1
|
Yu Y, Guo Y, Zhu J, Shen R, Tang J. Chemotherapy drug combinations induced maternal ovarian damage and long-term effect on fetal reproductive system in mice. Eur J Pharm Sci 2024; 201:106860. [PMID: 39043317 DOI: 10.1016/j.ejps.2024.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
With the postponement of female reproductive age and the higher incidence of cancer in young people, fertility preservation has become increasingly important in childbearing age. Chemotherapy during pregnancy is crucial for maternal cancer treatments and fetal outcomes. It is a need to further study ovarian damage caused by chemotherapy drug combinations and long-term effects on offspring development, and a detailed understanding of side effects of chemotherapy drugs. In this study, chemotherapy drug combinations significantly impacted on ovarian function, especially epirubicin/cyclophosphamide (EC) combination led to an unbalance in the development of the left and right ovary. Exposure to EC and cisplatin/paclitaxel (TP) increased the number of progenitor follicles while decreased the count of antral follicles and corpora luteum. As to the estrus cycle, EC exposure resulted in a longer estrus period and diestrus period, while TP exposure only extended the diestrus period. EC and TP affected steroid biosynthesis by reducing the expression of SF1 and P450arom.γ-H2AX was detected in both EC and TP exposure groups. As to the impact on the offspring from 4T1 tumor-bearing pregnant mice injected with EC, no significant difference was observed in the physical and neurological development compared to the control, but the ovarian weights, estrus cycles of the offspring were significantly different. Chemotherapy drug combinations exhibit ovarian toxicity, not only causing direct damage on the follicle cells but also disrupting steroid biosynthesis. The reproductive system of offspring from maternal tumor-bearing mice exposed to chemotherapy drugs was observed disorder, but the concrete mechanism still needs further exploration.
Collapse
Affiliation(s)
- Yang Yu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Yang Guo
- Shanghai Laboratory Animal Research Center, 3577 Road, Pudong District, Shanghai 201203, China
| | - Jialei Zhu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, 3577 Road, Pudong District, Shanghai 201203, China.
| | - Jing Tang
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200090, China.
| |
Collapse
|
2
|
Barón-Mendoza I, Martínez-Marcial M, García-Juárez M, Mejía-Hernández M, Cortés-Sánchez Y, Zamora-Sánchez CJ, García-Rebollar JO, Chavira-Ramírez R, Ordaz-Rosado D, Camacho-Arroyo I, Tecamachalzi-Silvarán MB, Montes-Narváez O, González-Flores O, García-Becerra R, González-Arenas A. Disruptions in reproductive health, sex hormonal profiles, and hypothalamic hormone receptors content in females of the C58/J mouse model of autism. Horm Behav 2024; 164:105593. [PMID: 38909429 DOI: 10.1016/j.yhbeh.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mónica Martínez-Marcial
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Montserrat Mejía-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yesenia Cortés-Sánchez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | - Jorge Omar García-Rebollar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
3
|
Alcalá-Sánchez X, Cuapio-Padilla P, Salazar-López C, Rodríguez R, Teteltitla M, Bahena I, Betancourt M, Casas E, Casillas F, López A, Bonilla E. Comparison of DNA damage in granulosa cells of women undergoing controlled ovarian stimulation in in vitro fertilization protocols with the recombinant human follicle-stimulating hormones Corneumon ®, Gonal-F ®, Pergoveris ® and Puregon ®: a randomized trial. Arch Gynecol Obstet 2024; 309:2107-2114. [PMID: 38441601 DOI: 10.1007/s00404-024-07392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE To compare the DNA damage in granulosa cells (GCs) of women undergoing ovarian-stimulated cycles with four widely used recombinant human follicle-stimulating hormones (rhFSH) in in vitro fertilization (IVF) protocols (Corneumon®, Gonal-F®, Pergoveris® and Puregon®). METHODS A randomized trial was carried out at a Mexican hospital. GCs were isolated from 18 women with infertility undergoing assisted reproductive techniques (ART). Four controlled ovarian stimulation (COS) protocols including Corneumon®, Gonal-F®, Pergoveris® or Puregon® were used. GCs DNA damage was assessed by the Comet assay. Two parameters were measured: comet tail length (CTL), and Olive tail moment (OTM, the percentage of DNA in the tail multiplied by the distance between the center of the tail and head). RESULTS Use of the different hrFSH in COS caused variable and statistically significant levels of DNA damage in GCs of infertile women. CTL was similar in the Corneumon® and Pergoveris® groups (mean values of 48.73 and 55.18, respectively) and Corneumon® CTL was significantly lower compared to the Gonal-F® and Puregon® groups (mean values of 61.98 and 91.17, respectively). Mean OTM values were significantly lower in Corneumon® and Pergoveris® groups, compared to Gonal-F® and Puregon® groups (25.59, 27.35, 34.76, and 47.27, respectively). CONCLUSION Use of Corneumon® and Pergoveris® in COS caused statistically significantly lower levels of DNA damage in GCs of infertile women undergoing ART, which could potentially correlate with better reproductive outcomes.
