mutant alleles). Histological analysis revealed no germ cells in the testes or ovaries of any of the nine mutant pigs. These results demonstrated that NANOS3 is crucial for porcine germ cell production.
Collapse
Affiliation(s)
- Yuhei KOGASAKA
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Sho MURAKAMI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Shiro YAMASHITA
- Quality Control Research Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Daisuke KIMURA
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Yoshinori FURUMOTO
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Kana IGUCHI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| | - Yutaka SENDAI
- Biological Sciences Section, Central Research Institute for Feed and Livestock, Zen-noh, Ibaraki 300-4204, Japan
| |
Collapse
|
5
|
Velasco BR, Izquierdo JM. T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms23147836. [PMID: 35887183 PMCID: PMC9318959 DOI: 10.3390/ijms23147836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology.
Collapse
|
6
|
Hirano T, Wright D, Suzuki A, Saga Y. A cooperative mechanism of target RNA selection via germ-cell-specific RNA-binding proteins NANOS2 and DND1. Cell Rep 2022; 39:110894. [PMID: 35705038 DOI: 10.1016/j.celrep.2022.110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
The germ-cell-specific RNA-binding protein (RBP) NANOS2 plays a pivotal role in male gonocyte differentiation and spermatogonial stem cell maintenance. Although NANOS2 interacts with the CNOT deadenylation complex and Dead end 1 (DND1) to repress target RNAs, the molecular mechanisms underlying target mRNA selection remain unclear because of the limited cell resource in vivo. Here, we demonstrate that exogenous NANOS2-DND1 suppresses target mRNAs in somatic cells. Using this somatic cell system, we find that NANOS2 interacts with RNA-bound DND1 and recruits the CNOT complex to the mRNAs. However, a fusion construct composed of the CNOT1-binding site of NANOS2 (NIM) and DND1 fails to repress the target gene expression. Therefore, NANOS2 is required not only for recruitment of the CNOT complex but also for selecting the target mRNA with DND1. This study reveals that NANOS2 functions as a second-layer RBP for the target recognition and functional adaptation of DND1.
Collapse
Affiliation(s)
- Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan
| | - Danelle Wright
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Genetics, SOKENDAI, 1111 Mishima, Shizuoka 411-8582, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Genetics, SOKENDAI, 1111 Mishima, Shizuoka 411-8582, Japan; Division for Development of Genetic-Engineered Mouse Resource, Genetic Resource Center, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
8
|
Abdyyev VK, Dashenkova NO, Dashinimaev EB, Vorotelyak EA, Vasiliev AV. NANOS3 downregulation in Down syndrome hiPSCs during primordial germ cell-like cell differentiation. Histochem Cell Biol 2021; 157:83-91. [PMID: 34652540 DOI: 10.1007/s00418-021-02040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Human infertility is a complex disorder at the genetic, molecular, cellular, organ, and hormonal levels. New developing technology based on the generation of human primordial germ cell-like cells (hPGCLCs) from induced pluripotent stem cells (hiPSCs) might improve understanding of early germ cell development (specification, migration, gametogenesis, and epigenetic reconstitutions), as well as offering a solution for infertility and hereditary disorders. In this study, we differentiated hiPSCs with trisomy 21 into hPGCLCs. In vitro-derived germ cells from hiPSCs with Down syndrome (DS) express hPGCLC core circuitry, EOMES, SOX17, and PRDM14 at relatively low levels. TFAP2C and PRDM1 were expressed and remained elevated, whereas NANOS3 and NANOG were downregulated in BMP4-induced hiPSCs with DS. The low level of NANOG and NANOS3 expression might negatively influence hPGCLC generation in DS hiPSCs. We suggest that DS hPGCLCs could be a suitable model for studying human early germ cell development, the epigenetic and molecular mechanisms of PGC specification and formation, as well as related infertility disorders, such as azoospermia and teratozoospermia.
