1
|
Zhou H, Zhang J, Feng W, Chen N, Umar T, Feng X, Liu W, Qiu C, Deng G. YAP1 regulates endometrial receptivity by promoting the plasma membrane transformation and proliferation of bovine endometrial epithelial cells. Theriogenology 2025; 237:166-177. [PMID: 40024019 DOI: 10.1016/j.theriogenology.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Plasma membrane transformation (PMT) during early pregnancy (EP) is a widely observed phenomenon across species, but its role in cows remains understudied. Yes1-associated transcriptional regulator (YAP1) plays a vital role in human embryo implantation and uterine development. However, its relationship with PMT in bovine endometrium remains unclear. This study aims to explore the potential influence of YAP1 on PMT and the proliferation of endometrial epithelial cells. We observed PMT-related changes in the endometrium of cows during EP, characterized by reduced morphometry scores and increased fully developed pinopodes. The epithelial marker cadherin-1 (CDH1, also known as E-cadherin) expression decreased, while the mesenchymal marker vimentin (VIM) expression increased. Additionally, YAP1 expression was up-regulated and activated in the endometrial epithelium during EP. Interferon-tau (IFNT) potentially promoted PMT-related changes and activated YAP1. The knockdown of YAP1 diminished the effect of IFNT on PMT. At the same time, overexpression of YAP1 might enhance PMT-related changes and promote the proliferation, migration, and invasion ability of bovine endometrial epithelial cells (bEECs). Our findings suggest that YAP1 is activated during EP and may regulate endometrial receptivity by promoting PMT and cell proliferation.
Collapse
Affiliation(s)
- Han Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wen Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xinyu Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenjing Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Zhang B, Han Y, Cheng M, Yan L, Gao K, Zhou D, Wang A, Lin P, Jin Y. Metabolomic effects of intrauterine meloxicam perfusion on histotroph in dairy heifers during diestrus. Front Vet Sci 2025; 12:1528530. [PMID: 40171410 PMCID: PMC11959509 DOI: 10.3389/fvets.2025.1528530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In ruminants, conceptus elongation is a crucial developmental process that depends on uterine lumen fluid (ULF) and coincides with a period of high pregnancy loss. Prostaglandins (PGs) play indispensable roles in conceptus elongation and implantation. However, the effects of uterus-derived PGs on the uterine environment remain unclear. To explore the metabolic pathways and metabolites induced by endometrium-derived PGs that may affect conceptus elongation and implantation in dairy cows, we investigated the biochemical composition of ULF following intrauterine perfusion of meloxicam from days 12 to 14 of the estrous cycle. Intrauterine administration of meloxicam significantly downregulated the prostaglandin-related metabolites in the ULF. A total of 385 distinct metabolites, primarily clustered within lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzenoids, were identified. The metabolite network analysis identified 10 core metabolites as follows: S-adenosylhomocysteine, guanosine, inosine, thymidine, cholic acid, xanthine, niacinamide, prostaglandin I2, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. The pathway enrichment analysis revealed three significantly altered metabolic pathways: arachidonic acid metabolism, tryptophan (Trp) metabolism, and linoleic acid metabolism. A total of five metabolites-guanosine, inosine, thymidine, butyryl-l-carnitine, and l-carnitine-were associated with attachment and pregnancy loss and could serve as predictors of fertility. This global metabolic study of ULF enhances our understanding of histotroph alternations induced by uterus-derived PGs during diestrus in dairy cows, with implications for improving dairy cow fertility.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Mazzarella R, Sánchez JM, Fernandez-Fuertes B, Egido SG, McDonald M, Álvarez-Barrientos A, González E, Falcón-Pérez JM, Azkargorta M, Elortza F, González ME, Lonergan P, Rizos D. Embryo-Induced Changes in the Protein Profile of Bovine Oviductal Extracellular Vesicles. Mol Cell Proteomics 2025; 24:100935. [PMID: 40024377 PMCID: PMC11994978 DOI: 10.1016/j.mcpro.2025.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: 1) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; 2) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp + Emb); and 3) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp + Emb with EVs from pregnant heifers. Proteins were considered "identified" if detected in at least three out of five replicates and considered "exclusive" if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp + Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp + Emb, 17 were common to Exp and Emb, 5 were common to Exp + Emb and Emb, 4 were unique to Exp, 6 were unique to Exp + Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp + Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp + Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs and their protein contents.
Collapse
Affiliation(s)
| | | | | | | | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Félix Elortza
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maria Encina González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Dimitrios Rizos
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.
| |
Collapse
|
4
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
5
|
Wadood AA, Xiquan Z. Unraveling the mysteries of chicken proteomics: Insights into follicle development and reproduction. J Proteomics 2024; 308:105281. [PMID: 39154802 DOI: 10.1016/j.jprot.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Chicken proteomics is a valuable method for comprehending the many mechanisms involved in follicle growth and reproduction in birds. This study offers a thorough summary of the latest progress in chicken proteomics research, specifically highlighting the knowledge obtained regarding follicle development and reproductive physiology. Proteomic studies have revealed essential proteins and pathways that play a role in follicle development, including those that control oocyte size, maturation, and ovulation. Proteomic investigations have provided insight into the molecular pathways that govern reproductive processes. By utilizing advanced proteomic technologies, including mass spectrometry and protein microarray analysis, we have been able to identify and measure many proteins in chicken follicles at their different developmental stages. The utilization of proteomic methods has enabled the identification of previously unknown biomarkers for reproductive efficiency that expedited the creation of innovative diagnostic instruments for monitoring reproductive health in chicken. Chicken proteomics not only offers insights into follicle growth and reproduction but also uncovers the effects of environmental influences on reproductive function. This provides new opportunities for exploring the molecular pathways that cause these effects. The integration of current data with upcoming proteomic technologies offers the potential for innovative strategies to enhance chicken reproduction.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhang Xiquan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Martínez De Los Reyes N, Toledano-Díaz A, López-Sebastián A, Santiago Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. PPARG is dispensable for bovine embryo development up to tubular stages†. Biol Reprod 2024; 111:557-566. [PMID: 38832705 PMCID: PMC11402522 DOI: 10.1093/biolre/ioae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leopoldo González-Brusi
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inés Flores-Borobia
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nuria Martínez De Los Reyes
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adolfo Toledano-Díaz
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio López-Sebastián
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julián Santiago Moreno
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
8
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Scott C, da Rosa Filho RR, de Carvalho NAT, Oba E. Uterine secretome: What do the proteins say about maternal-fetal communication in buffaloes? J Proteomics 2024; 290:105023. [PMID: 37838095 DOI: 10.1016/j.jprot.2023.105023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Thais Regiani Cataldi
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Laíza Sartori de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Caroline Scott
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto Rodrigues da Rosa Filho
- Department of Animal Reproduction - School of Veterinary Medicine and Animal Science, University of São Paulo, campus São Paulo, São Paulo, Brazil
| | - Nélcio Antonio Tonizza de Carvalho
- Research and Development Unit of Registro / Diversified Animal Science Research Center / Institute of Animal Science, Registro, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
9
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
10
|
Nakamura K, Kusama K, Hori M, Imakawa K. Global analyses and potential effects of extracellular vesicles on the establishment of conceptus implantation during the peri-implantation period. J Reprod Dev 2023; 69:246-253. [PMID: 37495510 PMCID: PMC10602766 DOI: 10.1262/jrd.2023-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Intrauterine extracellular vesicles (EVs) are involved in establishing proper conceptus-endometrial communication, which is essential for conceptus implantation and subsequent successful placentation. Despite several studies on intrauterine EVs, the composition and quantitative changes in conceptus and endometrial EVs, as well as the effects of intrauterine EVs on endometrial epithelial cells (EECs) during the peri-implantation period, have not been well characterized. To elucidate global changes in proteins in EVs extracted from uterine flushings (UFs) during the pre-implantation (P17), just-implantation (P20), and post-implantation (P22) periods, the datasets of the proteome iTRAQ analysis were compared among P17, P20, and P22 EVs. These analyses revealed that the composition and function of proteins in the EVs changed dramatically during peri-implantation in cattle. Notably, intrauterine P17 EVs affected the high expression of "Developmental Biology" and "morphogenesis of an endothelium" compared with those in P20 and P22 EVs. Furthermore, P20 EVs had the functions of the high expression of "mitochondrial calcium ion homeostasis" and "Viral mRNA Translation" compared with those in P17 EVs. Transcripts extracted from EECs treated with P17, P20, or P22 EVs were subjected to RNA-seq analysis. These analyses identified 60 transcripts in EECs commonly induced by intrauterine EVs recovered from P17, P20, and P22, a large number of which were associated with "type I interferon signaling pathway". Collectively, these findings reveal the presence and multiple functions of EVs that are potentially implicated in facilitating conceptus implantation into the uterine epithelium during the peri-implantation period.
Collapse
Affiliation(s)
- Keigo Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Masatoshi Hori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| |
Collapse
|
11
|
Davenport KM, Ortega MS, Johnson GA, Seo H, Spencer TE. Review: Implantation and placentation in ruminants. Animal 2023; 17 Suppl 1:100796. [PMID: 37567669 DOI: 10.1016/j.animal.2023.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 08/13/2023] Open
Abstract
Ruminants have a unique placenta in comparison to other mammalian species. Initially, they possess a non-invasive epitheliochorial type of placenta during conceptus elongation. As the conceptus trophectoderm begins to attach to the luminal epithelium (LE) of the endometrium, binucleate cells (BNCs) develop within the trophoblast of the chorion. The BNCs migrate and fuse with the uterine LE to form multinucleate syncytial plaques in sheep and hybrid trinucleate cells in cattle. This area of the ruminant placenta is semi-invasive synepitheliochorial. The BNCs form the foundation of the placental cotyledons and express unique placenta-specific genes including pregnancy-associated glycoproteins and chorionic somatomammotropin hormone 2 or placental lactogen. Attachment and interdigitation of cotyledons into endometrial caruncles form placentomes that are subsequently vascularized to provide essential nutrients for growth of the fetus. This chapter review will discuss historical and current aspects of conceptus implantation and placenta development in ruminant ungulates with a focus on cattle and sheep. Single-cell analysis promises to provide a much more detailed understanding of the different cell populations and insights into pathways mediating trophoblast and placenta. This fundamental is required to understand pregnancy loss and develop strategies to improve pregnancy outcomes in ruminants.
