1
|
Gusar V, Kan N, Leonova A, Chagovets V, Tyutyunnik V, Khachatryan Z, Yarotskaya E, Sukhikh G. Non-Invasive Assessment of Neurogenesis Dysfunction in Fetuses with Early-Onset Growth Restriction Using Fetal Neuronal Exosomes Isolating from Maternal Blood: A Pilot Study. Int J Mol Sci 2025; 26:1497. [PMID: 40003962 PMCID: PMC11855093 DOI: 10.3390/ijms26041497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The vector of modern obstetrics is aimed at finding ways to predict various placenta-associated complications, including those associated with neuronal dysfunction on in fetal growth restriction (FGR). The technology of fetal neuronal exosome (FNE) isolation from the maternal bloodstream opens up unique opportunities for detecting early signs of fetal brain damage. Using this method, FNEs were isolated from the blood of pregnant women with and without early-onset FGR, and the expression of a number of proteins in their composition was assessed (Western blotting). Significant changes in the level of proteins involved in neurogenesis (pro-BDNF (brain-derived neurotrophic factor), pro-NGF (nerve growth factor), TAG1/Contactin2) and presynaptic transmission (Synapsin 1, Synaptophysin) were revealed. The preliminary data on the expression of FNE proteins that perform post-translational modifications-sumoylation (SUMO 1, UBC9) and neddylation (NEDD8, UBC12)-were obtained. A relationship was established between altered protein expression and neonatal outcomes in newborns with growth restriction. Our study opens up new possibilities for non-invasive prenatal monitoring of fetal neurodevelopment disorders and possibilities of their correction in placenta-associated diseases.
Collapse
Affiliation(s)
- Vladislava Gusar
- Laboratory of Applied Transcriptomics, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Natalia Kan
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| | - Anastasia Leonova
- Department of Molecular Diagnostic Methods and Personalized Medicine, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Vitaliy Chagovets
- Laboratory of Metabolomics and Bioinformatics, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Victor Tyutyunnik
- Center for Scientific and Clinical Research, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Zarine Khachatryan
- JSC “European Medical Center”, 35, Shchepkina Street, 129090 Moscow, Russia;
| | - Ekaterina Yarotskaya
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| | - Gennadiy Sukhikh
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| |
Collapse
|
2
|
van Aswegen M, Szabo A, Currie JJ, Stack SH, West KL, Hofmann N, Christiansen F, Bejder L. Energetic cost of gestation and prenatal growth in humpback whales. J Physiol 2025; 603:529-550. [PMID: 39661448 DOI: 10.1113/jp287304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Improving our understanding of energy allocation in reproduction is key for accurately parameterizing bioenergetic models to assess population responses to environmental perturbations and anthropogenic disturbance. We quantified the energetic cost of gestation in humpback whales (Megaptera novaeangliae) using historical whaling records, non-invasive unoccupied aerial system (UAS) photogrammetry and post mortem tissue samples. First, we estimated relative birth size using body length measurements of 678 mother-fetus pairs from historical whaling records and 987 mother-calf pairs measured in situ using UAS-photogrammetry. The total energetic cost of gestation includes fetal growth (FG), heat increment of gestation and placental tissue development. FG was modelled from conception to birth, with fetal volume and mass estimated using the volume-to-length relationship of perinatal calves and published humpback whale tissue composition estimates. Tissue-specific energy content was quantified using post mortem bone, muscle, viscera and blubber samples from a neonatal humpback whale. Placental tissue development was estimated using humpback whale placental tissue and published equations. Relative birth length was found to be 33.75% (95% CI: 32.10-34.61) of maternal length. FG rates and absolute birth size increased with maternal length, with exponential growth in fetal length, volume and mass resulting in minimal energetic costs over the first two quadmesters (0.01-1.08%) before increasing significantly in the final quadmester (98.92%). Gestational heat constituted the greatest energetic cost (90.42-94.95%), followed by fetal (4.58-7.76%) and placental (0.37-1.83%) tissue growth. Our findings highlight the energetic costs endured by capital breeding females preceding parturition, with the most substantial energetic costs of gestation coinciding with migration and fasting. KEY POINTS: We quantified the energetic cost of gestation using body length measurements of mother-fetus pairs from historical whaling records, length estimates of mother-calf pairs measured in situ using aerial photogrammetry and post mortem tissue samples. Fetal growth rates and birth size increased with maternal length, with fetal length, volume and mass increasing exponentially over gestation. Energetic costs over the first two quadmesters were negligible (0.01-1.08%) before increasing significantly in the final quadmester (98.92%). Though larger females incur nearly twice the energetic cost of smaller females, they are likely buffered by greater absolute energy reserves, suggesting smaller females may be less resilient to perturbations in energy balance. We demonstrate the significant energetic costs incurred by pregnant humpback whales, with most of the energetic expenditure occurring over the final 100 days of gestation. Late-pregnant females are, therefore, particularly vulnerable to disruptions in energy balance, given periods of greatest energetic stress coincide with fasting and migration.
Collapse
Affiliation(s)
- Martin van Aswegen
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Alaska Whale Foundation, Petersburg, AK, USA
| | - Andy Szabo
- Alaska Whale Foundation, Petersburg, AK, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kāne'ohe, Hawai'i, USA
| | - Jens J Currie
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Pacific Whale Foundation, Maui, HI, USA
| | - Stephanie H Stack
- Pacific Whale Foundation, Maui, HI, USA
- Southern Ocean Persistent Organic Pollutants Program, School of Environment and Science, Griffith University, Queensland, Australia
| | - Kristi L West
- Health and Stranding Lab, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Health and Stranding Lab, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nicholas Hofmann
- Health and Stranding Lab, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Fredrik Christiansen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Self A, Schlussel M, Collins GS, Dhombres F, Fries N, Haddad G, Salomon LJ, Massoud M, Papageorghiou AT. External validation of models to estimate gestational age in the second and third trimester using ultrasound: A prospective multicentre observational study. BJOG 2024; 131:1862-1873. [PMID: 39118202 DOI: 10.1111/1471-0528.17922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Accurate assessment of gestational age (GA) is important at both individual and population levels. The most accurate way to estimate GA in women who book late in pregnancy is unknown. The aim of this study was to externally validate the accuracy of equations for GA estimation in late pregnancy and to identify the best equation for estimating GA in women who do not receive an ultrasound scan until the second or third trimester. DESIGN This was a prospective, observational cross-sectional study. SETTING 57 prenatal care centres, France. PARTICIPANTS Women with a singleton pregnancy and a previous 11-14-week dating scan that gave the observed GA were recruited over an 8-week period. They underwent a standardised ultrasound examination at one time point during the pregnancy (15-43 weeks), measuring 12 foetal biometric parameters that have previously been identified as useful for GA estimation. MAIN OUTCOME MEASURES A total of 189 equations that estimate GA based on foetal biometry were examined and compared with GA estimation based on foetal CRL. Comparisons between the observed GA and the estimated GA were made using R2, calibration slope and intercept. RMSE, mean difference and 95% range of error were also calculated. RESULTS A total of 2741 pregnant women were examined. After exclusions, 2339 participants were included. In the 20 best performing equations, the intercept ranged from -0.22 to 0.30, the calibration slope from 0.96 to 1.03 and the RSME from 0.67 to 0.87. Overall, multiparameter models outperformed single-parameter models. Both the 95% range of error and mean difference increased with gestation. Commonly used models based on measurement of the head circumference alone were not amongst the best performing models and were associated with higher 95% error and mean difference. CONCLUSIONS We provide strong evidence that GA-specific equations based on multiparameter models should be used to estimate GA in late pregnancy. However, as all methods of GA assessment in late pregnancy are associated with large prediction intervals, efforts to improve access to early antenatal ultrasound must remain a priority. TRIAL REGISTRATION The proposal for this study and the corresponding methodological review was registered on PROSPERO international register of systematic reviews (registration number: CRD4201913776).