Collapse
Affiliation(s)
- V K Abdyyev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.
| | - N O Dashenkova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, ul.Ostrovityanova, 1, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Per.Institutskiy, 9, Moscow, 141701, Russia
| | - E A Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.,Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| | - A V Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova, 26, Moscow, 119334, Russia.,Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
9
|
Karimi H, Boroujeni PB, Sabbaghian M, Meybodi AM. Gene Alterations and Expression Spectrum of NANOS3 in Nonobstructive Azoospermia. Reprod Sci 2021; 29:92-99. [PMID: 34417763 DOI: 10.1007/s43032-021-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Nanos3, a zinc finger RNA-binding protein, suppresses the apoptosis in primordial germ cells (PGCs) during migration to gonads and maintains the PGC population. The genetic variations and expression of NANOS3 in patients with non-obstructive azoospermia (NOA) were evaluated in this study. The study included 100 idiopathic infertile men with NOA and 100 fertile men as the as the case and control groups, respectively. NANOS3 gene variations were analyzed using the standard polymerase chain reaction (PCR) and sequencing. For mRNA and protein expression analysis, testicular biopsy specimens from 27 patients including 9 obstructive azoospermia (OA), 9 maturation arrest (MA), and 9 Sertoli cell-only syndromes (SCOS) were collected and evaluated using the real-time PCR technique and immunohistochemistry. Although the evaluation of the 5`UTR regulatory region has shown the significant difference in the numbers of TG repeats in rs11182456 between groups, the odd ratio was not strong enough to consider that as a certain risk factor lead to azoospermia and infertility. Meanwhile, NANOS3 expression at mRNA level had a significant difference among OA, SCOS, and MA groups.
Collapse
Affiliation(s)
- Hamideh Karimi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. .,Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran.
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. .,Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran. .,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada. .,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
10
|
Ruthig VA, Yokonishi T, Friedersdorf MB, Batchvarova S, Hardy J, Garness JA, Keene JD, Capel B. A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells†. Biol Reprod 2021; 104:861-874. [PMID: 33394034 PMCID: PMC8324984 DOI: 10.1093/biolre/ioaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sofia Batchvarova
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Liu X, Li W, Yang Y, Chen K, Li Y, Zhu X, Ye H, Xu H. Transcriptome Profiling of the Ovarian Cells at the Single-Cell Resolution in Adult Asian Seabass. Front Cell Dev Biol 2021; 9:647892. [PMID: 33855024 PMCID: PMC8039529 DOI: 10.3389/fcell.2021.647892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is widely adopted for identifying the signature molecular markers or regulators in cells, as this would benefit defining or isolating various types of cells. Likewise, the signature transcriptome profile analysis at the single cell level would well illustrate the key regulators or networks involved in gametogenesis and gonad development in animals; however, there is limited scRNA-seq analysis on gonadal cells in lower vertebrates, especially in the sexual reversal fish species. In this study, we analyzed the molecular signature of several distinct cell populations of Asian seabass adult ovaries through scRNA-seq. We identified five cell types and also successfully validated some specific genes of germ cells and granulosa cells. Likewise, we found some key pathways involved in ovarian development that may concert germline-somatic interactions. Moreover, we compared the transcriptomic profiles across fruit fly, mammals, and fish, and thus uncovered the conservation and divergence in molecular mechanisms that might drive ovarian development. Our results provide a basis for studying the crucial features of germ cells and somatic cells, which will benefit the understandings of the molecular mechanisms behind gametogenesis and gonad development in fish.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Kaili Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yulin Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Hua Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| |
Collapse
|
12
|
de Souza AF, Pieri NCG, Martins DDS. Step by Step about Germ Cells Development in Canine. Animals (Basel) 2021; 11:ani11030598. [PMID: 33668687 PMCID: PMC7996183 DOI: 10.3390/ani11030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The progression of germ cells is a remarkable event that allows biological discovery in the differ-entiation process during in vivo and in vitro development. This is crucial for understanding one toward making oogenesis and spermatogenesis. Companion animals, such as canine, could offer new animal models for experimental and clinical testing for translation to human models. In this review, we describe the latest and more relevant findings on germ cell development. In addition, we showed the methods available for obtaining germ cells in vitro and the characterization of pri-mordial germ cells and spermatogonial stem cells. However, it is necessary to further conduct basic research in canine to clarify the beginning of germ cell development. Abstract Primordial germ cells (PGCs) have been described as precursors of gametes and provide a connection within generations, passing on the genome to the next generation. Failures in the formation of gametes/germ cells can compromise the maintenance and conservation of species. Most of the studies with PGCs have been carried out in mice, but this species is not always the best study model when transposing this knowledge to humans. Domestic animals, such as canines (canine), have become a valuable translational research model for stem cells and therapy. Furthermore, the study of canine germ cells opens new avenues for veterinary reproduction. In this review, the objective is to provide a comprehensive overview of the current knowledge on canine germ cells. The aspects of canine development and germ cells have been discussed since the origin, specifications, and development of spermatogonial canine were first discussed. Additionally, we discussed and explored some in vitro aspects of canine reproduction with germ cells, such as embryonic germ cells and spermatogonial stem cells.