Collapse
Affiliation(s)
- K M Davenport
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - M S Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - G A Johnson
- Department of Veterinary Integrative Biosciences and Department of Animal Science, Texas A&M University, College Station, TX 7784, USA
| | - H Seo
- Department of Veterinary Integrative Biosciences and Department of Animal Science, Texas A&M University, College Station, TX 7784, USA
| | - T E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Division of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Tinning H, Edge JC, DeBem THC, Deligianni F, Giovanardi G, Pensabene V, Meirelles FV, Forde N. Review: Endometrial function in pregnancy establishment in cattle. Animal 2023; 17 Suppl 1:100751. [PMID: 37567655 DOI: 10.1016/j.animal.2023.100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
The endometrium is fundamentally required for successful pregnancy in ruminants and species where the posthatching conceptus undergoes a protracted elongation and peri-implantation phase of pregnancy. Moreover, there are substantial waves of pregnancy loss during this pre- and peri-implantation period of pregnancy the precise source of which has not been clearly defined i.e., the maternal uterine contribution to this loss. Understanding the molecular interactions required for successful pregnancy in cattle will allow us to intervene to support pregnancy success during this vulnerable window. The endometrium contributes to most key developmental milestones of pregnancy establishment, including (1) contributing to the regulation of the oestrus cycle, (2) nourishing the preimplantation conceptus, (3) responding to the conceptus to create a more receptive microenvironment, (4) providing essential biophysical support, and (5) signalling and producing factors which affect the mother systemically. This review will summarise what we currently know about conceptus-maternal interactions as well as identify the gaps in our knowledge that could be filled with newer in vitro model approaches. These include the use of microfluidics, organ-on-a-chip devices, and bioinformatic approaches. This will help maximise food production efficiency (both meat and dairy) and decrease the environmental burden, while enhancing our understanding of the fundamental processes required for successful implantation in cattle.
Collapse
Affiliation(s)
- H Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - T H C DeBem
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Sao Paulo, Brazil
| | - F Deligianni
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Giovanardi
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - V Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - F V Meirelles
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - N Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
13
|
Mahé C, Marcelo P, Tsikis G, Tomas D, Labas V, Saint-Dizier M. The bovine uterine fluid proteome is more impacted by the stage of the estrous cycle than the proximity of the ovulating ovary in the periconception period. Theriogenology 2023; 198:332-343. [PMID: 36640738 DOI: 10.1016/j.theriogenology.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Uterine secretions provide a suitable environment for sperm selective migration during a couple of days preceding ovulation and for early embryo development before implantation. Our goal was to identify and quantify proteins in the bovine uterine fluid during the periovulatory period of the estrous cycle. Genital tracts with normal morphology were collected from adult cyclic Bos taurus females in a local slaughterhouse and classified into pre-ovulatory or post-ovulatory stages of cycle (around days 19-21 and 0-5 of cycle, respectively; n = 8 cows per stage) based on ovarian morphology. Proteins from uterine fluid collected from the utero-tubal junction to the base of each horn (four pools of two cows per condition) were analyzed by nanoLiquid Chromatography coupled with tandem Mass Spectrometry (nanoLC-MS/MS). A total of 1214 proteins were identified, of which 91% were shared between all conditions. Overall, 57% of proteins were predicted to be secreted and 17% were previously reported in uterine extracellular vesicles. Paired comparisons between uterine horns ipsilateral and contralateral to ovulation evidenced 12 differentially abundant proteins, including five at pre-ovulatory stage. Furthermore, 35 proteins differed in abundance between pre- and post-ovulatory stages, including 21 in the ipsilateral side of ovulation. Functional analysis of identified proteins demonstrated roles in binding, metabolism, cellular detoxification and the immune response. This study provides a valuable database of uterine proteins for functional studies on sperm physiology and early embryo development.
Collapse
Affiliation(s)
- Coline Mahé
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, Amiens, France
| | - Guillaume Tsikis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Daniel Tomas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage par Imagerie in/eX vivo de l'ANImal à la Molécule (PIXANIM), 37380, Nouzilly, France
| | - Valérie Labas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage par Imagerie in/eX vivo de l'ANImal à la Molécule (PIXANIM), 37380, Nouzilly, France
| | | |
Collapse
|
14
|
Zhang B, Wang Z, Gao K, Fu R, Chen H, Lin P, Wang A, Jin Y. MSX1 Regulates Goat Endometrial Function by Altering the Plasma Membrane Transformation of Endometrial Epithelium Cells during Early Pregnancy. Int J Mol Sci 2023; 24:ijms24044121. [PMID: 36835532 PMCID: PMC9960665 DOI: 10.3390/ijms24044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
MSX1 is an important member of the muscle segment homeobox gene (Msh) family and acts as a transcription factor to regulate tissue plasticity, yet its role in goat endometrium remodeling remains elusive. In this study, an immunohistochemical analysis showed that MSX1 was mainly expressed in the luminal and glandular epithelium of goat uterus, and the MSX1 expression was upregulated in pregnancy at days 15 and 18 compared with pregnancy at day 5. In order to explore its function, goat endometrial epithelial cells (gEECs) were treated with 17 β-estrogen (E2), progesterone (P4), and/or interferon-tau (IFNτ), which were used to mimic the physiological environment of early pregnancy. The results showed that MSX1 was significantly upregulated with E2- and P4-alone treatment, or their combined treatment, and IFNτ further enhanced its expression. The spheroid attachment and PGE2/PGF2α ratio were downregulated by the suppression of MSX1. The combination of E2, P4, and IFNτ treatment induced the plasma membrane transformation (PMT) of gEECs, which mainly showed the upregulation of N-cadherin (CDH2) and concomitant downregulation of the polarity-related genes (ZO-1, α-PKC, Par3, Lgl2, and SCRIB). The knockdown of MSX1 partly hindered the PMT induced by E2, P4, and IFNτ treatment, while the upregulation of CDH2 and the downregulation of the partly polarity-related genes were significantly enhanced when MSX1 was overexpressed. Moreover, MSX1 regulated the CDH2 expression by activating the endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR) pathway. Collectively, these results suggest that MSX1 was involved in the PMT of the gEECs through the ER stress-mediated UPR pathway, which affects endometrial adhesion and secretion function.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
| | - Zongjie Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
| | - Rao Fu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
15
|
Sadeghi M, Bahrami A, Hasankhani A, Kioumarsi H, Nouralizadeh R, Abdulkareem SA, Ghafouri F, Barkema HW. lncRNA-miRNA-mRNA ceRNA Network Involved in Sheep Prolificacy: An Integrated Approach. Genes (Basel) 2022; 13:1295. [PMID: 35893032 PMCID: PMC9332185 DOI: 10.3390/genes13081295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular pattern of fertility is considered as an important step in breeding of different species, and despite the high importance of the fertility, little success has been achieved in dissecting the interactome basis of sheep fertility. However, the complex mechanisms associated with prolificacy in sheep have not been fully understood. Therefore, this study aimed to use competitive endogenous RNA (ceRNA) networks to evaluate this trait to better understand the molecular mechanisms responsible for fertility. A competitive endogenous RNA (ceRNA) network of the corpus luteum was constructed between Romanov and Baluchi sheep breeds with either good or poor genetic merit for prolificacy using whole-transcriptome analysis. First, the main list of lncRNAs, miRNAs, and mRNA related to the corpus luteum that alter with the breed were extracted, then miRNA−mRNA and lncRNA−mRNA interactions were predicted, and the ceRNA network was constructed by integrating these interactions with the other gene regulatory networks and the protein−protein interaction (PPI). A total of 264 mRNAs, 14 lncRNAs, and 34 miRNAs were identified by combining the GO and KEGG enrichment analyses. In total, 44, 7, 7, and 6 mRNAs, lncRNAs, miRNAs, and crucial modules, respectively, were disclosed through clustering for the corpus luteum ceRNA network. All these RNAs involved in biological processes, namely proteolysis, actin cytoskeleton organization, immune system process, cell adhesion, cell differentiation, and lipid metabolic process, have an overexpression pattern (Padj < 0.01). This study increases our understanding of the contribution of different breed transcriptomes to phenotypic fertility differences and constructed a ceRNA network in sheep (Ovis aries) to provide insights into further research on the molecular mechanism and identify new biomarkers for genetic improvement.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Environmental Health, Zahedan University of Medical Sciences, Zahedan 98, Iran;
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, 80333 Munich, Germany
| | - Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Hamed Kioumarsi
- Department of Animal Science Research, Gilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht 43, Iran;
| | - Reza Nouralizadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Jundishapour University of Medical Sciences, Ahvaz 63, Iran
| | - Sarah Ali Abdulkareem
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad 10011, Iraq;
| | - Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4Z6, Canada;
| |
Collapse
|
16
|
Imakawa K, Matsuno Y, Fujiwara H. New Roles for EVs, miRNA and lncRNA in Bovine Embryo Implantation. Front Vet Sci 2022; 9:944370. [PMID: 35909679 PMCID: PMC9334902 DOI: 10.3389/fvets.2022.944370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