Collapse
Affiliation(s)
- Ximena Alcalá-Sánchez
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
- Master's Degree Program in Animal Reproduction Biology, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Pedro Cuapio-Padilla
- HISPAREP Assisted Reproduction Clinic, Hospital Español, 11520 CDMX, Mexico City, Mexico
| | - Carlos Salazar-López
- HISPAREP Assisted Reproduction Clinic, Hospital Español, 11520 CDMX, Mexico City, Mexico
| | - Ricardo Rodríguez
- HISPAREP Assisted Reproduction Clinic, Hospital Español, 11520 CDMX, Mexico City, Mexico
| | - Mario Teteltitla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Iván Bahena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Eduardo Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Alma López
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Edmundo Bonilla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico.
| |
Collapse
|
4
|
Chen S, Ma Y, Qiu X, Liu M, Zhang P, Wei C, Dai Y, Ge L, Zhu H, Zhang Y, Zhang J, Lin X. MicroRNA-122-5p alleviates endometrial fibrosis via inhibiting the TGF-β/SMAD pathway in Asherman's syndrome. Reprod Biomed Online 2023; 47:103253. [PMID: 37677924 DOI: 10.1016/j.rbmo.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023]
Abstract
RESEARCH QUESTION What is the effect of miR-122 on the progression and recovery of fibrosis in Asherman's syndrome? DESIGN Endometrial tissue was collected from 21 patients, 11 with intrauterine adhesion (IUA) and 10 without IUA. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot were applied to observe the expression of mRNAs/miRNAs and protein, respectively. The endometrial physical injury was carried out in C57BL/6 mice to create an endometrial fibrosis model, with intrauterine injection of adenovirus to compare the antifibrosis and repair function of miR-122 on endometrium. The morphology of the uterus was observed using haematoxylin and eosin staining, and fibrosis markers were detected by immunohistochemistry. RESULTS miR-122 expression was reduced in patients with IUAs, accompanied by fibrosis. MiR-122 overexpression reduced the degree of fibrosis in endometrial stromal cells. Further molecular analyses demonstrated that miR-122 inhibited fibrosis through the TGF-β/SMAD pathway by directly targeting the 3' untranslated region of SMAD family member 3, suppressing its expression. Notably, miR-122 promoted endometrial regeneration and recovery of pregnancy capacity in a mouse endometrial injury model. CONCLUSIONS miR-122 is a critical regulator for repair of endometrial fibrosis and provided new insight for the clinical treatment of intrauterine adhesions.
Collapse
Affiliation(s)
- Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaoxiao Qiu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Department of Obstetrics and Gynecology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Mengying Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Department of Obstetrics and Gynecology, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, China
| | - Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linyan Ge
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Jiaren Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China..