Collapse
|
13
|
Gassei K, Sheng Y, Fayomi A, Mital P, Sukhwani M, Lin CC, Peters KA, Althouse A, Valli H, Orwig KE. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis. Biol Reprod 2017; 96:707-719. [PMID: 28339678 PMCID: PMC5803776 DOI: 10.1095/biolreprod.116.142828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Payal Mital
- Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Chih-Cheng Lin
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Karen A Peters
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Althouse
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
14
|
Esfandiari F, Ashtiani MK, Sharifi‐Tabar M, Saber M, Daemi H, Ghanian MH, Shahverdi A, Baharvand H. Microparticle‐Mediated Delivery of BMP4 for Generation of Meiosis‐Competent Germ Cells from Embryonic Stem Cells. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/17/2016] [Indexed: 01/13/2023]
Abstract
Producing meiosis‐competent germ cells (GCs) from embryonic stem cells (ESCs) is essential for developing advanced therapies for infertility. Here, a novel approach is presented for generation of GCs from ESCs. In this regard, microparticles (MPs) have been developed from alginate sulfate loaded with bone morphogenetic protein 4 (BMP4). The results here show that BMP4 release from alginate sulfate MPs is significantly retarded by the sulfated groups compared to neat alginate. Then, BMP4‐laden MPs are incorporated within the aggregates during differentiation of GCs from ESCs. It is observed that BMP4‐laden MPs increase GC differentiation from ESCs at least twofold compared to the conventional soluble delivery method. Interestingly, following meiosis induction,Dazl, an intrinsic factor that enables GCs to enter meiosis, and two essential meiosis genes (Stra8andSmc1b) are upregulated significantly in MP‐induced aggregates compared to aggregates, which are formed by the conventional method. Together, these data show that controlled delivery of BMP4 during ESC differentiation into GC establish meiosis‐competent GCs which can serve as an attractive GC source for reproductive medicine.image
Collapse
Affiliation(s)
- Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
- Department of Developmental Biology University of Science and Culture Tehran 1461968151 Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Mehdi Sharifi‐Tabar
- Department of Molecular Systems Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Hamed Daemi
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Mohammad Hossein Ghanian
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
| | - Abdolhossein Shahverdi
- Department of Embryology Reproductive Biomedicine Research Center Royan Institute for Reproductive Biomedicine ACECR Tehran 1665659911 Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology ACECR Tehran 1665659911 Iran
- Department of Developmental Biology University of Science and Culture Tehran 1461968151 Iran
| |
Collapse
|
15
|
Panula S, Reda A, Stukenborg JB, Ramathal C, Sukhwani M, Albalushi H, Edsgärd D, Nakamura M, Söder O, Orwig KE, Yamanaka S, Reijo Pera RA, Hovatta O. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS One 2016; 11:e0165268. [PMID: 27768780 PMCID: PMC5074499 DOI: 10.1371/journal.pone.0165268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
| | - Ahmed Reda
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Meena Sukhwani
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Halima Albalushi
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Daniel Edsgärd
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michiko Nakamura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Kyle E. Orwig
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, United States of America
| | - Renee A. Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
- Department of Cell Biology and Neurosciences and Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, United States of America
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
16
|
Sutherland JM, Siddall NA, Hime GR, McLaughlin EA. RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family. Asian J Androl 2016; 17:529-36. [PMID: 25851660 PMCID: PMC4492041 DOI: 10.4103/1008-682x.151397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on mechanisms of posttranscriptional regulation of gene expression, facilitated by RNA binding proteins (RBPs), which remain abundantly expressed throughout this process. One such group of proteins is the Musashi family, previously identified as critical regulators of testis germ cell development and meiosis in Drosophila, and also shown to be vital to sperm development and reproductive potential in the mouse. This review describes the role and function of RBPs within the scope of male germ cell development, focusing on our recent knowledge of the Musashi proteins in spermatogenesis. The functional mechanisms utilized by RBPs within the cell are outlined in depth, and the significance of sub-cellular localization and stage-specific expression in relation to the mode and impact of posttranscriptional regulation is also highlighted. We emphasize the historical role of the Musashi family of RBPs in stem cell function and cell fate determination, as originally characterized in Drosophila and Xenopus, and conclude with our current understanding of the differential roles and functions of the mammalian Musashi proteins, Musashi-1 and Musashi-2, with a primary focus on our findings in spermatogenesis. This review highlights both the essential contribution of RBPs to posttranscriptional regulation and the importance of the Musashi family as master regulators of male gamete development.