The sine qua non of new life is fertilization. However, approximately 50% of fertilized eggs/blastocysts in cattle and up to 75% of those from human assisted reproductive procedures fail during the first 3 to 4 weeks of pregnancy, including peri-implantation periods. In these periods, blastocyst hatching and implantation to the maternal endometrium proceeds, during which physiological events such as epithelial-mesenchymal transition (EMT) and trophoblast cell fusion occur. Quite recently, extracellular vesicles (EVs) with micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been found to play a pivotal role for the establishment of the proper uterine environment required for peri-implantation processes to proceed. New findings of EVs, miRNA, and lncRNAs will be described and discussed to elucidate their connections with conceptus implantation to the maternal endometrium.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan
- *Correspondence: Kazuhiko Imakawa
| | - Yuta Matsuno
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
17
|
Pillai VV, Kei TG, Gurung S, Das M, Siqueira LGB, Cheong SH, Hansen PJ, Selvaraj V. RhoA/ROCK signaling antagonizes bovine trophoblast stem cell self-renewal and regulates preimplantation embryo size and differentiation. Development 2022; 149:274909. [DOI: 10.1242/dev.200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Exponential proliferation of trophoblast stem cells (TSC) is crucial in Ruminantia to maximize numerical access to caruncles, the restricted uterine sites that permit implantation. When translating systems biology of the undifferentiated bovine trophectoderm, we uncovered that inhibition of RhoA/Rock promoted self-renewing proliferation and substantially increased blastocyst size. Analysis of transcripts suppressed by Rock inhibition revealed transforming growth factor β1 (TGFβ1) as a primary upstream effector. TGFβ1 treatment induced changes consistent with differentiation in bTSCs, a response that could be replicated by induced expression of the bovine ROCK2 transgene. Rocki could partially antagonize TGFβ1 effects, and TGFβ receptor inhibition promoted proliferation identical to Rocki, indicating an all-encompassing upstream regulation. Morphological differentiation included formation of binucleate cells and infrequent multinucleate syncytia, features we also localize in the in vivo bovine placenta. Collectively, we demonstrate a central role for TGFβ1, RhoA and Rock in inducing bTSC differentiation, attenuation of which is sufficient to sustain self-renewal and proliferation linked to blastocyst size and preimplantation development. Unraveling these mechanisms augments evolutionary/comparative physiology of the trophoblast cell lineage and placental development in eutherians.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G. Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G. B. Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Embrapa Gado de Leite, Juiz de Fora, MG 36038-330, Brazil
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J. Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Simintiras CA, Drum JN, Liu H, Sofia Ortega M, Spencer TE. Uterine lumen fluid is metabolically semi-autonomous. Commun Biol 2022; 5:191. [PMID: 35233029 PMCID: PMC8888695 DOI: 10.1038/s42003-022-03134-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Uterine lumen fluid (ULF) is central to successful pregnancy establishment and maintenance, and impacts offspring wellbeing into adulthood. The current dogma is that ULF composition is primarily governed by endometrial glandular epithelial cell secretions and influenced by progesterone. To investigate the hypothesis that ULF is metabolically semi-autonomous, ULF was obtained from cyclic heifers, and aliquots incubated for various durations prior to analysis by untargeted semi-quantitative metabolomic profiling. Metabolite flux was observed in these ULF isolates, supporting the idea that the biochemical makeup of ULF is semi-autonomously dynamic due to enzyme activities. Subsequent integrative analyses of these, and existing, data predict the specific reactions underpinning this phenomenon. These findings enhance our understanding of the mechanisms leading to pregnancy establishment, with implications for improving fertility and pregnancy outcomes in domestic animals as well as women.
Collapse
Affiliation(s)
| | - Jessica N Drum
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Hongyu Liu
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - M Sofia Ortega
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA.
- Division of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
19
|
Zeng H, Fu Y, Shen L, Quan S. Integrated Analysis of Multiple Microarrays Based on Raw Data Identified Novel Gene Signatures in Recurrent Implantation Failure. Front Endocrinol (Lausanne) 2022; 13:785462. [PMID: 35197930 PMCID: PMC8859149 DOI: 10.3389/fendo.2022.785462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Recurrent implantation failure (RIF) is an intricate complication following IVF-ET, which refers to the situation that good-quality embryos repeatedly fail to implant following two or more IVF cycles. Intrinsic molecular mechanisms underlying RIF have not yet been fully elucidated. With enormous improvement in high-throughput technologies, researchers screened biomarkers for RIF using microarray. However, the findings of published studies are inconsistent. An integrated study on the endometrial molecular determinants of implantation will help to improve pregnancy outcomes. OBJECTIVE To identify robust differentially expressed genes (DEGs) and hub genes in endometrium associated with RIF, and to investigate the diagnostic role of hub genes in RIF. METHODS Raw data from five GEO microarrays regarding RIF were analyzed. Integrated genetic expression analyses were performed using the Robust Rank Aggregation method to identify robust DEGs. Enrichment analysis and protein-protein interaction (PPI) analysis were further performed with the robust DEGs. Cytohubba was used to screen hub genes based on the PPI network. GSE111974 was used to validate the expression and diagnostic role of hub genes in RIF. RESULTS 1532 Robust DEGs were identified by integrating four GEO datasets. Enrichment analysis showed that the robust DEGs were mainly enriched in processes associated with extracellular matrix remodeling, adhesion, coagulation, and immunity. A total of 18 hub genes (HMGCS1, SQLE, ESR1, LAMC1, HOXB4, PIP5K1B, GNG11, GPX3, PAX2, TF, ALDH6A1, IDH1, SALL1, EYA1, TAGLN, TPD52L1, ST6GALNAC1, NNMT) were identified. 10 of the 18 hub genes were significantly differentially expressed in RIF patients as validated by GSE111974. The 10 hub genes (SQLE, LAMC1, HOXB4, PIP5K1B, PAX2, ALDH6A1, SALL1, EYA1, TAGLN, ST6GALNAC1) were effective in predicting RIF with an accuracy rate of 85%, specificity rate of 100%, and sensitivity rate of 88.9%. CONCLUSIONS Our integrated analysis identified novel robust DEGs and hub genes in RIF. The hub genes were effective in predicting RIF and will contribute to the understanding of comprehensive molecular mechanisms in RIF pathogenesis.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, China
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Fu
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Shen
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lang Shen, ; Song Quan,
| | - Song Quan
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lang Shen, ; Song Quan,
| |
Collapse
|
20
|
Zhu C, Cheng H, Li N, Liu T, Ma Y. Isobaric Tags for Relative and Absolute Quantification-Based Proteomics Reveals Candidate Proteins of Fat Deposition in Chinese Indigenous Sheep With Morphologically Different Tails. Front Genet 2021; 12:710449. [PMID: 34868196 PMCID: PMC8634704 DOI: 10.3389/fgene.2021.710449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/31/2021] [Indexed: 02/01/2023] Open
Abstract
Background: Chinese indigenous sheep can be classified into two types according to their tail morphology: fat-rumped and thin-tailed sheep, of which the typical breeds are Altay sheep and Tibetan sheep, respectively. Methods: To identify the differentially expressed proteins (DEPs) underlying the phenotypic differences between tail types, we used isobaric tags for relative and absolute quantification (iTRAQ) combined with multi-dimensional liquid chromatography tandem-mass spectrometry (LC-MS/MS) technology to detect candidate proteins. We then subjected these to a database search and identified the DEPs. Finally, bioinformatics technology was used to carry out Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Results: A total of 3,248 proteins were identified, of which 44 were up-regulated and 40 were down-regulated DEPs. Analyzing their GO function terms and KEGG pathways revealed that the functions of these DEPs are mainly binding, catalytic activity, structural molecule activity, molecular function regulator, and transporter activity. Among the genes encoding the DEPs, APOA2, GALK1, ADIPOQ, and NDUFS4 are associated with fat formation and metabolism. Conclusion: The APOA2, GALK1, ADIPOQ, and NDUFS4 genes may be involved in the deposition of fat in the tail of sheep. This study provides a scientific basis for the breeding of thin-tailed sheep.
Collapse
Affiliation(s)
- Caiye Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Heping Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Tiaoguo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Aranciaga N, Morton JD, Maes E, Gathercole JL, Berg DK. Proteomic determinants of uterine receptivity for pregnancy in early and mid-postpartum dairy cows†. Biol Reprod 2021; 105:1458-1473. [PMID: 34647570 DOI: 10.1093/biolre/ioab190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
Dairy cow subfertility is a worldwide issue arising from multiple factors. It manifests in >30% early pregnancy losses in seasonal pasture-grazed herds, especially when cows are inseminated in the early post-partum period. Most losses occur before implantation, when embryo growth depends on factors present in maternal tract fluids. Here we examined the proteomic composition of early and mid-postpartum uterine luminal fluid in crossbred lactating dairy cows to identify molecular determinants of fertility. We also explored changes in uterine luminal fluid from first to third estrus cycles postpartum in individual cows, linking those changes with divergent embryo development. For this, we flushed uteri of 87 cows at day 7 of pregnancy at first and third estrus postpartum, recovering and grading their embryos. Out of 1563 proteins detected, 472 had not been previously reported in this fluid, and 408 were predicted to be actively secreted by bioinformatic analysis. The abundance of 18 proteins with roles in immune regulation and metabolic function (e.g. cystatin B, pyruvate kinase M2) was associated with contrasting embryo quality. Matched-paired pathway analysis indicated that, from first to third estrus postpartum, upregulation of metabolic (e.g. creatine and carbohydrate) and immune (e.g. complement regulation, antiviral defense) processes were related to poorer quality embryos in the third estrus cycle postpartum. Conversely, upregulated signal transduction and protein trafficking appeared related to improved embryo quality in third estrus. These results advance the characterization of the molecular environment of bovine uterine luminal fluid and may aid understanding fertility issues in other mammals, including humans.