Collapse
Affiliation(s)
- Alice Self
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Michael Schlussel
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ferdinand Dhombres
- Armand Trousseau University Hospital, Sorbonne University, Paris, France
- Collège Francais d'Échographie Foetale, Paris, France
| | - Nicolas Fries
- Collège Francais d'Échographie Foetale, Paris, France
| | - Georges Haddad
- Collège Francais d'Échographie Foetale, Paris, France
- Simone Veil Hospital, Blois, France
| | - Laurent J Salomon
- Collège Francais d'Échographie Foetale, Paris, France
- Maternité, Hopital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Mona Massoud
- Collège Francais d'Échographie Foetale, Paris, France
- Obstetrics and Fetal Medicine Unit, Hôpital Lyon Sud, Hospices Civils de Lyon and FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon-1 University, Bron, France
| | - Aris T Papageorghiou
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Oxford Maternal and Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Martinelli S, Rolfo A, Pace C, Canu L, Nuzzo AM, Giuffrida D, Gaglioti P, Todros T. Anatomical and functional changes of the fetal adrenal gland in intrauterine growth restriction. Int J Gynaecol Obstet 2024; 166:1100-1107. [PMID: 38532440 DOI: 10.1002/ijgo.15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE The aim of this study was to demonstrate the establishment of adrenal sparing in intrauterine growth restricted (IUGR) human fetuses. IUGR fetuses are a subgroup of small for gestational age (SGA) fetuses that are unable to reach their own growth potential because of chronic hypoxia and undernutrition. We hypothesized that in IUGR fetuses the adrenal gland is relatively larger and secretion of noradrenaline (NA), adrenaline (A), and cortisol is increased. STUDY DESIGN This is a prospective observational study including 65 singleton pregnancies (42 IUGR and 23 controls). Using two-dimensional ultrasound, we measured fetal adrenal diameters and adrenal/abdominal circumference (AD/AC) ratio between 25 and 37 weeks. We considered only one measurement per fetus. In 21 pregnancies we also measured NA, A, and cortisol levels in arterial and venous fetal cord blood collected at the time of delivery. RESULTS The AD/AC ratio was significantly higher in IUGR fetuses than in controls. Cord NA and A levels were significantly higher in IUGR fetuses than in controls. An increase in cortisol secretion in IUGR fetuses was observed but the difference was not statistically significant. CONCLUSIONS Adrenal sparing correlates with a relative increase in adrenal measurements and function.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumors, (ENS@T) Center of Excellence, Florence, Italy
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Carlotta Pace
- AOU Città della Salute e della Scienza, Sant' Anna Hospital, Turin, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumors, (ENS@T) Center of Excellence, Florence, Italy
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | - Pietro Gaglioti
- AOU Città della Salute e della Scienza, Sant' Anna Hospital, Turin, Italy
| | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
- AOU Città della Salute e della Scienza, Sant' Anna Hospital, Turin, Italy
| |
Collapse
|
5
|
Zhang S, Lock MC, Tie M, McMillen IC, Botting KJ, Morrison JL. Cardiac programming in the placentally restricted sheep fetus in early gestation. J Physiol 2024; 602:3815-3832. [PMID: 38975864 DOI: 10.1113/jp286702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Fetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days' gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. KEY POINTS: Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin-like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Michelle Tie
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
6
|
Darby JRT, Saini BS, Holman SL, Hammond SJ, Perumal SR, Macgowan CK, Seed M, Morrison JL. Acute-on-chronic: using magnetic resonance imaging to disentangle the haemodynamic responses to acute and chronic fetal hypoxaemia. Front Med (Lausanne) 2024; 11:1340012. [PMID: 38933113 PMCID: PMC11199546 DOI: 10.3389/fmed.2024.1340012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The fetal haemodynamic response to acute episodes of hypoxaemia are well characterised. However, how these responses change when the hypoxaemia becomes more chronic in nature such as that associated with fetal growth restriction (FGR), is less well understood. Herein, we utilised a combination of clinically relevant MRI techniques to comprehensively characterize and differentiate the haemodynamic responses occurring during acute and chronic periods of fetal hypoxaemia. Methods Prior to conception, carunclectomy surgery was performed on non-pregnant ewes to induce FGR. At 108-110 days (d) gestational age (GA), pregnant ewes bearing control (n = 12) and FGR (n = 9) fetuses underwent fetal catheterisation surgery. At 117-119 days GA, ewes underwent MRI sessions where phase-contrast (PC) and T2 oximetry were used to measure blood flow and oxygenation, respectively, throughout the fetal circulation during a normoxia and then an acute hypoxia state. Results Fetal oxygen delivery (DO2) was lower in FGR fetuses than controls during the normoxia state but cerebral DO2 remained similar between fetal groups. Acute hypoxia reduced both overall fetal and cerebral DO2. FGR increased ductus venosus (DV) and foramen ovale (FO) blood flow during both the normoxia and acute hypoxia states. Pulmonary blood flow (PBF) was lower in FGR fetuses during the normoxia state but similar to controls during the acute hypoxia state when PBF in controls was decreased. Conclusion Despite a prevailing level of chronic hypoxaemia, the FGR fetus upregulates the preferential streaming of oxygen-rich blood via the DV-FO pathway to maintain cerebral DO2. However, this upregulation is unable to maintain cerebral DO2 during further exposure to an acute episode of hypoxaemia. The haemodynamic alterations required at the level of the liver and lung to allow the DV-FO pathway to maintain cerebral DO2, may have lasting consequences on hepatic function and pulmonary vascular regulation after birth.
Collapse
Affiliation(s)
- Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Brahmdeep S. Saini
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarah J. Hammond
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Mike Seed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Hong S, Kang BS, Kim O, Won S, Kim HS, Wie JH, Shin JE, Choi SK, Jo YS, Kim YH, Yang M, Kang H, Lee DW, Park IY, Park JS, Ko HS. The associations between maternal and fetal exposure to endocrine-disrupting chemicals and asymmetric fetal growth restriction: a prospective cohort study. Front Public Health 2024; 12:1351786. [PMID: 38665245 PMCID: PMC11043493 DOI: 10.3389/fpubh.2024.1351786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Recent evidence has revealed associations between endocrine-disrupting chemicals (EDCs) and placental insufficiency due to altered placental growth, syncytialization, and trophoblast invasion. However, no epidemiologic study has reported associations between exposure to EDCs and asymmetric fetal growth restriction (FGR) caused by placenta insufficiency. The aim of this study was to evaluate the association between EDC exposure and asymmetric FGR. This was a prospective cohort study including women admitted for delivery to the Maternal Fetal Center at Seoul St. Mary's Hospital between October 2021 and October 2022. Maternal urine and cord blood samples were collected, and the levels of bisphenol-A (BPA), monoethyl phthalates, and perfluorooctanoic acid in each specimen were analyzed. We investigated linear and non-linear associations between the levels of EDCs and fetal growth parameters, including the head circumference (HC)/abdominal circumference (AC) ratio as an asymmetric parameter. The levels of EDCs were compared between fetuses with and without asymmetric FGR. Of the EDCs, only the fetal levels of BPA showed a linear association with the HC/AC ratio after adjusting for confounding variables (β = 0.003, p < 0.05). When comparing the normal growth and asymmetric FGR groups, the asymmetric FGR group showed significantly higher maternal and fetal BPA levels compared to the normal growth group (maternal urine BPA, 3.99 μg/g creatinine vs. 1.71 μg/g creatinine [p < 0.05]; cord blood BPA, 1.96 μg/L vs. -0.86 μg/L [p < 0.05]). In conclusion, fetal exposure levels of BPA show linear associations with asymmetric fetal growth patterns. High maternal and fetal exposure to BPA might be associated with asymmetric FGR.