Collapse
Affiliation(s)
| | | | | | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
17
|
Suzuki H, Kanai-Azuma M, Kanai Y. From Sex Determination to Initial Folliculogenesis in Mammalian Ovaries: Morphogenetic Waves along the Anteroposterior and Dorsoventral Axes. Sex Dev 2015; 9:190-204. [DOI: 10.1159/000440689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
|
18
|
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338:971-5. [PMID: 23042295 DOI: 10.1126/science.1226889] [Citation(s) in RCA: 519] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reconstitution of female germ cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells and induced pluripotent stem cells in mice are induced into primordial germ cell-like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, undergo X-reactivation, imprint erasure, and cyst formation, and exhibit meiotic potential. Upon transplantation under mouse ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which then contribute to fertile offspring after in vitro maturation and fertilization. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ cell development in vitro.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Imamura M, Lin ZYC, Okano H. Cell-intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reprod Med Biol 2012; 12:1-14. [PMID: 29699125 DOI: 10.1007/s12522-012-0131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022] Open
Abstract
In multicellular organisms, germ cells are an extremely specialized cell type with the vital function of transmitting genetic information across generations. In this respect, they are responsible for the perpetuity of species, and are separated from somatic lineages at each generation. Interestingly, in the past two decades research has shown that germ cells have the potential to proceed along two distinct pathways: gametogenesis or pluripotency. Unequivocally, the primary role of germ cells is to produce gametes, the sperm or oocyte, to produce offspring. However, under specific conditions germ cells can become pluripotent, as shown by teratoma formation in vivo or cell culture-induced reprogramming in vitro. This phenomenon seems to be a general propensity of germ cells, irrespective of developmental phase. Recent attempts at cellular reprogramming have resulted in the generation of induced pluripotent stem cells (iPSCs). In iPSCs, the intracellular molecular networks instructing pluripotency have been activated and override the exclusively somatic cell programs that existed. Because the generation of iPSCs is highly artificial and depends on gene transduction, whether the resulting machinery reflects any physiological cell-intrinsic programs is open to question. In contrast, germ cells can spontaneously shift their fate to pluripotency during in-vitro culture. Here, we review the two fates of germ cells, i.e., differentiation and reprogramming. Understanding the molecular mechanisms regulating differentiation versus reprogramming would provide invaluable insight into understanding the mechanisms of cellular reprogramming that generate iPSCs.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine Keio University 35 Shinanomachi 160-8582 Shinjuku-ku Tokyo Japan
| |
Collapse
|
20
|
Nguyen-Chi M, Morello D. RNA-binding proteins, RNA granules, and gametes: is unity strength? Reproduction 2011; 142:803-17. [DOI: 10.1530/rep-11-0257] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in mRNA translation and degradation represent post-transcriptional processes operating during gametogenesis and early embryogenesis to ensure regulated protein synthesis. Numerous mRNA-binding proteins (RBPs) have been described in multiple animal models that contribute to the control of mRNA translation and decay during oogenesis and spermatogenesis. An emerging view from studies performed in germ cells and somatic cells is that RBPs associate with their target mRNAs in RNA–protein (or ribonucleoprotein) complexes (mRNPs) that assemble in various cytoplasmic RNA granules that communicate with the translation machinery and control mRNA storage, triage, and degradation. In comparison withXenopus, Caenorhabditis elegans, orDrosophila, the composition and role of cytoplasmic RNA-containing granules in mammalian germ cells are still poorly understood. However, regained interest for these structures has emerged with the recent discovery of their role in small RNA synthesis and transposon silencing through DNA methylation. In this review, we will briefly summarize our current knowledge on cytoplasmic RNA granules in murine germ cells and describe the role of some of the RBPs they contain in regulating mRNA metabolism and small RNA processing during gametogenesis.