Collapse
Affiliation(s)
- Nicolas Aranciaga
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand.,Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.,Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| | - James D Morton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Evelyne Maes
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand
| | | | - Debra K Berg
- Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| |
Collapse
|
22
|
Gegenfurtner K, Fröhlich T, Flenkenthaler F, Kösters M, Fritz S, Desnoës O, Le Bourhis D, Salvetti P, Sandra O, Charpigny G, Mermillod P, Lonergan P, Wolf E, Arnold GJ. Genetic merit for fertility alters the bovine uterine luminal fluid proteome†. Biol Reprod 2021; 102:730-739. [PMID: 31786596 DOI: 10.1093/biolre/ioz216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | | | | | | | | | - Olivier Sandra
- Unités Mixtes de Recherche Biologie du Développement et Reproduction, Institut National de Recherche Agronomique (INRA), Environment and Agronomy (ENVA), Université Paris Saclay, Jouy en Josas, France
| | - Gilles Charpigny
- Unités Mixtes de Recherche Biologie du Développement et Reproduction, Institut National de Recherche Agronomique (INRA), Environment and Agronomy (ENVA), Université Paris Saclay, Jouy en Josas, France
| | - Pascal Mermillod
- Institut National de Recherche Agronomique, UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| |
Collapse
|
23
|
O'Neil EV, Burns GW, Ferreira CR, Spencer TE. Characterization and regulation of extracellular vesicles in the lumen of the ovine uterus†. Biol Reprod 2021; 102:1020-1032. [PMID: 32055841 DOI: 10.1093/biolre/ioaa019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Secretions of the endometrium are vital for peri-implantation growth and development of the sheep conceptus. Extracellular vesicles (EVs) are present in the uterine lumen, emanate from both the endometrial epithelia of the uterus and trophectoderm of the conceptus, and hypothesized to mediate communication between those cell types during pregnancy establishment in sheep. Size-exclusion chromatography and nanoparticle tracking analysis determined that total EV number in the uterine lumen increased from days 10 to 14 of the cycle but was lower on days 12 and 14 of pregnancy in sheep. Intrauterine infusions of interferon tau (IFNT) did not affect total EV number in the uterine lumen. Quantitative mass spectrometric analyses defined proteins and lipids in EVs isolated from the uterine lumen of day 14 cyclic and pregnant sheep. In vitro analyses found that EVs decreased ovine trophectoderm cell proliferation and increased IFNT production without effects on gene expression as determined by RNA-seq. Collective results support the idea EVs impact conceptus growth during pregnancy establishment via effects on trophectoderm cell growth.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Christina R Ferreira
- Bindley Bioscience Center and Center for Analytical Instrumentation Development, Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Silva FACC, da Silva GF, Vieira BS, Neto AL, Rocha CC, Lo Turco EG, Nogueira GP, Pugliesi G, Binelli M. Peri-estrus ovarian, uterine, and hormonal variables determine the uterine luminal fluid metabolome in beef heifers. Biol Reprod 2021; 105:1140-1153. [PMID: 34350935 DOI: 10.1093/biolre/ioab149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
In cattle, uterine luminal fluid (ULF) is the main source of molecules that support embryo development and survival during the peri-implantation period. Our overarching hypothesis is that peri-estrus changes in uterine function, including ULF accumulation and absorption, are uneven among individuals, and it affects ULF composition and fertility. Our objectives were (1) to characterize temporal and spatial changes in ULF volume, endometrial and luteal blood perfusion, endometrial and luteal size, and circulating progesterone concentrations during the peri-estrus period in beef heifers and, (2) to associate such changes with the metabolite composition in the ULF, four days after estrus (d 0). Fourteen B. indicus heifers that presented a PGF2α responsive CL received 500 μg PGF2α analog i.m. and were examined daily by rectal B-mode and pulse-wave color-Doppler ultrasonography until the fifth day after estrus (d 5). The composition of the ULF was analyzed by targeted mass spectrometry on d 4. Multivariate analyses clustered heifers according to ovarian, uterine, and hormonal variables in clusters A (n = 5) and B (n = 8 heifers). Concentrations of Pro, Ala, Leu, Gly, Val, Lys, Ile, Phe, Asp, Orn, Tyr, Arg, Trp, Suc, Cit, ADMA, the sum of essential Amino Acids (AA), sum of non-essential AA, sum of aromatic AA, and total AA were greater in cluster A (FDR ≤ 0.05). ULF volume dynamics and uterine, ovarian, and hormonal variables during the peri-estrus period presented a concerted variation among heifers within clusters, which was associated with the ULF composition four days after estrus.
Collapse
Affiliation(s)
- Felipe A C C Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Gabriela F da Silva
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Bruna S Vieira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Adomar L Neto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Cecilia C Rocha
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Edson G Lo Turco
- Department of Surgery, Division of Urology, Federal University of Sao Paulo, SP, Brazil
| | - Guilherme P Nogueira
- School of Veterinary Medicine, Sao Paulo State University, Aracatuba, SP, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Kusama K, Rashid MB, Kowsar R, Marey MA, Talukder AK, Nagaoka K, Shimada M, Khatib H, Imakawa K, Miyamoto A. Day 7 Embryos Change the Proteomics and Exosomal Micro-RNAs Content of Bovine Uterine Fluid: Involvement of Innate Immune Functions. Front Genet 2021; 12:676791. [PMID: 34262596 PMCID: PMC8273763 DOI: 10.3389/fgene.2021.676791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to characterize proteins and exosomal microRNAs (miRNAs) in the uterine flushings (UF) of cows associated with Day 7 (D7) pregnancy using the embryo donor cows of the embryo transfer program. Superovulated cows either were inseminated (AI cows) or remained non-inseminated (Ctrl cows). UF was collected on D7 in the presence of multiple embryos (AI cows) or without embryos (Ctrl cows) and subjected to isobaric tags for relative and absolute quantification protein analysis. A total of 336 proteins were identified, of which 260 proteins were more than 2-fold higher in AI cows than Ctrl cows. Gene ontology analysis revealed that many differentially expressed proteins were involved in “neutrophil-related” and “extracellular vesicular exosome-related” terms. In silico analysis of proteins with higher concentrations in the UF of AI identified 18 uniquely expressed proteins. Exosomes were isolated from the UF, from which RNA was subjected to miRNA-seq, identifying 37 miRNAs. Of these, three miRNAs were lower, and six miRNAs were higher in the UF of AI cows than those of Ctrl ones. The principal component analysis displayed a close association in miRNA and protein between bta-miR-29a, bta-miR-199b, SUGT1, and PPID. In addition, the receiver operating characteristic curve analysis showed that SUGT1 was the best predictor for the presence of embryos in the uterus. These findings suggest that the presence of multiple D7 embryos in the uterus can lead to significant changes in the protein composition and exosomal miRNA contents of UF, which could mediate innate immunological interactions between the pre-hatching embryo and the uterus in cows.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Rasoul Kowsar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Anup K Talukder
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
26
|
Molecular Characterisation of Uterine Endometrial Proteins during Early Stages of Pregnancy in Pigs by MALDI TOF/TOF. Int J Mol Sci 2021; 22:ijms22136720. [PMID: 34201586 PMCID: PMC8267828 DOI: 10.3390/ijms22136720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanism underlying embryonic implantation is vital to understand the correct communications between endometrium and developing conceptus during early stages of pregnancy. This study’s objective was to determine molecular changes in the uterine endometrial proteome during the preimplantation and peri-implantation between 9 days (9D), 12 days (12D), and 16 days (16D) of pregnant Polish Large White (PLW) gilts. 2DE-MALDI-TOF/TOF and ClueGOTM approaches were employed to analyse the biological networks and molecular changes in porcine endometrial proteome during maternal recognition of pregnancy. A total of sixteen differentially expressed proteins (DEPs) were identified using 2-DE gels and MALDI-TOF/TOF mass spectrometry. Comparison between 9D and 12D of pregnancy identified APOA1, CAPZB, LDHB, CCT5, ANXA4, CFB, TTR upregulated DEPs, and ANXA5, SMS downregulated DEPs. Comparison between 9D and 16D of pregnancy identified HP, APOA1, ACTB, CCT5, ANXA4, CFB upregulated DEPs and ANXA5, SMS, LDHB, ACTR3, HP, ENO3, OAT downregulated DEPs. However, a comparison between 12D and 16D of pregnancy identified HP, ACTB upregulated DEPs, and CRYM, ANXA4, ANXA5, CAPZB, LDHB, ACTR3, CCT5, ENO3, OAT, TTR down-regulated DEPs. Outcomes of this study revealed key proteins and their interactions with metabolic pathways involved in the recognition and establishment of early pregnancy in PLW gilts.