Collapse
Affiliation(s)
- Subeen Hong
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Soo Kang
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Oyoung Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sangeun Won
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Eun Shin
- Department of Obstetrics and Gynecology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun Sung Jo
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Hee Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Goodbeing Center Co. Ltd., Seoul, Republic of Korea
| | - Huiwon Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Goodbeing Center Co. Ltd., Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Occupational & Environmental Medicine, Inha University Hospital, Inha University, Incheon, Republic of Korea
| | - In Yang Park
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Akinyemi AJ, Du XQ, Aguilan J, Sidoli S, Hirsch D, Wang T, Reznik S, Fuloria M, Charron MJ. Human cord plasma proteomic analysis reveals sexually dimorphic proteins associated with intrauterine growth restriction. Proteomics 2024; 24:e2300260. [PMID: 38059784 DOI: 10.1002/pmic.202300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Intrauterine growth restriction (IUGR) is associated with increased risk of cardiometabolic disease later in life and has been shown to affect female and male offspring differently, but the mechanisms remain unclear. The purpose of this study was to identify proteomic differences and metabolic risk markers in IUGR male and female neonates when compared to appropriate for gestational age (AGA) babies that will provide a better understanding of IUGR pathogenesis and its associated risks. Our results revealed alterations in IUGR cord plasma proteomes with most of the differentially abundant proteins implicated in peroxisome pathways. This effect was evident in females but not in males. Furthermore, we observed that catalase activity, a peroxisomal enzyme, was significantly increased in females (p < 0.05) but unchanged in males. Finally, we identified risk proteins associated with obesity, type-2 diabetes, and glucose intolerance such as EGF containing fibulin extracellular matrix protein 1 (EFEMP1), proprotein convertase subtilisin/kexin type 9 (PCSK9) and transforming growth factor beta receptor 3 (TGFBR3) proteins unique to females while coagulation factor IX (C9) and retinol binding protein 4 (RBP4) are unique in males. In conclusion, IUGR may display sexual dimorphism which may be associated with differences in lifelong risk for cardiometabolic disease between males and females.
Collapse
Affiliation(s)
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jennifer Aguilan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Hirsch
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tao Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sandra Reznik
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Jamaica, New York, USA
| | - Mamta Fuloria
- Department of Pediatrics, Division of Neonatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology, Norman Fleisher Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Wu BA, Chand KK, Bell A, Miller SL, Colditz PB, Malhotra A, Wixey JA. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res 2024; 95:59-69. [PMID: 37674023 PMCID: PMC10798895 DOI: 10.1038/s41390-023-02805-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.
Collapse
Affiliation(s)
- Bing Anthony Wu
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Bell
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Fung CM. Effects of intrauterine growth restriction on embryonic hippocampal dentate gyrus neurogenesis and postnatal critical period of synaptic plasticity that govern learning and memory function. Front Neurosci 2023; 17:1092357. [PMID: 37008232 PMCID: PMC10064986 DOI: 10.3389/fnins.2023.1092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Intrauterine growth restriction (IUGR) complicates up to 10% of human pregnancies and is the second leading cause of perinatal morbidity and mortality after prematurity. The most common etiology of IUGR in developed countries is uteroplacental insufficiency (UPI). For survivors of IUGR pregnancies, long-term studies consistently show a fivefold increased risk for impaired cognition including learning and memory deficits. Among these, only a few human studies have highlighted sex differences with males and females having differing susceptibilities to different impairments. Moreover, it is well established from brain magnetic resonance imaging that IUGR affects both white and gray matter. The hippocampus, composed of the dentate gyrus (DG) and cornu ammonis (CA) subregions, is an important gray matter structure critical to learning and memory, and is particularly vulnerable to the chronic hypoxic-ischemic effects of UPI. Decreased hippocampal volume is a strong predictor for learning and memory deficits. Decreased neuron number and attenuated dendritic and axonal morphologies in both the DG and CA are additionally seen in animal models. What is largely unexplored is the prenatal changes that predispose an IUGR offspring to postnatal learning and memory deficits. This lack of knowledge will continue to hinder the design of future therapy to improve learning and memory. In this review, we will first present the clinical susceptibilities and human epidemiology data regarding the neurological sequelae after IUGR. We will follow with data generated using our laboratory's mouse model of IUGR, that mimics the human IUGR phenotype, to dissect at the cellular and molecular alterations in embryonic hippocampal DG neurogenesis. We will lastly present a newer topic of postnatal neuron development, namely the critical period of synaptic plasticity that is crucial in achieving an excitatory/inhibitory balance in the developing brain. To our knowledge, these findings are the first to describe the prenatal changes that lead to an alteration in postnatal hippocampal excitatory/inhibitory imbalance, a mechanism that is now recognized to be a cause of neurocognitive/neuropsychiatric disorders in at-risk individuals. Studies are ongoing in our laboratory to elucidate additional mechanisms that underlie IUGR-induced learning and memory impairment and to design therapy aimed at ameliorating such impairment.
Collapse
Affiliation(s)
- Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Wathes DC. Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Animals (Basel) 2022; 12:2654. [PMID: 36230395 PMCID: PMC9558991 DOI: 10.3390/ani12192654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle fertility remains sub-optimal despite recent improvements in genetic selection. The extent to which an individual heifer fulfils her genetic potential can be influenced by fetal programming during pregnancy. This paper reviews the evidence that a dam's age, milk yield, health, nutrition and environment during pregnancy may programme permanent structural and physiological modifications in the fetus. These can alter the morphology and body composition of the calf, postnatal growth rates, organ structure, metabolic function, endocrine function and immunity. Potentially important organs which can be affected include the ovaries, liver, pancreas, lungs, spleen and thymus. Insulin/glucose homeostasis, the somatotropic axis and the hypothalamo-pituitary-adrenal axis can all be permanently reprogrammed by the pre-natal environment. These changes may act directly at the level of the ovary to influence fertility, but most actions are indirect. For example, calf health, the timing of puberty, the age and body structure at first calving, and the ability to balance milk production with metabolic health and fertility after calving can all have an impact on reproductive potential. Definitive experiments to quantify the extent to which any of these effects do alter fertility are particularly challenging in cattle, as individual animals and their management are both very variable and lifetime fertility takes many years to assess. Nevertheless, the evidence is compelling that the fertility of some animals is compromised by events happening before they are born. Calf phenotype at birth and their conception data as a nulliparous heifer should therefore both be assessed to avoid such animals being used as herd replacements.
Collapse
Affiliation(s)
- D Claire Wathes
- Department for Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
12
|
Flouri D, Darby JRT, Holman SL, Cho SKS, Dimasi CG, Perumal SR, Ourselin S, Aughwane R, Mufti N, Macgowan CK, Seed M, David AL, Melbourne A, Morrison JL. Placental MRI Predicts Fetal Oxygenation and Growth Rates in Sheep and Human Pregnancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203738. [PMID: 36031385 PMCID: PMC9596844 DOI: 10.1002/advs.202203738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Magnetic resonance imaging (MRI) assessment of fetal blood oxygen saturation (SO2 ) can transform the clinical management of high-risk pregnancies affected by fetal growth restriction (FGR). Here, a novel MRI method assesses the feasibility of identifying normally grown and FGR fetuses in sheep and is then applied to humans. MRI scans are performed in pregnant ewes at 110 and 140 days (term = 150d) gestation and in pregnant women at 28+3 ± 2+5 weeks to measure feto-placental SO2 . Birth weight is collected and, in sheep, fetal blood SO2 is measured with a blood gas analyzer (BGA). Fetal arterial SO2 measured by BGA predicts fetal birth weight in sheep and distinguishes between fetuses that are normally grown, small for gestational age, and FGR. MRI feto-placental SO2 in late gestation is related to fetal blood SO2 measured by BGA and body weight. In sheep, MRI feto-placental SO2 in mid-gestation is related to fetal SO2 later in gestation. MRI feto-placental SO2 distinguishes between normally grown and FGR fetuses, as well as distinguishing FGR fetuses with and without normal Doppler in humans. Thus, a multi-compartment placental MRI model detects low placental SO2 and distinguishes between small hypoxemic fetuses and normally grown fetuses.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Stacey L. Holman
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Steven K. S. Cho
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
- Department of PhysiologyThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
| | - Catherine G. Dimasi
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Sunthara R. Perumal
- South Australian Health & Medical Research InstitutePreclinicalImaging & Research LaboratoriesAdelaideSA 5001Australia
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
| | - Rosalind Aughwane
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Nada Mufti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Christopher K. Macgowan
- Division of Translational MedicineThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoON M5S 1A1Canada
| | - Mike Seed
- Department of PaediatricsDivision of CardiologyThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
- Department of Diagnostic ImagingThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research CentreUniversity College London HospitalsLondonW1T 7DNUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| |
Collapse
|
13
|
Yeste N, Pérez-Valle J, Heras-Molina A, Pesántez-Pacheco JL, Porrini E, González-Bulnes A, Bassols A. A High-Fat Diet Modifies Brain Neurotransmitter Profile and Hippocampal Proteome and Morphology in an IUGR Pig Model. Nutrients 2022; 14:nu14163440. [PMID: 36014946 PMCID: PMC9416793 DOI: 10.3390/nu14163440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine Growth Restriction (IUGR) hinders the correct growth of the fetus during pregnancy due to the lack of oxygen or nutrients. The developing fetus gives priority to brain development ("brain sparing"), but the risk exists of neurological and cognitive deficits at short or long term. On the other hand, diets rich in fat exert pernicious effects on brain function. Using a pig model of spontaneous IUGR, we have studied the effect on the adult of a long-term high-fat diet (HFD) on the neurotransmitter profile in several brain areas, and the morphology and the proteome of the hippocampus. Our hypothesis was that animals affected by IUGR (born with low birth weight) would present a different susceptibility to an HFD when they become adults, compared with normal birth-weight animals. Our results indicate that HFD affected the serotoninergic pathway, but it did not provoke relevant changes in the morphology of the hippocampus. Finally, the proteomic analysis revealed that, in some instances, NBW and LBW individuals respond to HFD in different ways. In particular, NBW animals presented changes in oxidative phosphorylation and the extracellular matrix, whereas LBW animals presented differences in RNA splicing, anterograde and retrograde transport and the mTOR pathway.