Collapse
|
21
|
Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 2011; 361:301-12. [PMID: 22056784 DOI: 10.1016/j.ydbio.2011.10.027] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
Abstract
Spermatogonial self-renewal and differentiation are essential for male fertility and reproduction. We discovered that germ cell specific genes Sohlh1 and Sohlh2, encode basic helix-loop-helix (bHLH) transcriptional regulators that are essential in spermatogonial differentiation. Sohlh1 and Sohlh2 individual mouse knockouts show remarkably similar phenotypes. Here we show that SOHLH1 and SOHLH2 proteins are co-expressed in the entire spermatogonial population except in the GFRA1(+) spermatogonia, which includes spermatogonial stem cells (SSCs). SOHLH1 and SOHLH2 are expressed in both KIT negative and KIT positive spermatogonia, and overlap Ngn3/EGFP and SOX3 expression. SOHLH1 and SOHLH2 heterodimerize with each other in vivo, as well as homodimerize. The Sohlh1/Sohlh2 double mutant phenocopies single mutants, i.e., spermatogonia continue to proliferate but do not differentiate properly. Further analysis revealed that GFRA1(+) population was increased, while meiosis commenced prematurely in both single and double knockouts. Sohlh1 and Sohlh2 double deficiency has a synergistic effect on gene expression patterns as compared to the single knockouts. SOHLH proteins affect spermatogonial development by directly regulating Gfra1, Sox3 and Kit gene expression. SOHLH1 and SOHLH2 suppress genes involved in SSC maintenance, and induce genes important for spermatogonial differentiation.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zheng D, Chen CYA, Shyu AB. Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. RNA (NEW YORK, N.Y.) 2011; 17:1619-34. [PMID: 21750099 PMCID: PMC3162328 DOI: 10.1261/rna.2789611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Chyi-Ying A. Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
- Corresponding author.E-mail .
| |
Collapse
|
23
|
Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011; 146:519-32. [PMID: 21820164 DOI: 10.1016/j.cell.2011.06.052] [Citation(s) in RCA: 1005] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/10/2011] [Accepted: 06/28/2011] [Indexed: 01/06/2023]
Abstract
The generation of properly functioning gametes in vitro requires reconstitution of the multistepped pathway of germ cell development. We demonstrate here the generation of primordial germ cell-like cells (PGCLCs) in mice with robust capacity for spermatogenesis. PGCLCs were generated from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) through epiblast-like cells (EpiLCs), a cellular state highly similar to pregastrulating epiblasts but distinct from epiblast stem cells (EpiSCs). Reflecting epiblast development, EpiLC induction from ESCs/iPSCs is a progressive process, and EpiLCs highly competent for the PGC fate are a transient entity. The global transcription profiles, epigenetic reprogramming, and cellular dynamics during PGCLC induction from EpiLCs meticulously capture those associated with PGC specification from the epiblasts. Furthermore, we identify Integrin-β3 and SSEA1 as markers that allow the isolation of PGCLCs with spermatogenic capacity from tumorigenic undifferentiated cells. Our findings provide a paradigm for the first step of in vitro gametogenesis.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Suzuki H, Saba R, Sada A, Saga Y. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos. PLoS One 2010; 5:e9300. [PMID: 20174582 PMCID: PMC2823788 DOI: 10.1371/journal.pone.0009300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 01/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Rie Saba
- Division of Mammalian Development, National Institute of Genetics, Shizuoka, Japan
| | - Aiko Sada
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Shizuoka, Japan
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Division of Mammalian Development, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Shizuoka, Japan
| |
Collapse
|