| |
Collapse
|
5
|
Huang J, Wu T, Li Y, Zhang Y, Yu X, Xu D, Wang H. Toxic effect window of ovarian development in female offspring mice induced by prenatal prednisone exposure with different doses and time. J Ovarian Res 2023; 16:71. [PMID: 37038227 PMCID: PMC10088227 DOI: 10.1186/s13048-023-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Prednisone is one of the most used synthetic glucocorticoids during pregnancy. Epidemiological investigations suggested that prenatal prednisone therapy could affect fetal development, but systematic studies on its effects on ovarian development and the "toxic effect window" remained scarce. METHODS In this study, by simulating clinical application characteristics, Kunming mice were given prednisone by oral gavage with different doses (0.25 or 1.0 mg/kg·d) or at different time gestational days (GD) (GD0-9, GD10-18, or GD0-18). Blood and ovaries of fetal mice were collected on GD18, and the serum estradiol level and the related function indexes of ovarian granulosa cells and oocytes were detected. RESULTS Compared with the control group, prenatal prednisone exposure (PPE) induced pathological injury and enhanced cell proliferation in fetal mice ovary. Furthermore, the expression of steroid synthesis functional genes in pre-granulosa cells, the oocyte function markers, and developmentally related genes was enhanced with different doses or at different time of PPE. The Hippo signaling was activated in the fetal ovary of PPE groups. The above changes were most significant in the low or high-dose and full-term PPE groups. CONCLUSION PPE caused various cell developmental toxicity in the fetal ovary, especially in the low or high-dose, full-term exposure groups. The potential mechanism might be related to the activation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Tiancheng Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Xu
- Department of Pharmacy, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
6
|
Crafa A, Cannarella R, Barbagallo F, La Vignera S, Condorelli RA, Calogero AE. Effects of assisted reproductive techniques on offspring gonadal function: a systematic review and meta-analysis. F&S REVIEWS 2023; 4:152-173. [DOI: 10.1016/j.xfnr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
He's Yangchao Recipe Ameliorates Ovarian Oxidative Stress of Aging Mice under Consecutive Superovulation Involving JNK- And P53-Related Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7705194. [PMID: 35845588 PMCID: PMC9286969 DOI: 10.1155/2022/7705194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the effects of He's Yangchao Recipe (HSYC) on ameliorating ovarian oxidative stress of aging mice under consecutive superovulation. Methods An 8-month-old C57BL/6 female mouse was chosen to establish an aging model under ovarian hyperstimulation. Mice were randomly separated into four groups: R1 as the control group, R4 as the model group, NR4 with N-acetyl-L-cysteine (NAC) administration, and TR4 with HSYC administration. Oocyte collection, in vitro fertilization, and embryo culture were performed. The serum hormone levels were measured by enzyme-linked immunosorbent assays (ELISA); the reactive oxygen species (ROS) level of oocytes, the number of growing follicles, corpus luteum, ovulated oocytes, and developing embryos at each stage, along with the proportions of fragmented oocytes and abnormal mitochondria in granulosa cells (GCs) and the apoptosis rate of GCs were calculated; the mRNA and protein levels of JNK, P53, BAX were detected by real-time PCR and the Simple Western System. Results HSYC enhanced estradiol, progesterone, and inhibin-B levels and increased growing follicle and corpus luteum and ovulated egg counts compared to the R4 group (P < 0.05), whereas it decreased the proportions of fragmented oocytes (P < 0.01); Meanwhile, embryos from mice subjected to four superovulation cycles with HSYC treated had a higher hatching potential. The ROS level of oocytes is downregulated by HSYC (P < 0.01) and the percentage of abnormal mitochondrial in ovaries of the TR4 group was also significantly declined compared to the R4 group (P < 0.05); the most TUNEL-positive cells proportion was detected in the R4 group; nevertheless, HSYC effectively attenuated this detrimental effect (P < 0.05). The mRNA and protein expressions of JNK and P53 in ovary tissues were reduced in the TR4 group while these genes were upregulated by repeated superovulation (P < 0.05). Conclusions HSYC exerted promising effects on promoting the diminished ovarian reserve and decreased oocyte quality induced by both aging and consecutive ovarian superovulation, potentially via the ROS/JNK/p53 pathway.
Collapse
|
8
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
9
|
Xiao P, Nie J, Wang X, Lu K, Lu S, Liang X. Melatonin alleviates the deterioration of oocytes from mice subjected to repeated superovulation. J Cell Physiol 2019; 234:13413-13422. [DOI: 10.1002/jcp.28018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
- Key Laboratory of Buffalo Genetics Breeding and Reproduction Technology Ministry of Agriculture and Guangxi Buffalo Research Institute Chinese Academy of Agricultural Sciences Nanning Guangxi China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Xuefang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| |
Collapse
|