Collapse
Affiliation(s)
- Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jorge Pérez-Valle
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ana Heras-Molina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - José Luis Pesántez-Pacheco
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Avda, Doce de Octubre, Cuenca 010220, Ecuador
| | - Esteban Porrini
- Departamento de Medicina Interna, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
14
|
The Update of Fetal Growth Restriction Associated with Biomarkers. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Dai Y, Zhu L, Zhou Y, Wu Y, Chen D, Wang R, Wu L, Guo S, Gao L, Xu P, Wang Y, Dong S, Liu N, Wu Y, Chen H, Sun Y, Chen C, Zhang S. Incidence of retinopathy of prematurity treatment in extremely preterm infants in China. Paediatr Perinat Epidemiol 2022; 36:380-389. [PMID: 34467552 DOI: 10.1111/ppe.12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) continues to be a major cause of visual impairment and blindness in premature infants and children. OBJECTIVES To investigate the incidence of severe ROP receiving treatment in extremely preterm (EP) infants in China over time. The risk factors for ROP treatment were also assessed. METHODS This was a multicentre retrospective study and a subanalysis of baseline data from the "Outcomes of EP infants in China 2010-2019" study. This study was conducted in 68 tertiary neonatal care centres from 31 provinces of China. Infants with a gestational age of 230 -276 weeks and admitted to a neonatal unit within the first 72 h of life between 2010 and 2019 were enrolled. Incidence of ROP was analysed in infants who survived to 32 weeks postmenstrual age and screened for ROP. Multivariable modified Poisson regression models were used to identify risk factors for ROP treatment. RESULTS Among 7295 eligible infants, 4701 (64.5%) survived to 32 weeks postmenstrual age and met ROP screening criteria. Of the 3756 infants who screened and with ROP data, 2320 (61.8%) developed ROP of any stage. The overall incidence of ROP treatment was 12.6%, decreasing from 45.5% at 23 weeks to 8.3% at 27 weeks. During the 10-year period, the incidence of ROP treatment did not change, although the incidence of any ROP increased over time. Independent risk factors associated with ROP treatment included lower gestational age, small for gestational age, multiple birth, severe intraventricular haemorrhage, patent ductus arteriosus and supplemental oxygen duration. CONCLUSIONS The incidence of EP infants receiving ROP treatment showed no change during this 10-year period in China. Prevention of prematurity and foetal growth restriction, judicious use of oxygen and reducing comorbidities are promising factors that may reduce the incidence of ROP needing treatment in these high-risk infants.
Collapse
Affiliation(s)
- Yi Dai
- Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Li Zhu
- Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Yequn Zhou
- Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Yanqiu Wu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Dongmei Chen
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Ruiquan Wang
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Linlin Wu
- Xiamen Maternity and Child Health Hospital, Xiamen, China
| | - Shaoqing Guo
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Ping Xu
- Liaocheng People's Hospital, Liaocheng, China
| | - Yang Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Dong
- Jiujiang Maternity and Child Health Care Hospital, Jiujiang, China
| | - Ning Liu
- Jiujiang Maternity and Child Health Care Hospital, Jiujiang, China
| | - Yan Wu
- Chongqing Health Centre for Women and Children, Chongqing, China
| | - Haoming Chen
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yumei Sun
- The Obstetrics and Gynecology Hospital of Dalian, Shanghai, China
| | - Chao Chen
- Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Shulian Zhang
- Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| |
Collapse
|
16
|
Christiansen F, Uhart MM, Bejder L, Clapham P, Ivashchenko Y, Tormosov D, Lewin N, Sironi M. Foetal growth, birth size and energetic cost of gestation in southern right whales. J Physiol 2022; 600:2245-2266. [PMID: 35261040 PMCID: PMC9322553 DOI: 10.1113/jp282351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The cost of reproduction greatly affects a species’ life history strategy. Baleen whales exhibit some of the fastest offspring growth rates in the animal kingdom. We quantified the energetic cost of gestation for southern right whales (Eubalaena australis) by combining whaling catch records of pregnant females with photogrammetry data on southern right whale mothers and calves from two breeding grounds in Argentina and Australia. The relationship between calf birth size and maternal length was determined from repeated measurements of individual females before and after giving birth. Fetal growth was determined from generalized linear models fitted to fetal length data from whaling operations between 1961 and 1967. Fetal length was converted to volume and mass, using the volume‐to‐length relationship of newborn southern right whales calves, and published tissue composition and energy content estimates. Fetal maintenance costs (heat of gestation) and the energy content of the placenta were predicted from published relationships and added to the fetal growth cost to calculate the total cost of gestation. Our findings showed that fetal growth rates and birth size increased linearly with maternal length, with calves being born at ∼35% maternal length. Fetal length increased curvilinearly through gestation, which resulted in an exponential increase in fetal volume and mass. Consequently, the cost of gestation was very low during the first (0.1% of total cost) and second trimester (4.9%), but increased rapidly during the last trimester (95.0%). The heat of gestation incurred the highest cost for pregnant females (73.8%), followed by fetal growth (21.2%) and the placental energy content (5.0%). Key points Baleen whales exhibit some of the fastest fetal growth rates in the animal kingdom. Despite this, the energetic cost of gestation is largely unknown, as well as the influence of maternal body size on fetal growth rates and calf birth sizes. We combined historical whaling records and drone photogrammetry data to determine fetal growth rates and birth sizes in southern right whales (Eubalaena australis), from which we estimated the cost of gestation. Calf birth size, and consequent fetal growth rates, increased positively with maternal body size. The cost of gestation was negligible for southern right whale females during the first two trimesters, but increased rapidly during the last trimester. These results show that late gestation incurs a significant cost for baleen whale females, and needs to be accounted for in bioenergetic models.