Collapse
|
27
|
Moraes JGN, Behura SK, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids†. Biol Reprod 2021; 102:456-474. [PMID: 31616913 DOI: 10.1093/biolre/ioz191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Survival and growth of the bovine conceptus (embryo and associated extraembryonic membranes) are dependent on endometrial secretions or histotroph found in the uterine lumen. Previously, serial embryo transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components [glucose, prostaglandins (PGs), and lipids] in the uterine lumen of day 17 pregnant and open fertility-classified heifers. Concentrations of glucose in the uterine lumen were increased by pregnancy but did not differ among fertility-classified heifers. Differences in expression of genes encoding glucose transporters and involved with glycolysis and gluconeogenesis were observed between conceptuses collected from HF and SF heifers. In the uterine lumen, PGE2 and PGF2α were increased by pregnancy, and HF heifers had higher concentrations of PGE2, PGF2α, and 6-keto-PFG1α than SF heifers. Differences were found in expression of genes regulating PG signaling, arachidonic acid metabolism, and peroxisome proliferator-activated receptor signaling among conceptuses and endometrium from fertility-classified heifers. Lipidomics was conducted exclusively in samples from HF heifers, and phosphatidylcholine was the main lipid class that increased in the uterine lumen by pregnancy. Expression of several lipid metabolism genes differed between HF and SF conceptuses, and a number of fatty acids were differentially abundant in the uterine lumen of pregnant HF and SF heifers. These results support the ideas that uterine luminal histotroph impacts conceptus survival and programs its development and is a facet of dysregulated conceptus-endometrial interactions that result in loss of the conceptus in SF cattle during the implantation period of pregnancy establishment.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
28
|
Northrop-Albrecht EJ, Rich JJJ, Cushman RA, Yao R, Ge X, Perry GA. Influence of estradiol on bovine trophectoderm and uterine gene transcripts around maternal recognition of pregnancy†. Biol Reprod 2021; 105:381-392. [PMID: 33962467 DOI: 10.1093/biolre/ioab091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Embryo survival and pregnancy success is increased among animals that exhibit estrus prior to fixed time-artificial insemination, but there are no differences in conceptus survival to d16. The objective of this study was to determine effects of preovulatory estradiol on uterine transcriptomes, select trophectoderm (TE) transcripts, and uterine luminal fluid proteins. Beef cows/heifers were synchronized, artificially inseminated (d0), and grouped into either high (highE2) or low (lowE2) preovulatory estradiol. Uteri were flushed (d16); conceptuses and endometrial biopsies (n = 29) were collected. RNA sequencing was performed on endometrium. Real-time polymerase chain reaction (RT-PCR) was performed on TE (n = 21) RNA to measure relative abundance of IFNT, PTGS2, TM4SF1, C3, FGFR2, and GAPDH. Uterine fluid was analyzed using 2D Liquid Chromatography with tandem mass spectrometry-based Isobaric tags for relative and absolute quantitation (iTRAQ) method. RT-PCR data were analyzed using the MIXED procedure in SAS. There were no differences in messenger RNA (mRNA) abundances in TE, but there were 432 differentially expressed genes (253 downregulated, 179 upregulated) in highE2/conceptus versus lowE2/conceptus groups. There were also 48 differentially expressed proteins (19 upregulated, 29 downregulated); 6 of these were differentially expressed (FDR < 0.10) at the mRNA level. Similar pathways for mRNA and proteins included: calcium signaling, protein kinase A signaling, and corticotropin-releasing hormone signaling. These differences in uterine function may be preparing the conceptus for improved likelihood of survival after d16 among highE2 animals.
Collapse
Affiliation(s)
| | - Jerica J J Rich
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Robert A Cushman
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE, USA
| | - Runan Yao
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - George A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
29
|
Cystatin M/E (Cystatin 6): A Janus-Faced Cysteine Protease Inhibitor with Both Tumor-Suppressing and Tumor-Promoting Functions. Cancers (Basel) 2021; 13:cancers13081877. [PMID: 33919854 PMCID: PMC8070812 DOI: 10.3390/cancers13081877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.
Collapse
|
30
|
Nishino D, Kotake A, Yun CS, Rahman ANMI, El-Sharawy M, Yamanaka KI, Khandoker MAMY, Yamauchi N. Gene expression of bovine endometrial epithelial cells cultured in matrigel. Cell Tissue Res 2021; 385:265-275. [PMID: 33837849 DOI: 10.1007/s00441-021-03418-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/15/2021] [Indexed: 10/21/2022]
Abstract
Glandular epithelial cells (GE) in the endometrium are thought to support the elongation and survival of ruminant embryos by secreting histotrophs. In the present study, the gene expression of bovine endometrial epithelial cells cultured in matrigel was analyzed and examined whether it could be an in vitro model of GE. Bovine endometrial epithelial cells (BEE) and stromal cells (BES) were isolated from the slaughterhouse uteri and cultured in DMEM/F12 + 10% FBS. BEE showed the gland-like structure morphological changes when cultured in 15% matrigel but could not be identified in higher concentrations of the matrigel (30% or 60%). The expression of typical genes expressed in GE, SERPINA14 and GRP, was substantially high in matrigel-cultured BEE than in monolayer (P < 0.05). P4 and INFα have no significant effect on the SERPINA14 expression of BEE cultured in matrigel without co-culture with BES. On the other hand, when BEE were co-cultured with BES in matrigel culture, the expression of FGF13 was increased by the P4 treatment (P < 0.05). Furthermore, SERPINA14 and TXN expressions were increased by P4 + IFNα treatment (P < 0.05). These results demonstrate the appropriate conditions for BEE to form glandular structures in matrigel and the effect of co-culture with BES. The present study highlighted the possible use of matrigel for the culture of BEE to investigate the expression of cell-specific glandular epithelial genes as well as P4 and type-I IFN as factors controlling endometrial function during the implantation period.
Collapse
Affiliation(s)
- Daichi Nishino
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ai Kotake
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chi Sun Yun
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Al-Nur Md Iftekhar Rahman
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Animal Nutrition, Genetics and Breeding, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mohamed El-Sharawy
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | | | - M A M Yahia Khandoker
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
31
|
Campanile G, Baruselli PS, Limone A, D'Occhio MJ. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation - Implications for embryo survival in cattle: A review. Theriogenology 2021; 167:1-12. [PMID: 33743503 DOI: 10.1016/j.theriogenology.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Early embryo development, implantation and pregnancy involve a complex dialogue between the embryo and mother. In cattle this dialogue starts as early as days 3-4 when the embryo is still in the oviduct, and it continues to implantation. Immunological processes involving cytokines, mast cells and macrophages form an important part of this dialogue. Amongst the cytokines, interleukin-6 (Il-6) and leukemia inhibitory factor (LIF) are secreted by both the embryo and uterine endometrium and form part of an ongoing and reciprocating dialogue. Mast cells and macrophages populate the uterine endometrium during embryo development and are involved in achieving the correct balance between inflammatory and anti-inflammatory reactions at the uterus that are associated with embryo attachment and implantation. Embryo loss is the major cause of reproductive wastage in cattle, and livestock generally. A deeper understanding of immunological processes during early embryo development will help to achieve the next step change in the efficiency of natural and assisted breeding.
Collapse
Affiliation(s)
- Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Antonio Limone
- Instituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
32
|
Xie J, Kalwar Q, Yan P, Guo X. Expression and characterization of the serum proteome from yak induced into estrus by improved nutrition. Anim Biotechnol 2021; 33:930-940. [PMID: 33625304 DOI: 10.1080/10495398.2020.1853137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regulation of estrus plays a crucial role in the livestock industry. It is reported that providing better nutrition can induce early estrus in animals. However, little is known about the major endocrine and physiological mechanisms that could enhance estrus in anestrus animals. Hence in the current research two different groups of yaks, non-breeding season (February-June, NBS) estrus yaks as the experiment group and breeding season (July-September, BS) estrus animals as the control group were compared using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Study displayed that cold season supplementation significantly improved growth performance, serum biochemical indicators and reproductive hormone concentrations in yaks. We also identified 25 differentially expressed proteins in yak serum using iTRAQ proteomics. Go and KEGG analysis indicated that calcium signaling pathway and beta-alanine metabolism may be candidate pathways for seasonal estrus induced by nutrition. Differential protein expression was validated using parallel reaction monitoring (PRM). The results of this study initially identified A2M, IGF2, A1BG and APOA1 as candidate proteins for seasonal estrus induced by nutrition. Altogether, In conclusion, our results show that providing additional nutrients in the cold season can improve yak productivity and reproductive efficiency, and provide a new reference.
Collapse
Affiliation(s)
- Jianpeng Xie
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
33
|
Isaac E, Pfeffer PL. Growing cattle embryos beyond Day 8 - An investigation of media components. Theriogenology 2020; 161:273-284. [PMID: 33360161 DOI: 10.1016/j.theriogenology.2020.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
The growth of viable cattle embryos in culture to stages beyond the hatching blastocyst is of interest to developmental biologists wishing to understand developmental events beyond the first lineage decision, as well as for commercial applications, because a lengthening of the culturing time allows more time for diagnostic tests on biopsies, whereas extended survival can be used as a better assay system for monitoring developmental potential. We here report on a novel extended culture medium for embryo growth until embryonic day (Day) 12. We used a non-invasive morphological characterisation system that scored viability, inner cell mass (ICM) grade, hatching and embryo and ICM diameter. The basal medium was based on published uterine fluid concentrations of amino acids, carbohydrates and electrolytes. Addition of fetal bovine serum was necessary and the additive ITSX greatly improved culture success. We tested the inclusion of a seven-growth factor cocktail consisting of Activin A, Artemin, BMP4, EGF, FGF4, GM-CSF/CSF2 and LIF, as well as omission of individual components of the cocktail. In the context of the growth factor cocktail, Artemin and BMP4 provided the greatest benefit, while FGF omission had more positive than negative effects on embryo characteristics. Lastly, replacement of ITSX by B27-additive led to the most successful culture of embryos, in all media permutations.
