1
|
Oh Y, Kasu M, Bottoms CJ, Douglas JC, Sekulovski N, Hayashi K, MacLean II JA. Rhox8 homeobox gene ablation leads to rete testis abnormality and male subfertility in mice†. Biol Reprod 2023; 109:520-532. [PMID: 37471646 PMCID: PMC10577278 DOI: 10.1093/biolre/ioad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023] Open
Abstract
The reproductive homeobox X-linked (Rhox) genes encode transcription factors that are expressed selectively in reproductive tissues including the testis, epididymis, ovary, and placenta. While many Rhox genes are expressed in germ cells in the mouse testis, only Rhox8 is expressed exclusively in the Sertoli cells during embryonic and postnatal development, suggesting a possible role of Rhox8 in embryonic gonad development. Previously, Sertoli cell-specific knockdown of RHOX8 resulted in male subfertility due to germ cell defects. However, this knockdown model was limited in examining the functions of Rhox8 as RHOX8 knockdown occurred only postnatally, and there was still residual RHOX8 in the testis. In this study, we generated new Rhox8 knockout (KO) mice using the CRISPR/Cas9 system. Sex determination and fetal testis development were apparently normal in mutant mice. Fertility analysis showed a low fecundity in Rhox8 KO adult males, with disrupted spermatogenic cycles, increased germ cell apoptosis, and reduced sperm count and motility. Interestingly, Rhox8 KO testes showed an increase in testis size with dilated seminiferous tubules and rete testis, which might be affected by efferent duct (ED) Rhox8 ablation dysregulating the expression of metabolism and transport genes in the EDs. Taken together, the data presented in this study suggest that Rhox8 in the Sertoli cells is not essential for sex determination and embryonic testis differentiation but has an important role in complete spermatogenesis and optimal male fertility.
Collapse
Affiliation(s)
- Yeongseok Oh
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Maho Kasu
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Constence J Bottoms
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Jenna C Douglas
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - James A MacLean II
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| |
Collapse
|
2
|
Le Beulze M, Daubech C, Balde-Camara A, Ghieh F, Vialard F. Mammal Reproductive Homeobox (Rhox) Genes: An Update of Their Involvement in Reproduction and Development. Genes (Basel) 2023; 14:1685. [PMID: 37761825 PMCID: PMC10531175 DOI: 10.3390/genes14091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The reproductive homeobox on the X chromosome (RHOX) genes were first identified in the mouse during the 1990s and have a crucial role in reproduction. In various transcription factors with a key regulatory role, the homeobox sequence encodes a "homeodomain" DNA-binding motif. In the mouse, there are three clusters of Rhox genes (α, β, and γ) on the X chromosome. Each cluster shows temporal and/or quantitative collinearity, which regulates the progression of the embryonic development process. Although the RHOX family is conserved in mammals, the interspecies differences in the number of RHOX genes and pseudogenes testifies to a rich evolutionary history with several relatively recent events. In the mouse, Rhox genes are mainly expressed in reproductive tissues, and several have a role in the differentiation of primordial germ cells (Rhox1, Rhox6, and Rhox10) and in spermatogenesis (Rhox1, Rhox8, and Rhox13). Despite the lack of detailed data on human RHOX, these genes appear to be involved in the formation of germ cells because they are predominantly expressed during the early (RHOXF1) and late (RHOXF2/F2B) stages of germ cell development. Furthermore, the few variants identified to date are thought to induce or predispose to impaired spermatogenesis and severe oligozoospermia or azoospermia. In the future, research on the pathophysiology of the human RHOX genes is likely to confirm the essential role of this family in the reproductive process and might help us to better understand the various causes of infertility and characterize the associated human phenotypes.
Collapse
Affiliation(s)
- Morgane Le Beulze
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - Cécile Daubech
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - Aissatu Balde-Camara
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - Farah Ghieh
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
| | - François Vialard
- Equipe RHuMA, UMR-BREED, UFR Simone Veil Santé, F-78180 Montigny-le-Bretonneux, France; (M.L.B.); (C.D.); (A.B.-C.); (F.G.)