Collapse
Affiliation(s)
- Fredrik Christiansen
- Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, Aarhus C, 8000, Denmark.,Zoophysiology, Department of Biology, Aarhus University, C.F. Møllers Allé 3, Aarhus C, 8000, Denmark
| | - Marcela M Uhart
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Chubut, 9120, Argentina.,Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, USA
| | - Lars Bejder
- Zoophysiology, Department of Biology, Aarhus University, C.F. Møllers Allé 3, Aarhus C, 8000, Denmark.,Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, 96744, USA
| | | | | | - Dmitry Tormosov
- Seastar Scientific Russia, Kaliningrad, Karl Marx St 76, 236022, Russia
| | - Nicolás Lewin
- Instituto de Conservación de Ballenas, Buenos Aires, Argentina
| | - Mariano Sironi
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Chubut, 9120, Argentina.,Instituto de Conservación de Ballenas, Buenos Aires, Argentina.,Diversidad Animal II, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| |
Collapse
|
17
|
Liu YC, Ma C, Zi Y, He S, Yang H, Zhang M, Gao F. Effects of intrauterine growth restriction during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Anim Biosci 2022; 35:989-998. [PMID: 35073662 PMCID: PMC9271382 DOI: 10.5713/ab.21.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This study investigated the effects of intrauterine growth restriction (IUGR) during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Methods Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: restricted group 1 (RG1, 0.18 MJ ME/body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.33 MJ ME/BW0.75/d, n = 6) and control group (CG, ad libitum, 0.67 MJ ME/BW0.75/d, n = 6). Fetuses were recovered at slaughter on d 140. Results The G0/G1 phase cell number in fetal thymus of the RG1 group was increased but the proliferation index and the expression of proliferating cell nuclear antigen (PCNA) were reduced compared with the CG group (p<0.05). Fetuses in the RG1 group exhibited decreased growth hormone receptor (GHR), insulin-like growth factor 2 receptor (IGF-2R), and their mRNA expressions (p<0.05). For the RG2 fetuses, there were no differences in the proliferation index and PCNA expression (p>0.05), but growth hormone (GH) and the mRNA expression of GHR were lower than those of the CG group (p<0.05). The thymic mRNA expressions of cyclin-dependent protein kinases (CDKs including CDK1, CDK2, and CDK4), CCNE, E2-factors (E2F1, E2F2, and E2F5) were reduced in the RG1 and RG2 groups (p<0.05), and decreased mRNA expressions of E2F4, CCNA, CCNB, and CCND were occurred in the RG1 fetuses (p<0.05). The decreased E-cadherin (E-cad) as a marker for epithelial-mesenchymal transition (EMT) was found in the RG1 and RG2 groups (p< 0.05), but the OB-cadherin which is a marker for activated fibroblasts was increased in fetal thymus of the RG1 group (p<0.05). Conclusion These results indicate that weakened GH/IGF signaling system repressed the cell cycle progression in G0/G1 phase in IUGR fetal thymus, but the switch from reduced E-cad to increased OB-cadherin suggests that transdifferentiation process of EMT associated with fibrogenesis was strengthened. The impaired cell growth, retarded proliferation and modified differentiation were responsible for impaired maturation of IUGR fetal thymus.
Collapse
|
18
|
López Valiente S, Rodríguez AM, Long NM, Quintans G, Miccoli FE, Lacau-Mengido IM, Maresca S. Age at First Gestation in Beef Heifers Affects Fetal and Postnatal Growth, Glucose Metabolism and IGF1 Concentration. Animals (Basel) 2021; 11:ani11123393. [PMID: 34944170 PMCID: PMC8697898 DOI: 10.3390/ani11123393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In cow-calf operations, replacement heifers are bred to calve at 2 years of age or older. However, as beef production has become more intensive during the last 20 years, an increasing number of farmers have lowered the age at first service. Numerous studies have focused on determining the optimum reproductive development of beef heifers to ensure a maximum pregnancy rate. Maternal age during gestation has been suggested to be an important influence on the nutritional environment for the embryo and fetal growth. No studies have been conducted to determine the possible effects of heifer age at first gestation on fetal and postnatal growth and development. This study aimed to determine the effects of age at first gestation on offspring growth performance, glucose metabolism and insulin-like growth factor 1 concentration from birth to weaning of calves from adult cows and heifers at 15 or 27 months of service. First-breed heifers produce lighter progeny at birth than mature cows, and calves from younger heifers were lighter at weaning than calves from older heifers. Milk production was similar between heifers and lower than that from adult cows. Age at first gestation may affect offspring postnatal growth performance, glucose metabolism and IGF1 concentration. Abstract This study aimed to determine the effects of age at first gestation on offspring growth performance, glucose metabolism, and IGF1 concentration. Heifers impregnated by AI from a single bull at 15 months of age (15 M, n = 20), or 27 months of age (27 M, n = 20), and multiparous cows (adult, n = 20) were used. Dams from all groups were managed in a single group during gestation and lactation. Gestational length was longer in the 15 M and 27 M than in adult dams (p = 0.009). Bodyweight at birth, at weaning and ADG during lactation were higher in calves from adult dams than in those from 27 M dams, and higher in calves from the latter than in 15 M calves (p < 0.001). Calves from 15 M dams had an increased head circumference/BW ratio compared to calves from 27 M dams, while calves from this latter group had an increased ratio compared to calves from adults (p = 0.005). Body mass index was greater in calves from adults than in those from 15 M and 27 M dams (p = 0.002). Milk production from 15 M and 27 M dams was similar but lower than that from adults (p = 0.03). Calves born from adult dams had greater blood glucose concentrations than those from 15 M and 27 M dams (p < 0.05). Serum IGF1 concentrations were higher in calves from adults than in calves from 15 M and 27 M dams (p = 0.01). This study showed that age at first gestation affects offspring postnatal growth performance, glucose metabolism and IGF1 concentration.
Collapse
Affiliation(s)
- Sebastian López Valiente
- Estación Experimental Agropecuaria Cuenca del Salado, Instituto Nacional de Tecnología Agropecuaria, Rauch BA 7203, Argentina; (A.M.R.); (S.M.)
- Correspondence: ; Tel.: +54-9-249-456-3527
| | - Alejandro M. Rodríguez
- Estación Experimental Agropecuaria Cuenca del Salado, Instituto Nacional de Tecnología Agropecuaria, Rauch BA 7203, Argentina; (A.M.R.); (S.M.)
| | - Nathan M. Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Graciela Quintans
- Instituto Nacional de Investigación Agropecuaria, Treinta y Tres 33000, Uruguay;
| | - Florencia E. Miccoli
- Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Lomas de Zamora BA 1836, Argentina;
| | - Isabel M. Lacau-Mengido
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental (CONICET), Buenos Aires 1428, Argentina;
| | - Sebastian Maresca
- Estación Experimental Agropecuaria Cuenca del Salado, Instituto Nacional de Tecnología Agropecuaria, Rauch BA 7203, Argentina; (A.M.R.); (S.M.)
| |
Collapse
|
19
|
Sacchi C, O'Muircheartaigh J, Batalle D, Counsell SJ, Simonelli A, Cesano M, Falconer S, Chew A, Kennea N, Nongena P, Rutherford MA, Edwards AD, Nosarti C. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. J Pediatr 2021; 238:135-144.e10. [PMID: 34245768 DOI: 10.1016/j.jpeds.2021.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.
Collapse
Affiliation(s)
- Chiara Sacchi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Serena Jane Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Alessandra Simonelli
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Michela Cesano
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nigel Kennea
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Phumza Nongena
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Ann Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
20
|
Copping KJ, Callaghan MJ, Geesink GH, Gugusheff JR, McMillen IC, Rodgers RJ, Muhlhausler BS, Vithayathil MA, Perry VEA. Periconception and First Trimester Diet Modifies Appetite, Hypothalamic Gene Expression, and Carcass Traits in Bulls. Front Genet 2021; 12:720242. [PMID: 34539749 PMCID: PMC8448419 DOI: 10.3389/fgene.2021.720242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Nulliparous yearling beef heifers (n=360) were used to evaluate the effects of maternal dietary protein during the periconception and first trimester periods of gestation on postnatal growth, feedlot performance, carcass characteristics, and the expression of genes associated with appetite in the arcuate nucleus of their male progeny. Heifers were individually fed a diet of 1.18g crude protein (CP)/day High protein (HPeri) or 0.62g CP/day Low protein (LPeri) beginning 60days before conception. From 24 to 98days post-conception (dpc), half of each treatment group changed to the alternative post-conception diet and were fed 1.49g CP/day (HPost) or 0.88g CP/day (LPost) yielding four treatment groups in a 2×2 factorial design. From day 98 of gestation, heifers received a common diet until parturition. Calves were weaned at 183days and developed on pasture before feedlot entry. Bulls underwent a 70-day Residual Feed Intake (RFI) feedlot test commencing at 528days of age. Feedlot entry and final body weight (BW), feedlot average daily gain (ADG) and RFI were not different (p>0.05). Progeny of dams that had a change in diet (LPeri/HPost and HPeri/LPost) had 9% higher daily dry matter intake (DMI) during the RFI test (p<0.05) than progeny of dams that received low diet throughout both the peri-conception period and first trimester (LPeri/LPost). Further, mRNA expression of the appetite-stimulating agouti-related protein (AGRP) was increased in the arcuate nucleus of High Peri/LPost bulls (p<0.05). Longissimus dorsi muscle cross sectional area, carcass dressing percentage, and estimated retail beef yield (RBY) were all higher (p<0.05), and rump (P8) fat tended to be lower (p=0.07), for bulls from HPost dams despite no difference in carcass weight (p<0.05). This study is of commercial importance to the livestock industry as specific periods of maternal dietary supplementation may increase feed intake, enhance progeny muscling, and alter fat deposition leading to improvement in efficiency of meat production in beef cattle.