Collapse
Affiliation(s)
- Ekaterina Isaac
- Victoria University of Wellington, School of Biological Sciences, Kelburn Campus, Wellington, 6012, New Zealand.
| | - Peter L Pfeffer
- Victoria University of Wellington, School of Biological Sciences, Kelburn Campus, Wellington, 6012, New Zealand.
| |
Collapse
|
34
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The biochemistry surrounding bovine conceptus elongation†. Biol Reprod 2020; 101:328-337. [PMID: 31181571 DOI: 10.1093/biolre/ioz101] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022] Open
Abstract
Conceptus elongation is a fundamental developmental event coinciding with a period of significant pregnancy loss in cattle. The process has yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by systemic progesterone. To better understand the environment facilitating this critical reproductive phenomenon, we interrogated the biochemical composition of uterine luminal fluid from heifers with high vs physiological circulating progesterone on days 12-14 of the estrous cycle-the window of conceptus elongation-initiation-by high-throughput untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. A total of 233 biochemicals were identified, clustering within 8 superpathways [amino acids (33.9%), lipids (32.2%), carbohydrates (8.6%), nucleotides (8.2%), xenobiotics (6.4%), cofactors and vitamins (5.2%), energy substrates (4.7%), and peptides (0.9%)] and spanning 66 metabolic subpathways. Lipids dominated total progesterone (39.1%) and day (57.1%) effects; however, amino acids (48.5%) and nucleotides (14.8%) accounted for most day by progesterone interactions. Corresponding pathways over-represented in response to day and progesterone include (i) methionine, cysteine, s-adenosylmethionine, and taurine (9.3%); (ii) phospholipid (7.4%); and (iii) (hypo)xanthine and inosine purine metabolism (5.6%). Moreover, under physiological conditions, the uterine lumen undergoes a metabolic shift after day 12, and progesterone supplementation increases total uterine luminal biochemical abundance at a linear rate of 0.41-fold day-1-resulting in a difference (P ≤ 0.0001) by day 14. This global metabolic analysis of uterine fluid during the initiation of conceptus elongation offers new insights into the biochemistry of maternal-embryo communication, with implications for improving ruminant fertility.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
35
|
Khan FA, Diel de Amorim M, Chenier TS. Qualitative analysis and functional classification of the uterine proteome of mares in oestrus and dioestrus. Reprod Domest Anim 2020; 55:1511-1519. [PMID: 32772405 DOI: 10.1111/rda.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Quantitative analysis of the uterine flush fluid proteome of mares in oestrus and dioestrus has been previously reported. The objectives of this study were to: a) evaluate qualitative differences in the uterine flush fluid proteome between mares in oestrus and mares in dioestrus and b) perform a functional classification of proteins either unique to each stage or common between the two stages. Uterine flush fluid samples were collected from 8 light breed mares in either oestrus (n = 5) or dioestrus (n = 3). Proteomic analysis of the samples was conducted using liquid chromatography-tandem mass spectrometry. Proteins exclusively detected in oestrus or dioestrus and those common to both stages were identified using the Scaffold software (version 4.4.8, Proteome Software Inc., Portland, OR). The identified proteins were classified into gene ontology (GO) categories (cellular component [CC], molecular function [MF] and biological process [BP]) using the PANTHER (www.pantherdb.org) classification system version 14.0. Of 172 proteins identified, 51 and 28 were exclusively detected in mares in oestrus and dioestrus, respectively, and 93 proteins were common to both stages. The most represented terms in various GO categories were similar among the three subsets of proteins. The most represented CC terms were extracellular region and cell, the most represented MF terms were catalytic activity and binding, and the most represented BP terms were metabolic process and cellular process. In conclusion, proteomic analysis of the uterine flush fluid enabled the identification of subsets of proteins unique to oestrus or dioestrus, or common to both stages. The results of this study can serve as a baseline for future research focused on finding stage-specific protein markers or evaluating differences in the uterine flush fluid proteome between normal mares and those with uterine disease.
Collapse
Affiliation(s)
- Firdous A Khan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Department of Large Animal Medicine and Surgery, School of Veterinary Medicine, St. George's University, St. George's, Grenada
| | - Mariana Diel de Amorim
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Tracey S Chenier
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Emerging Role of Extracellular Vesicles in Embryo-Maternal Communication throughout Implantation Processes. Int J Mol Sci 2020; 21:ijms21155523. [PMID: 32752293 PMCID: PMC7432060 DOI: 10.3390/ijms21155523] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
In ruminants, the establishment of proper conceptus–endometrial communication is essential for conceptus implantation and subsequent successful placentation. Accumulated evidence supports the idea that extracellular vesicles (EVs) present in uterine lumen are involved in conceptus–endometrial interactions during the preimplantation period. EVs make up a new field of intercellular communicators, which transport a variety of bioactive molecules, including soluble and membrane-bound proteins, lipids, DNA, and RNAs. EVs thus regulate gene expression and elicit biological effects including increased cell proliferation, migration, and adhesion in recipient cells. Uterine EVs are interactive and coordinate with ovarian progesterone (P4), trophectoderm-derived interferon tau (IFNT) and/or prostaglandins (PGs) in the physiological or pathological microenvironment. In this review, we will focus on intrauterine EVs in embryo–maternal interactions during the early stage of pregnancy, especially the implantation period in ruminant ungulates.
Collapse
|
37
|
Lonergan P, Sánchez JM. Symposium review: Progesterone effects on early embryo development in cattle. J Dairy Sci 2020; 103:8698-8707. [PMID: 32622590 DOI: 10.3168/jds.2020-18583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
The causes of low fertility in dairy cattle are complex and multifactorial and may be due to compromised follicle development affecting oocyte quality, a suboptimal reproductive tract environment incapable of supporting normal embryo development, or a combination of both. Progesterone (P4) plays a key role in reproductive events associated with establishment and maintenance of pregnancy, through its effects on oocyte quality and its action on the uterine endometrium. Reduced P4 concentrations during growth of the ovulatory follicle are associated with lower fertility, and low concentrations of circulating P4 after ovulation have been associated with reductions in conceptus growth and elongation, decreased interferon-τ (IFNT) production, and lower pregnancy rates in cattle. In contrast, elevated concentrations of circulating P4 in the period immediately following conception have been associated with advancement of conceptus elongation, increased IFNT production, and, in some cases, higher pregnancy rates in cattle. Despite the potential beneficial effects of exogenous P4 supplementation on fertility, results of supplementation studies have been inconsistent. As part of the 2019 ADSA Reproduction Symposium, focusing on the etiology of pregnancy losses in dairy cattle, the aim of this review is to highlight recent findings from our group and others in relation to embryo-maternal interaction during bovine pregnancy establishment and the role of P4 in uterine biology and embryo development.
Collapse
Affiliation(s)
- P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | - J M Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
38
|
Itze-Mayrhofer C, Brem G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J Proteomics 2020; 225:103884. [PMID: 32593762 DOI: 10.1016/j.jprot.2020.103884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Reproductive fluids from the female reproductive tract are gaining attention for their potential to support and optimize reproductive processes, including gamete maturation and embryo culture in vitro. Quantitative proteomics is a powerful way to decipher the proteome of reproductive tract fluids and to identify biologically relevant proteins. The present review describes proteomic strategies for analysing female reproductive fluid proteins. In addition, it considers the strategies for the preparation of oviductal, uterine and follicular fluid samples. Finally, it highlights the main results of quantitative proteomic studies, providing insights into the biological processes related to reproductive biology in farm animals. SIGNIFICANCE: Assisted reproductive technologies (ARTs) have become vitally important for farm animal breeding and much effort is going into the optimization and refinement of the techniques. There are also attempts to imitate physiological conditions by adding reproductive fluids or individual fluid proteins to improve in vitro procedures. A detailed knowledge of the reproductive fluid proteomes is indispensable. The present review summarizes the most widely used quantitative proteomic approaches for the analysis of fluids from the female reproductive tract and highlights the potential of quantitative proteomics to delineate reproductive processes and identify candidate proteins for ARTs in farm animals.
Collapse
Affiliation(s)
- Corina Itze-Mayrhofer
- Institute of Animal Breeding and Genetics, Group Molecular Reproduction IFA-Tulln, University of Veterinary Medicine, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
39
|
Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M, Lonergan P. Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window†. Biol Reprod 2020; 100:672-685. [PMID: 30388203 DOI: 10.1093/biolre/ioy234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Pregnancy establishment in cattle is contingent on conceptus elongation-a fundamental developmental event coinciding with the time during which most pregnancies fail. Elongation in vivo is directly driven by uterine secretions, indirectly influenced by systemic progesterone concentrations, and has yet to be recapitulated in vitro. To better understand the microenvironment evolved to facilitate this phenomenon, the amino acid and carbohydrate composition of uterine fluid was interrogated using high-throughput metabolomics on days 12, 13, and 14 of the estrous cycle from heifers with normal and high circulating progesterone. A total of 99 biochemicals (79 amino acids and 20 carbohydrates) were consistently identified, of which 31 showed a day by progesterone interaction. Fructose and mannitol/sorbitol did not exhibit a day by progesterone interaction, but displayed the greatest individual fluctuations (P ≤ 0.05) with respective fold increases of 18.39 and 28.53 in high vs normal progesterone heifers on day 12, and increases by 10.70-fold and 14.85-fold in the uterine fluid of normal progesterone animals on day 14 vs day 12. Moreover, enrichment analyses revealed that the phenylalanine, glutathione, polyamine, and arginine metabolic pathways were among the most affected by day and progesterone. In conclusion, progesterone had a largely stabilizing effect on amino acid flux, and identified biochemicals of likely importance to conceptus elongation initiation include arginine, fructose, glutamate, and mannitol/sorbitol.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thiago Martins
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA.,Department of Animal Reproduction, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Malo Estepa I, Tinning H, Rosas Vasconcelos EJ, Fernandez-Fuertes B, Sánchez JM, Burns GW, Spencer TE, Lonergan P, Forde N. Protein Synthesis by Day 16 Bovine Conceptuses during the Time of Maternal Recognition of Pregnancy. Int J Mol Sci 2020; 21:ijms21082870. [PMID: 32325999 PMCID: PMC7215316 DOI: 10.3390/ijms21082870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Tau (IFNT), the conceptus-derived pregnancy recognition signal in cattle, significantly modifies the transcriptome of the endometrium. However, the endometrium also responds to IFNT-independent conceptus-derived products. The aim of this study was to determine what proteins are produced by the bovine conceptus that may facilitate the pregnancy recognition process in cattle. We analysed by mass spectrometry the proteins present in conceptus-conditioned media (CCM) after 6 h culture of Day 16 bovine conceptuses (n = 8) in SILAC media (arginine- and lysine-depleted media supplemented with heavy isotopes) and the protein content of extracellular vesicles (EVs) isolated from uterine luminal fluid (ULF) of Day 16 pregnant (n = 7) and cyclic (n = 6) cross-bred heifers on day 16. In total, 11,122 proteins were identified in the CCM. Of these, 5.95% (662) had peptides with heavy labelled amino acids, i.e., de novo synthesised by the conceptuses. None of these proteins were detected in the EVs isolated from ULF. Pregnancy-associated glycoprotein 11, Trophoblast Kunitz domain protein 1 and DExD-Box Helicase 39A were de novo produced and present in the CCM from all conceptuses and in previously published CCM data following 6 and 24 h. A total of 463 proteins were present in the CCM from all the conceptuses in the present study, and after 6 and 24 h culture in a previous study, while expression of their transcripts was not detected in endometrium indicating that they are likely conceptus-derived. Of the proteins present in the EVs, 67 were uniquely identified in ULF from pregnant heifers; 35 of these had been previously reported in CCM from Day 16 conceptuses. This study has narrowed a set of conceptus-derived proteins that may be involved in EV-mediated IFNT-independent embryo–maternal communication during pregnancy recognition in cattle.