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines—Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Département de Génétique, CHI de Poissy St. Germain en Laye, F-78300 Poissy, France
| |
Collapse
|
3
|
Tan K, Wilkinson MF. Developmental regulators moonlighting as transposons defense factors. Andrology 2023; 11:891-903. [PMID: 36895139 PMCID: PMC11162177 DOI: 10.1111/andr.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The germline perpetuates genetic information across generations. To maintain the integrity of the germline, transposable elements in the genome must be silenced, as these mobile elements would otherwise engender widespread mutations passed on to subsequent generations. There are several well-established mechanisms that are dedicated to providing defense against transposable elements, including DNA methylation, RNA interference, and the PIWI-interacting RNA pathway. OBJECTIVES Recently, several studies have provided evidence that transposon defense is not only provided by factors dedicated to this purpose but also factors with other roles, including in germline development. Many of these are transcription factors. Our objective is to summarize what is known about these "bi-functional" transcriptional regulators. MATERIALS AND METHODS Literature search. RESULTS AND CONCLUSION We summarize the evidence that six transcriptional regulators-GLIS3, MYBL1, RB1, RHOX10, SETDB1, and ZBTB16-are both developmental regulators and transposable element-defense factors. These factors act at different stages of germ cell development, including in pro-spermatogonia, spermatogonial stem cells, and spermatocytes. Collectively, the data suggest a model in which specific key transcriptional regulators have acquired multiple functions over evolutionary time to influence developmental decisions and safeguard transgenerational genetic information. It remains to be determined whether their developmental roles were primordial and their transposon defense roles were co-opted, or vice versa.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Abstract
Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.
Collapse
|
6
|
Ma HT, Niu CM, Xia J, Shen XY, Xia MM, Hu YQ, Zheng Y. Stimulated by retinoic acid gene 8 (Stra8) plays important roles in many stages of spermatogenesis. Asian J Androl 2019; 20:479-487. [PMID: 29848833 PMCID: PMC6116687 DOI: 10.4103/aja.aja_26_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To clarify the functions and mechanism of stimulated by retinoic acid gene 8 (Stra8) in spermatogenesis, we analyzed the testes from Stra8 knockout and wild-type mice during the first wave of spermatogenesis. Comparisons showed no significant differences in morphology and number of germ cells at 11 days postpartum, while 21 differentially expressed genes (DEGs) associated with spermatogenesis were identified. We speculate that Stra8 performs many functions in different phases of spermatogenesis, such as establishment of spermatogonial stem cells, spermatogonial proliferation and self-renewal, spermatogonial differentiation and meiosis, through direct or indirect regulation of these DEGs. We therefore established a preliminary regulatory network of Stra8 during spermatogenesis. These results will provide a theoretical basis for further research on the mechanism underlying the role of Stra8 in spermatogenesis.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Chang-Min Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Xue-Yi Shen
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Meng-Meng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| | - Yan-Qiu Hu
- Clinicial Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou 225001, China.,Jiangsu Key Laboratory of Experimental and Translational Noncoding RNA Research, Yangzhou 225001, China
| |
Collapse
|
7
|
Song HW, Bettegowda A, Lake BB, Zhao AH, Skarbrevik D, Babajanian E, Sukhwani M, Shum EY, Phan MH, Plank TDM, Richardson ME, Ramaiah M, Sridhar V, de Rooij DG, Orwig KE, Zhang K, Wilkinson MF. The Homeobox Transcription Factor RHOX10 Drives Mouse Spermatogonial Stem Cell Establishment. Cell Rep 2017; 17:149-164. [PMID: 27681428 DOI: 10.1016/j.celrep.2016.08.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 07/19/2016] [Accepted: 08/27/2016] [Indexed: 12/31/2022] Open
Abstract
The developmental origins of most adult stem cells are poorly understood. Here, we report the identification of a transcription factor-RHOX10-critical for the initial establishment of spermatogonial stem cells (SSCs). Conditional loss of the entire 33-gene X-linked homeobox gene cluster that includes Rhox10 causes progressive spermatogenic decline, a phenotype indistinguishable from that caused by loss of only Rhox10. We demonstrate that this phenotype results from dramatically reduced SSC generation. By using a battery of approaches, including single-cell-RNA sequencing (scRNA-seq) analysis, we show that Rhox10 drives SSC generation by promoting pro-spermatogonia differentiation. Rhox10 also regulates batteries of migration genes and promotes the migration of pro-spermatogonia into the SSC niche. The identification of an X-linked homeobox gene that drives the initial generation of SSCs has implications for the evolution of X-linked gene clusters and sheds light on regulatory mechanisms influencing adult stem cell generation in general.