Collapse
Affiliation(s)
- Katrina J Copping
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Geert H Geesink
- School of Rural and Environmental Science, University of New England, Armidale, NSW, Australia
| | - Jessica R Gugusheff
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Raymond J Rodgers
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Beverly S Muhlhausler
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia.,Nutrition and Health Program, Health and Biosecurity Business Unit, CSIRO, Adelaide, SA, Australia
| | - Mini A Vithayathil
- Department of Food and Wine Science, FOODplus Research Centre, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Viv E A Perry
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Fung C, Zinkhan E. Short- and Long-Term Implications of Small for Gestational Age. Obstet Gynecol Clin North Am 2021; 48:311-323. [PMID: 33972068 DOI: 10.1016/j.ogc.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal growth restriction (FGR) describes a fetus' inability to attain adequate weight gain based on genetic potential and gestational age and is the second most common cause of perinatal morbidity and mortality after prematurity. Infants who have suffered fetal growth restriction are at the greatest risks for short- and long-term complications. This article specifically details the neurologic and cardiometabolic sequalae associated with fetal growth restriction, as well as the purported mechanisms that underlie their pathogenesis. We end with a brief discussion about further work that is needed to gain a more complete understanding of fetal growth restriction.
Collapse
Affiliation(s)
- Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, 295 Chipeta Way, Salt Lake City, UT 84108, USA.
| | - Erin Zinkhan
- Division of Neonatology, Department of Pediatrics, University of Utah, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
22
|
Silva PIP, Perez M. Prenatal Ultrasound Diagnosis of Biometric changes in the Brain of Growth Restricted Fetuses. A Systematic Review of Literature. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:545-559. [PMID: 34461665 PMCID: PMC10302626 DOI: 10.1055/s-0041-1730290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Fetal growth restriction (FGR) occurs when the fetus does not reach its intrauterine potential for growth and development as a result of compromise in placental function. It is a condition that affects 5 to 10% of pregnancies and is the second most common cause of perinatal morbidity and mortality. Children born with FGR are at risk of impaired neurological and cognitive development and cardiovascular or endocrine diseases in adulthood. The purpose of the present revision is to perform a literature search for evidence on the detection and assessment by ultrasound of brain injury linked to FGR during fetal life. Using a systematic approach and quantitative evaluation as study methodology, we reviewed ultrasound studies of the fetal brain structure of growth-restricted fetuses with objective quality measures. A total of eight studies were identified. High quality studies were identified for measurement of brain volumes; corpus callosum; brain fissure depth measurements, and cavum septi pellucidi width measurement. A low-quality study was available for transverse cerebellar diameter measurement in FGR. Further prospective randomized studies are needed to understand the changes that occur in the brain of fetuses with restricted growth, as well as their correlation with the changes in cognitive development observed.
Collapse
|
23
|
Wang KCW, James AL, Noble PB. Fetal Growth Restriction and Asthma: Is the Damage Done? Physiology (Bethesda) 2021; 36:256-266. [PMID: 34159809 DOI: 10.1152/physiol.00042.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Trajectories of airway remodeling and functional impairment in asthma are consistent with the notion that airway pathology precedes or coincides with the onset of asthma symptoms and may be present at birth. An association between intrauterine growth restriction (IUGR) and asthma development has also been established, and there is value in understanding the underlying mechanism. This review considers airway pathophysiology as a consequence of IUGR that increases susceptibility to asthma.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
24
|
Bloom MS, Valachovic EL, Begum TF, Kucklick JR, Brock JW, Wenzel AG, Wineland RJ, Cruze L, Unal ER, Newman RB. Association between gestational phthalate exposure and newborn head circumference; impacts by race and sex. ENVIRONMENTAL RESEARCH 2021; 195:110763. [PMID: 33516688 DOI: 10.1016/j.envres.2021.110763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Observational and experimental studies report associations between gestational phthalate exposure and fetal development, yet few data exist to characterize phthalate effects on head circumference (HC) or to estimate the impact of race or sex. To address this data gap, we enrolled 152 African American and 158 white mothers with uncomplicated singleton pregnancies from the Charleston, South Carolina (USA) metropolitan area in a prospective birth cohort. Study participants provided up to two urine specimens during mid and late gestation, completed a study questionnaire, and allowed access to hospital birth records. We measured eight phthalate monoester metabolites using liquid chromatography with tandem mass spectrometry, and calculated molar sums of phthalate parent diesters. After specific gravity correction, we tested for associations between phthalates and neonatal HC (cm) and cephalization index (cm/g) using multiple informant linear regression with inverse probability weighting to account for selection bias between repeated urine sampling, adjusted for maternal race, age, body mass index, education, and smoking. We explored interactions by maternal race and infant sex. A doubling of urinary monoethyl phthalate (MEP) concentration was associated with a -0.49% (95%CI: -0.95%, -0.02%) smaller head circumference, although seven other phthalate metabolites were null. There were no statistically significant associations with cephalization index. HC was larger for whites than African American newborns (p < 0.0001) but similar for males and females (p = 0.16). We detected interactions for maternal race with urinary monobutyl phthalate (MBP; p = 0.03), monobenzyl phthalate (MBzP; p = 0.01), monoethylhexyl phthalate (MEHP; p = 0.05), monomethyl phthalate (MMP; p = 0.02), and the sum of dibutyl phthalate metabolites (∑DBP; p = 0.05), in which reduced HC circumference associations were stronger among whites than African Americans, and interactions for sex with MBP (p = 0.08) and MiBP (p = 0.03), in which associations were stronger for females than males. Our results suggest that gestational phthalate exposure is associated with smaller neonatal HC and that white mothers and female newborns have greater susceptibility.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA.