Collapse
Affiliation(s)
- Irene Malo Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
| | | | - Beatriz Fernandez-Fuertes
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (J.M.S.); (P.L.)
| | - Gregory W. Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (G.W.B.); (T.E.S.)
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (G.W.B.); (T.E.S.)
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (J.M.S.); (P.L.)
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
- Correspondence:
| |
Collapse
|
41
|
Moraes JGN, Behura SK, Bishop JV, Hansen TR, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites†. Biol Reprod 2020; 102:571-587. [PMID: 31616912 PMCID: PMC7331878 DOI: 10.1093/biolre/ioz197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Survival and growth of the bovine conceptus is dependent on endometrial secretions or histotroph. Previously, serial blastocyst transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components (proteins and metabolites) in the uterine lumen of day 17 fertility-classified heifers. Interferon tau (IFNT) was more abundant in uterine lumenal fluid (ULF) of pregnant HF than SF animals as the conceptus was longer in HF heifers. However, no differences in endometrial expression of selected classical and nonclassical interferon-stimulated genes (ISGs) were observed, suggesting that IFNT signaling in the endometrium of pregnant HF and SF heifers was similar. Pregnancy significantly increased the abundance of several proteins in ULF. Based on functional annotation, the abundance of a number of proteins involved in energy metabolism, oxidative stress, amino acid metabolism, and cell proliferation and differentiation were greater in the ULF of pregnant HF than SF heifers. Metabolomics analysis found that pregnancy only changed the metabolome composition of ULF from HF heifers. The majority of the metabolites that increased in the ULF of pregnant HF as compared to SF heifers were associated with energy and amino acid metabolism. The observed differences in ULF proteome and metabolome are hypothesized to influence uterine receptivity with consequences on conceptus development and survival in fertility-classified heifers.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA and
| | - Thomas W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
42
|
Honan MC, Greenwood SL. Characterization of variations within the rumen metaproteome of Holstein dairy cattle relative to morning feed offering. Sci Rep 2020; 10:3179. [PMID: 32081893 PMCID: PMC7035244 DOI: 10.1038/s41598-020-59974-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Few studies have utilized proteomic techniques to progress our knowledge of protein-mediated pathways within the rumen microbial community, and no previous research has used these techniques to investigate the patterns or variations of these proteins within this community. It was hypothesized that there would be fluctuations of rumen microbial protein abundances due to feed intake-mediated nutrient availability and that these could be identified using non gel-based proteomic techniques. This study investigated the fluctuations of bovine rumen metaproteome utilizing three mid to late-lactation Holsteins. Rumen fluid was collected at three timepoints on three days relative to their first morning feed offering (0 h, 4 h, and 6 h). Samples were pooled within timepoint within cow across day, analyzed using LC-MS/MS techniques, and analyzed for variations across hour of sampling using PROC MIXED of SAS with orthogonal contrasts to determine linear and quadratic effects. A total of 658 proteins were characterized across 19 microbial species, with 68 proteins identified from a variety of 15 species affected by time of collection. Translation-related proteins such as 50S and 30S ribosomal protein subunit variants and elongation factors were positively correlated with hour of sampling. Results suggest that as nutrients become more readily available, microbes shift from conversion-focused biosynthetic routes to more encompassing DNA-driven pathways.
Collapse
Affiliation(s)
- Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA
| | - Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA.
| |
Collapse
|
43
|
Sánchez JM, Passaro C, Forde N, Browne JA, Behura SK, Fernández-Fuertes B, Mathew DJ, Kelly AK, Butler ST, Spencer TE, Lonergan P. Do differences in the endometrial transcriptome between uterine horns ipsilateral and contralateral to the corpus luteum influence conceptus growth to day 14 in cattle? Biol Reprod 2020; 100:86-100. [PMID: 30137215 DOI: 10.1093/biolre/ioy185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
Embryo transfer to the uterine horn contralateral to the ovary containing the corpus luteum (CL) negatively impacts pregnancy establishment in cattle. Our aim was to compare the transcriptome and ability of the ipsilateral and contralateral uterine horns to support preimplantation conceptus survival and growth to day 14. In experiment 1, endometrial samples from both horns were collected from synchronized heifers slaughtered on day 5, 7, 13, or 16 post-estrus (n = 5 per time) and subjected to RNA sequencing. In experiment 2, 10 day 7 in vitro produced blastocysts were transferred into the uterine horn ipsilateral (n = 9) or contralateral to the CL (n = 8) or into both horns (i.e., bilateral, n = 9) of synchronized recipient heifers. Reproductive tracts were recovered at slaughter on day 14, and the number and dimensions of recovered conceptuses were recorded for each horn. A total of 217, 54, 14, and 18 differentially expressed genes (>2-fold change, FDR P < 0.05) were detected between ipsilateral and contralateral horns on days 5, 7, 13, and 16, respectively, with signaling pathways regulating pluripotency of stem cells, ErbB signaling pathway, and mTOR signaling pathway amongst the top canonical pathways. Site of embryo transfer did not affect recovery rate (48.0%, 168/350) or length of conceptuses (mean ± SE 2.85 ± 0.27 mm). Although differences in gene expression exist between the endometrium of uterine horns ipsilateral and contralateral to the CL in cattle, they do not impact conceptus survival or length between day 7 and 14.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- School of Medicine, University of Leeds, Leeds, UK
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
44
|
Billhaq DH, Lee SH, Lee S. The potential function of endometrial-secreted factors for endometrium remodeling during the estrous cycle. Anim Sci J 2020; 91:e13333. [PMID: 31909524 DOI: 10.1111/asj.13333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023]
Abstract
Uterine has a pivotal role in implantation and conceptus development. To prepare a conducive uterine condition for possibly new gestation during the estrous cycle, uterine endometrium undergoes dramatic remodeling. In addition, angiogenesis is an indispensable biological process of endometrium remodeling. Furthermore, essential protein expressions related to important biological processes of endometrium remodeling, which are vascular endothelial growth factor (VEGF), myoglobin (MYG), collagen type IV (COL4), fucosyltransferase IV (FUT4), and cysteine-rich protein 2 (CRP2), were detected in the endometrial tissue reported in many previous studies and recently discovered in histotroph substrates during the estrous cycle. Those proteins, which are liable for provoking new vessel development, cell proliferation, cell adhesion, and cell migration, were expressed higher in the histotroph during the luteal phase than follicular phase. Histotroph proteins considerably contribute to endometrium remodeling during the estrous cycle. To that end, the following review will discuss and highlight the relevant information and evidence of the uterine fluid proteins as endometrial-secreted factors that adequately indicate the potential role of the uterine secretions to be involved in the endometrial remodeling process.
Collapse
Affiliation(s)
- Dody Houston Billhaq
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hee Lee
- Institute of Animal Resources, Kangwon National University, Chuncheon, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
45
|
Effects of miR-98 in intrauterine extracellular vesicles on maternal immune regulation during the peri-implantation period in cattle. Sci Rep 2019; 9:20330. [PMID: 31889113 PMCID: PMC6937239 DOI: 10.1038/s41598-019-56879-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Evidence accumulated suggests that extracellular vesicles (EVs) present in uterine lumen play a role in conceptus-endometrial cell interactions during peri-implantation periods. However, how intrauterine EVs function on endometrium have not been well characterized. To study how intrauterine EVs affect endometrial milieu in cattle, bovine endometrial epithelial cells (EECs) were treated with EVs isolated from uterine flushing fluids (UFs) on day 17 or 20 pregnancy (P17, P20, respectively; conceptus implantation to endometrium begins on days 19–19.5). RNA extracted from EECs were then subjected to RNA sequence analysis. The analysis revealed that transcripts related to immune system were down-regulated in EECs treated with EVs on P20 compared with those on P17. To investigate whether microRNAs (miRNAs) in EVs regulate maternal immune system in the endometrium during the peri-implantation, microRNA sequence and in silico analyses were performed, identifying bta-miR-98 in EVs as a potential miRNA to regulate maternal immune system. Furthermore, the treatment of EECs with bta-miR-98 negatively regulated several immune system-related genes, CTSC, IL6, CASP4 and IKBKE, in EECs. These results suggest that EVs containing bta-miR-98 is a regulator of maternal immune system, possibly allowing the conceptus attachment to the endometrial epithelium during the peri-implantation period.