Collapse
Affiliation(s)
- Hye-Won Song
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anilkumar Bettegowda
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Blue B Lake
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Adrienne H Zhao
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - David Skarbrevik
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eric Babajanian
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Meena Sukhwani
- Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Eleen Y Shum
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mimi H Phan
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Terra-Dawn M Plank
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Marcy E Richardson
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Madhuvanthi Ramaiah
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Vaishnavi Sridhar
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Faculty of Science, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Kyle E Orwig
- Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Zuo Q, Jin K, Wang Y, Song J, Zhang Y, Li B. CRISPR/Cas9-Mediated Deletion of C1EIS
Inhibits Chicken Embryonic Stem Cell Differentiation Into Male Germ Cells (Gallus gallus
). J Cell Biochem 2017; 118:2380-2386. [DOI: 10.1002/jcb.25900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology; Yangzhou University; Yangzhou 225009 P.R. China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology; Yangzhou University; Yangzhou 225009 P.R. China
| | - Yingjie Wang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology; Yangzhou University; Yangzhou 225009 P.R. China
| | - Jiuzhou Song
- Animal and Avian Sciences; University of Maryland; College Park 20741 Maryland
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology; Yangzhou University; Yangzhou 225009 P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology; Yangzhou University; Yangzhou 225009 P.R. China
| |
Collapse
|
9
|
Shum EY, Jones SH, Shao A, Chousal JN, Krause MD, Chan WK, Lou CH, Espinoza JL, Song HW, Phan MH, Ramaiah M, Huang L, McCarrey JR, Peterson KJ, De Rooij DG, Cook-Andersen H, Wilkinson MF. The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay. Cell 2016; 165:382-95. [PMID: 27040500 PMCID: PMC4826573 DOI: 10.1016/j.cell.2016.02.046] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 01/11/2023]
Abstract
Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.
Collapse
Affiliation(s)
- Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Samantha H Jones
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Jennifer N Chousal
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Matthew D Krause
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chih-Hong Lou
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Josh L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Mimi H Phan
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78219, USA
| | - Kevin J Peterson
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Dirk G De Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92103, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
10
|
Hammoud SS, Low DHP, Yi C, Lee CL, Oatley JM, Payne CJ, Carrell DT, Guccione E, Cairns BR. Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes Dev 2016; 29:2312-24. [PMID: 26545815 PMCID: PMC4647563 DOI: 10.1101/gad.261925.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hammoud et al. conducted extensive genomic profiling and classified three broad spermatogonial stem cell (SSC) populations in juveniles: (1) epithelial-like SSCs, (2) more abundant mesenchymal-like SSCs, and (3) (in older juveniles) abundant cells committing to gametogenesis. Mesenchymal-like SSCs lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Mesenchymal-like SSCs also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes. Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1+; high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1+; moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles.
Collapse
Affiliation(s)
- Saher Sue Hammoud
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diana H P Low
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Chongil Yi
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Chee Leng Lee
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Christopher J Payne
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; Human Molecular Genetics Program, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60614, USA
| | - Douglas T Carrell
- Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bradley R Cairns
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
11
|
Welborn JP, Davis MG, Ebers SD, Stodden GR, Hayashi K, Cheatwood JL, Rao MK, MacLean JA. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice. Biol Reprod 2015; 93:8. [PMID: 25972016 DOI: 10.1095/biolreprod.114.124834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility.