| | - Edward L Valachovic
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Thoin F Begum
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina Asheville, Asheville, NC, USA
| | - Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC, USA
| | - Elizabeth R Unal
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
25
|
Saini BS, Darby JRT, Marini D, Portnoy S, Lock MC, Yin Soo J, Holman SL, Perumal SR, Wald RM, Windrim R, Macgowan CK, Kingdom JC, Morrison JL, Seed M. An MRI approach to assess placental function in healthy humans and sheep. J Physiol 2021; 599:2573-2602. [PMID: 33675040 DOI: 10.1113/jp281002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human placental function is evaluated using non-invasive Doppler ultrasound of umbilical and uterine artery pulsatility indices as measures of resistance in placental vascular beds, while measurement of placental oxygen consumption ( V O 2 ) is only possible during Caesarean delivery. This study shows the feasibility of using magnetic resonance imaging (MRI) in utero to measure blood flow and oxygen content in uterine and umbilical vessels to calculate oxygen delivery to and V O 2 by the gravid uterus, uteroplacenta and fetus. Normal late gestational human uteroplacental V O 2 by MRI was ∼4 ml min-1 kg-1 fetal weight, which was similar to our MRI measurements in sheep and to those previously measured using invasive techniques. Our MRI approach can quantify uteroplacental V O 2 , which involves the quantification of maternal- and fetal-placental blood flows, fetal oxygen delivery and V O 2 , and the oxygen gradient between uterine- and umbilical-venous blood, providing a comprehensive assessment of placental function with clinical potential. ABSTRACT It has not been feasible to perform routine clinical measurement of human placental oxygen consumption ( V O 2 ) and in vitro studies do not reflect true metabolism in utero. Here we propose an MRI method to non-invasively quantify in utero placental and fetal oxygen delivery ( D O 2 ) and V O 2 in healthy humans and sheep. Women (n = 20) and Merino sheep (n = 10; 23 sets of measurements) with singleton pregnancies underwent an MRI in late gestation (36 ± 2 weeks and 128 ± 9 days, respectively; mean ± SD). Blood flow (phase-contrast) and oxygen content (T1 and T2 relaxometry) were measured in the major uterine- and umbilical-placental vessels, allowing calculation of uteroplacental and fetal D O 2 and V O 2 . Maternal D O 2 (ml min-1 kg-1 fetus) to the gravid uterus was similar in humans and sheep (human = 54 ± 15, sheep = 53 ± 21, P = 0.854), while fetal D O 2 (human = 25 ± 4, sheep = 22 ± 5, P = 0.049) was slightly lower in sheep. Uteroplacental and fetal V O 2 (ml min-1 kg-1 fetus; uteroplacental: human = 4.1 ± 1.5, sheep = 3.5 ± 1.9, P = 0.281; fetus: human = 6.8 ± 1.3, sheep = 7.2 ± 1.7, P = 0.426) were similar between species. Late gestational uteroplacental:fetal V O 2 ratio did not change with age (human, P = 0.256; sheep, P = 0.121). Human umbilical blood flow (ml min-1 kg-1 fetus) decreased with advancing age (P = 0.008), while fetal V O 2 was preserved through an increase in oxygen extraction (P = 0.046). By contrast, sheep fetal V O 2 was preserved through stable umbilical flow (ml min-1 kg-1 ; P = 0.443) and oxygen extraction (P = 0.582). MRI derived measurements of uteroplacental and fetal V O 2 between humans and sheep were similar and in keeping with prior data obtained using invasive techniques. Taken together, these data confirm the reliability of our approach, which offers a novel clinical 'placental function test'.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Davide Marini
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sharon Portnoy
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2N2, Canada
| | - Rory Windrim
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John C Kingdom
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
26
|
Aujla T, Darby JRT, Saini BS, Lock MC, Holman SL, Bradshaw EL, Perumal SR, McInnes SJP, Voelcker NH, Wiese MD, Macgowan CK, Seed M, Morrison JL. Impact of resveratrol-mediated increase in uterine artery blood flow on fetal haemodynamics, blood pressure and oxygenation in sheep. Exp Physiol 2021; 106:1166-1180. [PMID: 33600040 DOI: 10.1113/ep089237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Uterine artery blood flow helps to maintain fetal oxygen and nutrient delivery. We investigated the effects of increased uterine artery blood flow mediated by resveratrol on fetal growth, haemodynamics, blood pressure regulation and oxygenation in pregnant sheep. What is the main finding and its importance? Fetuses from resveratrol-treated ewes were significantly larger and exhibited a haemodynamic profile that might promote peripheral growth. Absolute uterine artery blood flow was positively correlated with umbilical vein oxygen saturation, absolute fetal oxygen delivery and fetal growth. Increasing uterine artery blood flow with compounds such as resveratrol might have clinical significance for pregnancy conditions in which fetal growth and oxygenation are compromised. ABSTRACT High placental vascular resistance hinders uterine artery (UtA) blood flow and fetal substrate delivery. In the same group of animals as the present study, we have previously shown that resveratrol (RSV) increases UtA blood flow, fetal weight and oxygenation in an ovine model of human pregnancy. However, the mechanisms behind changes in growth and the effects of increases in UtA blood flow on fetal circulatory physiology have yet to be investigated. Twin-bearing ewes received s.c. vehicle (VEH, n = 5) or RSV (n = 6) delivery systems at 113 days of gestation (term = 150 days). Magnetic resonance imaging was performed at 123-124 days to quantify fetal volume, blood flow and oxygen saturation of major fetal vessels. At 128 days, i.v. infusions of sodium nitroprusside and phenylephrine were administered to study the vascular tone of the fetal descending aorta. Maternal RSV increased fetal body volume (P = 0.0075) and weight (P = 0.0358), with no change in brain volume or brain weight. There was a positive relationship between absolute UtA blood flow and umbilical vein oxygen saturation, absolute fetal oxygen delivery and combined fetal twin volume (all P ≤ 0.05). There were no differences between groups in fetal haemodynamics or blood pressure regulation except for higher blood flow to the lower body in RSV fetuses (P = 0.0170). The observed increase in fetal weight might be helpful in pregnancy conditions in which fetal growth and oxygen delivery are compromised. Further preclinical investigations on the mechanism(s) accounting for these changes and the potential to improve growth in complicated pregnancies are warranted.
Collapse
Affiliation(s)
- Tanroop Aujla
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara R Perumal
- Preclinical Imaging and Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven J P McInnes
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Melamed N, Baschat A, Yinon Y, Athanasiadis A, Mecacci F, Figueras F, Berghella V, Nazareth A, Tahlak M, McIntyre HD, Da Silva Costa F, Kihara AB, Hadar E, McAuliffe F, Hanson M, Ma RC, Gooden R, Sheiner E, Kapur A, Divakar H, Ayres‐de‐Campos D, Hiersch L, Poon LC, Kingdom J, Romero R, Hod M. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet 2021; 152 Suppl 1:3-57. [PMID: 33740264 PMCID: PMC8252743 DOI: 10.1002/ijgo.13522] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of the fetus to meet its growth potential due to a pathological factor, most commonly placental dysfunction. Worldwide, FGR is a leading cause of stillbirth, neonatal mortality, and short- and long-term morbidity. Ongoing advances in clinical care, especially in definitions, diagnosis, and management of FGR, require efforts to effectively translate these changes to the wide range of obstetric care providers. This article highlights agreements based on current research in the diagnosis and management of FGR, and the areas that need more research to provide further clarification of recommendations. The purpose of this article is to provide a comprehensive summary of available evidence along with practical recommendations concerning the care of pregnancies at risk of or complicated by FGR, with the overall goal to decrease the risk of stillbirth and neonatal mortality and morbidity associated with this condition. To achieve these goals, FIGO (the International Federation of Gynecology and Obstetrics) brought together international experts to review and summarize current knowledge of FGR. This summary is directed at multiple stakeholders, including healthcare providers, healthcare delivery organizations and providers, FIGO member societies, and professional organizations. Recognizing the variation in the resources and expertise available for the management of FGR in different countries or regions, this article attempts to take into consideration the unique aspects of antenatal care in low-resource settings (labelled “LRS” in the recommendations). This was achieved by collaboration with authors and FIGO member societies from low-resource settings such as India, Sub-Saharan Africa, the Middle East, and Latin America.