Collapse
|
46
|
Sánchez JM, Simintiras CA, Lonergan P. Aspects of embryo-maternal communication in establishment of pregnancy in cattle. Anim Reprod 2019; 16:376-385. [PMID: 32435281 PMCID: PMC7234086 DOI: 10.21451/1984-3143-ar2019-0075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Establishment of pregnancy in mammals requires reciprocal molecular communication between the conceptus and endometrium that modifies the endometrial transcriptome and uterine luminal milieu to support pregnancy. Due to the small size of the early embryo and elongating conceptus relative to the volume of the uterine lumen, collection of endometrium adjacent to the developing conceptus is difficult following conventional uterine flushing methods in cattle. Use of endometrial explants in culture can overcome this challenge and reveal information about the dialogue between the developing embryo and the uterus. The aim of this short review is to summarize some of our recent findings in relation to embryo maternal interaction during bovine pregnancy establishment and to put them in the wider context of fertility in cattle.
Collapse
Affiliation(s)
- José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
Novel sampling procedure to characterize bovine subclinical endometritis by uterine secretions and tissue. Theriogenology 2019; 141:186-196. [PMID: 31557616 DOI: 10.1016/j.theriogenology.2019.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 01/04/2023]
Abstract
Subclinical endometritis (SE) in cattle is defined as clinically unapparent inflammation of the endometrium. It is reported to impair fertility in affected cows and causes economic loss within the dairy industry. A gold standard for diagnosis of SE has not been set. Uterine cytology and histopathology are both applied, but low agreement between these methods has been described. The objective of the present study was to assess the capability of uterine secretions (US) as a new medium for diagnosis of SE. A novel sampling tool was applied to retrieve US as well as cytological, histological and bacteriological samples of the endometrium after a singular passage through the cervix in 108 dairy cows (43-62 days post-partum [dpp]). To assess the quality of the US samples, a proteome analysis of samples from five healthy donors was performed, demonstrating that in vivo sampling of US was feasible and generated samples suitable for diagnostic purposes. Diagnosis of SE was realized by the combination of clinical, cytological, and histopathological findings. Quantitative analysis of pro- and anti-inflammatory cytokines (interleukin (IL)1B, IL6, IL8, IL17A, IL10) in US was conducted using AlphaLISA-technology. RNAlater-fixed endometrial biopsies were used for gene expression analysis of the cytokines IL1B, IL6, IL8, IL10 and tumor necrosis factor alpha (TNFα) as well as the prostaglandin-endoperoxide synthase 2 (PTGS2) and the antimicrobial peptide S100A9 by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Cows were assigned to groups according to their uterine health status. A large group of animals (n = 83) displayed no signs of endometritis (E.NEG). Cytological and histopathological examination revealed low agreement; hence, animals with SE were differentiated into SE(cyto) and SE(histo) groups (n = 7 and n = 13, respectively). One animal in group SE(cyto + histo) as well as four animals with signs of clinical endometritis (CE) were excluded from further analysis. SE(cyto) showed significantly higher median concentrations of IL1B, IL8 and IL17A in US as well as a significantly higher median expression of IL1B, IL8 and IL10 in endometrial biopsies compared to E.NEG. No significant differences were found for IL6 and IL10 in US and IL6, TNFα, PTGS2 and S100A9 in endometrial tissue between these groups. SE(histo) presented no differences concerning the analyzed parameters compared to E.NEG. In conclusion, a method to sample US was successfully established in dairy cows. The cytokines IL1B, IL8 and IL17A are promising candidates in diagnosing cytological endometritis by US. Further assessment of US might contribute to a better understanding of the pathological mechanisms leading to chronic endometrial inflammation and to impaired fertility in affected cows.
Collapse
|
48
|
van der Weijden VA, Bick JT, Bauersachs S, Arnold GJ, Fröhlich T, Drews B, Ulbrich SE. Uterine fluid proteome changes during diapause and resumption of embryo development in roe deer (Capreolus capreolus). Reproduction 2019; 158:13-24. [PMID: 30933930 PMCID: PMC6499939 DOI: 10.1530/rep-19-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
The uterine microenvironment during pre-implantation presents a pro-survival milieu and is essential for embryo elongation in ruminants. The European roe deer (Careolus capreolus) pre-implantation embryo development is characterised by a 4-month period of reduced development, embryonic diapause, after which the embryo rapidly elongates and implants. We investigated the uterine fluid proteome by label-free liquid chromatography tandem mass spectrometry at four defined stages covering the phase of reduced developmental pace (early diapause, mid-diapause and late diapause) and embryo elongation. We hypothesised that embryo development during diapause is halted by the lack of signals that support progression past the blastocyst stage. Three clusters of differentially abundant proteins were identified by a self-organising tree algorithm: (1) gradual reduction over development; (2) stable abundance during diapause, followed by a sharp rise at elongation; and (3) gradual increase over development. Proteins in the different clusters were subjected to gene ontology analysis. 'Cellular detoxification' in cluster 1 was represented by alcohol dehydrogenase, glutathione S-transferase and peroxiredoxin-2. ATP-citrate synthase, nucleolin, lamin A/C, and purine phosphorylase as cell proliferation regulators were found in cluster 2 and 'cortical cytoskeleton', 'regulation of substrate adhesion-dependent cell spreading' and 'melanosome' were present in cluster 3. Cell cycle promoters were higher abundant at elongation than during diapause, and polyamines presence indicates their role in diapause regulation. This study provides a comprehensive overview of proteins in the roe deer uterine fluid during diapause and forms a basis for studies aiming at understanding the impact of the lack of cell cycle promoters during diapause.
Collapse
Affiliation(s)
- V A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - J T Bick
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - S Bauersachs
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Zurich, Switzerland
| | - G J Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - B Drews
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - S E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
49
|
Concurrent and long-term associations between the endometrial microbiota and endometrial transcriptome in postpartum dairy cows. BMC Genomics 2019; 20:405. [PMID: 31117952 PMCID: PMC6532207 DOI: 10.1186/s12864-019-5797-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background Fertility in dairy cows depends on ovarian cyclicity and on uterine involution. Ovarian cyclicity and uterine involution are delayed when there is uterine dysbiosis (overgrowth of pathogenic bacteria). Fertility in dairy cows may involve a mechanism through which the uterine microbiota affects ovarian cyclicity as well as the transcriptome of the endometrium within the involuting uterus. The hypothesis was that the transcriptome of the endometrium in postpartum cows would be associated with the cyclicity status of the cow as well as the microbiota during uterine involution. The endometrium of first lactation dairy cows was sampled at 1, 5, and 9 weeks postpartum. All cows were allowed to return to cyclicity without intervention until week 5 and treated with an ovulation synchronization protocol so that sampling at week 9 was on day 13 of the estrous cycle. The endometrial microbiota was measured by 16S rRNA gene sequencing and principal component analysis. The endometrial transcriptome was measured by mRNA sequencing, differential gene expression analysis, and Ingenuity Pathway Analysis. Results The endometrial microbiota changed from week 1 to week 5 but the week 5 and week 9 microbiota were similar. The endometrial transcriptome differed for cows that were either cycling or not cycling at week 5 and cyclicity status depended in part on the endometrial microbiota. Compared with cows cycling at week 5, there were large changes in the transcriptome of cows that progressed from non-cycling at week 5 to cycling at week 9. There was evidence for concurrent and longer-term associations between the endometrial microbiota and transcriptome. The week 1 endometrial microbiota had the greatest effect on the subsequent endometrial transcriptome and this effect was greatest at week 5 and diminished by week 9. Conclusions The cumulative response of the endometrial transcriptome to the microbiota represented the combination of past microbial exposure and current microbial exposure. The endometrial transcriptome in postpartum cows, therefore, depended on the immediate and longer-term effects of the uterine microbiota that acted directly on the uterus. There may also be an indirect mechanism through which the microbiome affects the transcriptome through the restoration of ovarian cyclicity postpartum. Electronic supplementary material The online version of this article (10.1186/s12864-019-5797-8) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci Rep 2019; 9:7716. [PMID: 31118434 PMCID: PMC6531537 DOI: 10.1038/s41598-019-44040-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Conceptus elongation coincides with one of the periods of greatest pregnancy loss in cattle and is characterized by rapid trophectoderm expansion, commencing ~ Day 13 of pregnancy, i.e. before maternal pregnancy recognition. The process has yet to be recapitulated in vitro and does not occur in the absence of uterine gland secretions in vivo. Moreover, conceptus elongation rates are positively correlated to systemic progesterone in maternal circulation. It is, therefore, a maternally-driven and progesterone-correlated developmental phenomenon. This study aimed to comprehensively characterize the biochemical composition of the uterine luminal fluid on Days 12-14 - the elongation-initiation window - in heifers with normal vs. high progesterone, to identify molecules potentially involved in conceptus elongation initiation. Specifically, nucleotide, vitamin, cofactor, xenobiotic, peptide, and energy metabolite profiles of uterine luminal fluid were examined. A total of 59 metabolites were identified, of which 6 and 3 displayed a respective progesterone and day effect, whereas 16 exhibited a day by progesterone interaction, of which 8 were nucleotide metabolites. Corresponding pathway enrichment analysis revealed that pyridoxal, ascorbate, tricarboxylic acid, purine, and pyrimidine metabolism are of likely importance to to conceptus elongation initiation. Moreover, progesterone reduced total metabolite abundance on Day 12 and may alter the uterine microbiome.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|