Collapse
Affiliation(s)
- Joshua P Welborn
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Matthew G Davis
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Steven D Ebers
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Genna R Stodden
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Joseph L Cheatwood
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Manjeet K Rao
- Department of Cellular and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| |
Collapse
|
12
|
Song HW, Bettegowda A, Oliver D, Yan W, Phan MH, de Rooij DG, Corbett MA, Wilkinson MF. shRNA off-target effects in vivo: impaired endogenous siRNA expression and spermatogenic defects. PLoS One 2015; 10:e0118549. [PMID: 25790000 PMCID: PMC4366048 DOI: 10.1371/journal.pone.0118549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/20/2015] [Indexed: 12/23/2022] Open
Abstract
RNA interference (RNAi) is widely used to determine the function of genes. We chose this approach to assess the collective function of the highly related reproductive homeobox 3 (Rhox3) gene paralogs. Using a Rhox3 short hairpin (sh) RNA with 100% complementarity to all 8 Rhox3 paralogs, expressed from a CRE-regulated transgene, we successfully knocked down Rhox3 expression in male germ cells in vivo. These Rhox3-shRNA transgenic mice had dramatic defects in spermatogenesis, primarily in spermatocytes and round spermatids. To determine whether this phenotype was caused by reduced Rhox3 expression, we generated mice expressing the Rhox3-shRNA but lacking the intended target of the shRNA—Rhox3. These double-mutant mice had a phenotype indistinguishable from Rhox3-shRNA-expressing mice that was different from mice lacking the Rhox3 paralogs, indicating that the Rhox3 shRNA disrupts spermatogenesis independently of Rhox3. Rhox3-shRNA transgenic mice displayed few alterations in the expression of protein-coding genes, but instead exhibited reduced levels of all endogenous siRNAs we tested. This supported a model in which the Rhox3 shRNA causes spermatogenic defects by sequestering one or more components of the endogenous small RNA biogenesis machinery. Our study serves as a warning for those using shRNA approaches to investigate gene functions in vivo.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Anilkumar Bettegowda
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Mimi H. Phan
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dirk G. de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark A. Corbett
- School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, Australia
| | - Miles F. Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
De Gendt K, Verhoeven G, Amieux PS, Wilkinson MF. Genome-wide identification of AR-regulated genes translated in Sertoli cells in vivo using the RiboTag approach. Mol Endocrinol 2014; 28:575-91. [PMID: 24606126 DOI: 10.1210/me.2013-1391] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which androgens drive spermatogenesis has been thwarted by the fact that few consistent androgen receptor (AR) target genes have been identified. Here, we addressed this issue using next-generation sequencing coupled with the RiboTag approach, which purifies translated mRNAs expressed in cells that express cyclic recombinase (CRE). Using RiboTag mice expressing CRE in Sertoli cells (SCs), we identified genes expressed specifically in SCs in both prepubertal and adult mice. Unexpectedly, this analysis revealed that the SC-specific gene program is already largely defined at the initiation of spermatogenesis despite the subsequent dramatic maturational changes known to occur in SCs. To identify AR-regulated genes, we generated triple-mutant mice in which the SCs express the RiboTag but lack ARs. RNA sequencing analysis revealed hundreds of SC-expressed AR-regulated genes that had previously gone unnoticed, including suppressed genes involved in ovarian development. Comparison of the SC-enriched dataset with that from the whole testes allowed us to classify genes in terms of their degree of expression in SCs. This revealed that a greater fraction of AR-up-regulated genes than AR-down-regulated genes were expressed predominantly in SCs. Our results also revealed that AR signaling in SCs causes a large number of genes not detectably expressed in SCs to undergo altered expression, thereby providing genome-wide evidence for wide-scale communication between SCs and other cells. Taken together, our results identified novel classes of genes expressed in a hormone-dependent manner in different testicular cell subsets and highlight a new approach to analyze cell type-specific gene regulation.
Collapse
Affiliation(s)
- Karel De Gendt
- Department of Reproductive Medicine and Institute of Genomic Medicine (M.F.W.), University of California, La Jolla, California 92093 (K.D.G., M.F.W.); Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium (K.D.G., G.V.); and Department of Biology, Western Washington University, Bellingham, Washington 98225 (P.S.A.)
| | | | | | | |
Collapse
|
14
|
Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 2014; 30:14-26. [PMID: 24560784 DOI: 10.1016/j.semcdb.2014.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Lee SE, Lee SY, Lee KA. Rhox in mammalian reproduction and development. Clin Exp Reprod Med 2013; 40:107-14. [PMID: 24179867 PMCID: PMC3811726 DOI: 10.5653/cerm.2013.40.3.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/06/2023] Open
Abstract
Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, α, β, and γ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into α (Rhox1-4), β (Rhox5-9), and γ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | | | |
Collapse
|
16
|
Berletch JB, Deng X, Nguyen DK, Disteche CM. Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A. PLoS Genet 2013; 9:e1003489. [PMID: 23658530 PMCID: PMC3642083 DOI: 10.1371/journal.pgen.1003489] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 03/18/2013] [Indexed: 12/20/2022] Open
Abstract
The Rhox cluster on the mouse X chromosome contains reproduction-related homeobox genes expressed in a sexually dimorphic manner. We report that two members of the Rhox cluster, Rhox6 and 9, are regulated by de-methylation of histone H3 at lysine 27 by KDM6A, a histone demethylase with female-biased expression. Consistent with other homeobox genes, Rhox6 and 9 are in bivalent domains prior to embryonic stem cell differentiation and thus poised for activation. In female mouse ES cells, KDM6A is specifically recruited to Rhox6 and 9 for gene activation, a process inhibited by Kdm6a knockdown in a dose-dependent manner. In contrast, KDM6A occupancy at Rhox6 and 9 is low in male ES cells and knockdown has no effect on expression. In mouse ovary where Rhox6 and 9 remain highly expressed, KDM6A occupancy strongly correlates with expression. Our study implicates Kdm6a, a gene that escapes X inactivation, in the regulation of genes important in reproduction, suggesting that KDM6A may play a role in the etiology of developmental and reproduction-related effects of X chromosome anomalies.
Collapse
Affiliation(s)
- Joel B. Berletch
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Di Kim Nguyen
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Christine M. Disteche
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Song HW, Anderson RA, Bayne RA, Gromoll J, Shimasaki S, Chang RJ, Parast MM, Laurent LC, de Rooij DG, Hsieh TC, Wilkinson MF. The RHOX homeobox gene cluster is selectively expressed in human oocytes and male germ cells. Hum Reprod 2013; 28:1635-46. [PMID: 23482336 DOI: 10.1093/humrep/det043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION What human tissues and cell types express the X-linked reproductive homeobox (RHOX) gene cluster? SUMMARY ANSWER The RHOX homeobox genes and proteins are selectively expressed in germ cells in both the ovary and testis. WHAT IS KNOWN ALREADY The RHOX homeobox transcription factors are encoded by an X-linked gene cluster whose members are selectively expressed in the male and female reproductive tract of mice and rats. The Rhox genes have undergone strong selection pressure to rapidly evolve, making it uncertain whether they maintain their reproductive tissue-centric expression pattern in humans, an issue we address in this report. STUDY DESIGN, SIZE, DURATION We examined the expression of all members of the human RHOX gene cluster in 11 fetal and 8 adult tissues. The focus of our analysis was on fetal testes, where we evaluated 16 different samples from 8 to 20 weeks gestation. We also analyzed fixed sections from fetal testes, adult testes and adult ovaries to determine the cell type-specific expression pattern of the proteins encoded by RHOX genes. PARTICIPANTS/MATERIALS, SETTING, METHODS We used quantitative reverse transcription-polymerase chain reaction analysis to assay human RHOX gene expression. We generated antisera against RHOX proteins and used them for western blotting, immunohistochemical and immunofluorescence analyses of RHOXF1 and RHOXF2/2B protein expression. MAIN RESULTS AND THE ROLE OF CHANCE We found that the RHOXF1 and RHOXF2/2B genes are highly expressed in the testis and exhibit low or undetectable expression in most other organs. Using RHOXF1- and RHOXF2/2B-specific antiserum, we found that both RHOXF1 and RHOXF2/2B are primarily expressed in germ cells in the adult testis. Early stage germ cells (spermatogonia and early spermatocytes) express RHOXF2/2B, while later stage germ cells (pachytene spermatocytes and round spermatids) express RHOXF1. Both RHOXF1 and RHOXF2/2B are expressed in prespermatogonia in human fetal testes. Consistent with this, RHOXF1 and RHOXF2/2B mRNA expression increases in the second trimester during fetal testes development when gonocytes differentiate into prespermatogonia. In the human adult ovary, we found that RHOXF1 and RHOXF2/2B are primarily expressed in oocytes. LIMITATIONS, REASONS FOR CAUTION While the average level of expression of RHOX genes was low or undetectable in all 19 human tissues other than testes, it is still possible that RHOX genes are highly expressed in a small subset of cells in some of these non-testicular tissues. As a case in point, we found that RHOX proteins are highly expressed in oocytes within the human ovary, despite low levels of RHOX mRNA in the whole ovary. WIDER IMPLICATIONS OF THE FINDINGS The cell type-specific and developmentally regulated expression pattern of the RHOX transcription factors suggests that they perform regulatory functions during human fetal germ cell development, spermatogenesis and oogenesis. Our results also raise the possibility that modulation of RHOX gene levels could correct some cases of human infertility and that their encoded proteins are candidate targets for contraceptive drug design.
Collapse
Affiliation(s)
- H W Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|