Collapse
Affiliation(s)
- Nir Melamed
- Division of Maternal Fetal MedicineDepartment of Obstetrics and GynecologySunnybrook Health Sciences CentreUniversity of TorontoTorontoONCanada
| | - Ahmet Baschat
- Center for Fetal TherapyDepartment of Gynecology and ObstetricsJohns Hopkins UniversityBaltimoreMDUSA
| | - Yoav Yinon
- Fetal Medicine UnitDepartment of Obstetrics and GynecologySheba Medical CenterTel‐HashomerSackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Apostolos Athanasiadis
- Third Department of Obstetrics and GynecologyAristotle University of ThessalonikiThessalonikiGreece
| | - Federico Mecacci
- Maternal Fetal Medicine UnitDivision of Obstetrics and GynecologyDepartment of Biomedical, Experimental and Clinical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesc Figueras
- Maternal‐Fetal Medicine DepartmentBarcelona Clinic HospitalUniversity of BarcelonaBarcelonaSpain
| | - Vincenzo Berghella
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Amala Nazareth
- Jumeira Prime Healthcare GroupEmirates Medical AssociationDubaiUnited Arab Emirates
| | - Muna Tahlak
- Latifa Hospital for Women and ChildrenDubai Health AuthorityEmirates Medical AssociationMohammad Bin Rashid University for Medical Sciences, Dubai, United Arab Emirates
| | | | - Fabrício Da Silva Costa
- Department of Gynecology and ObstetricsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | - Anne B. Kihara
- African Federation of Obstetricians and GynaecologistsKhartoumSudan
| | - Eran Hadar
- Helen Schneider Hospital for WomenRabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Fionnuala McAuliffe
- UCD Perinatal Research CentreSchool of MedicineNational Maternity HospitalUniversity College DublinDublinIreland
| | - Mark Hanson
- Institute of Developmental SciencesUniversity Hospital SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of SouthamptonSouthamptonUK
| | - Ronald C. Ma
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong SARChina
| | - Rachel Gooden
- FIGO (International Federation of Gynecology and Obstetrics)LondonUK
| | - Eyal Sheiner
- Soroka University Medical CenterBen‐Gurion University of the NegevBe’er‐ShevaIsrael
| | - Anil Kapur
- World Diabetes FoundationBagsværdDenmark
| | | | | | - Liran Hiersch
- Sourasky Medical Center and Sackler Faculty of MedicineLis Maternity HospitalTel Aviv UniversityTel AvivIsrael
| | - Liona C. Poon
- Department of Obstetrics and GynecologyPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong SAR, China
| | - John Kingdom
- Division of Maternal Fetal MedicineDepartment of Obstetrics and GynecologyMount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Roberto Romero
- Perinatology Research BranchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMDUSA
| | - Moshe Hod
- Helen Schneider Hospital for WomenRabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
28
|
Copping KJ, Hernandez-Medrano J, Hoare A, Hummitzsch K, McMillen IC, Morrison JL, Rodgers RJ, Perry VEA. Maternal periconceptional and first trimester protein restriction in beef heifers: effects on placental parameters and fetal and neonatal calf development. Reprod Fertil Dev 2021; 32:495-507. [PMID: 32029064 DOI: 10.1071/rd19017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Few studies have investigated the effects of nutrition during the periconception and early gestation periods on fetal and placental development in cattle. In this study, nulliparous yearling heifers (n=360) were individually fed a diet high or low in protein (HPeri and LPeri) beginning 60 days before conception. From 24 to 98 days after conception, half of each treatment group was changed to the alternative high- or low-protein diet (HPost and LPost) yielding four groups in a 2×2 factorial design. A subset of heifers (n=46) was necropsied at 98 days after conception and fetoplacental development assessed. Placentome number and volume decreased in response to LPeri and LPost diets respectively. Absolute lung, pancreas, septum and ventricle weights decreased in LPost versus HPost fetuses, whereas the post-conception diet altered absolute and relative liver and brain weights depending on sex. Similarly, changes in fetal hepatic gene expression of factors regulating growth, glucose output and lipid metabolism were induced by protein restriction in a sex-specific manner. At term, neonatal calf and placental measures were not different. Protein restriction of heifers during the periconception and early gestation periods alters fetoplacental development and hepatic gene expression. These changes may contribute to functional consequences for progeny, but this may not be apparent from gross morphometry at birth.
Collapse
Affiliation(s)
- K J Copping
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - J Hernandez-Medrano
- Department of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, NG7 2UH, UK
| | - A Hoare
- South East Vets, 314 Commercial Street, Mount Gambier, SA 5290, Australia
| | - K Hummitzsch
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - I C McMillen
- The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J L Morrison
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5001, Australia
| | - R J Rodgers
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - V E A Perry
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia; and Corresponding author.
| |
Collapse
|
29
|
|
30
|
Sennaiyan UN, Melov SJ, Arcus C, Kirby A, Alahakoon TI. Fetal adrenal gland: Total gland volume and fetal zone to total gland ratio as markers of small for gestational age. JOURNAL OF CLINICAL ULTRASOUND : JCU 2020; 48:377-387. [PMID: 32333815 DOI: 10.1002/jcu.22852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/26/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Fetal adrenal gland changes have previously been investigated as novel markers of preterm labor and small for gestational age (SGA) fetuses. We aimed to compare the fetal adrenal gland parameters in SGA and appropriate for gestational age (AGA) fetuses. METHODS A prospective cohort study was conducted on SGA fetuses with estimated fetal weight (EFW) ≤10th centile and AGA (EFW >10th centile) at 17 to 34 weeks gestation. Fetal adrenal total gland volume (TGV), TGV corrected for EFW (cTGV), fetal zone volume (FZV), FZV corrected for EFW (cFZV), and FZV:TGV ratio were compared and correlated with gestational age and EFW. Receiver operator curves assessed FZV:TGV ratio, cTGV, and cFZV in detecting SGA. RESULTS Ultrasound examinations from 103 AGA and 50 SGA fetuses showed that (a) SGA fetuses had higher TGV (P = .002), FZV (P = .001), and FZV:TGV (P = .036) compared to AGA fetuses; (b) fetal adrenal TGV, FZV, cFZV, and FZV:TGV increase with advancing gestational age and EFW while cTGV does not; (c) Fetal adrenal changes in cTGV, cFZV, and FZV:TGV have ability to differentiate SGA; (d) FZV:TGV ratio 10 and 25 may be used to identify or exclude SGA in antenatally suspected SGA. CONCLUSIONS We investigated the concept that SGA fetuses have measurable changes to the adrenal gland. We have shown that fetal TGV, TGV, and FZV:TGV ratio show differences between AGA and SGA with TGV remaining significant after accounting for GA at scan. These findings may be useful as potential biomarkers for diagnosing or excluding SGA.
Collapse
Affiliation(s)
- Usha N Sennaiyan
- Westmead Institute for Maternal and Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Sarah J Melov
- Westmead Institute for Maternal and Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
- The University of Sydney Westmead Clinical School, Sydney, New South Wales, Australia
| | - Charles Arcus
- Westmead Institute for Maternal and Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Adrienne Kirby
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, Australia
| | - Thushari I Alahakoon
- Westmead Institute for Maternal and Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
- The University of Sydney Westmead Clinical School, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
The impact of intrauterine growth restriction on cytochrome P450 enzyme expression and activity. Placenta 2020; 99:50-62. [PMID: 32755725 DOI: 10.1016/j.placenta.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023]
Abstract
With the increased prevalence of non-communicable disease and availability of medications to treat these and other conditions, a pregnancy free from prescribed medication exposure is rare. Up to 99% of women take at least one medication during pregnancy. These medications can be divided into those used to improve maternal health and wellbeing (e.g., analgesics, antidepressants, antidiabetics, antiasthmatics), and those used to promote the baby's wellbeing in either fetal (e.g., anti-arrhythmics) or postnatal life (e.g., antenatal glucocorticoids). These medications are needed for pre-existing or coincidental illnesses in the mother, maternal conditions induced by the pregnancy itself through to conditions that arise in the fetus or that will be encountered by the newborn. Thus, medications administered to the mother may be used to treat the mother, the fetus or both. Metabolism of medications is regulated by a range of physiological processes that change during pregnancy. Other pathological processes such as placental insufficiency can in turn have both immediate and lifelong adverse health consequences for babies. Individuals born growth restricted are more likely to require medications but may also have an altered ability to metabolise these medications in fetal and postnatal life. This review aims to determine the effect of suboptimal fetal growth on the fetal expression of the drug metabolising enzymes (DMEs) that convert medications into active or inactive metabolites, and the transporters that remove both these medications and their metabolites from the fetal compartment.
Collapse
|
32
|
Vafaei H, Kavari G, Izadi HR, Zare Dorahi Z, Dianatpour M, Daneshparvar A, Jamhiri I. Wi-Fi (2.4 GHz) affects anti-oxidant capacity, DNA repair genes expression and, apoptosis in pregnant mouse placenta. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:833-840. [PMID: 32695301 PMCID: PMC7351435 DOI: 10.22038/ijbms.2020.40184.9512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/25/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The placenta provides nutrients and oxygen to embryo and removes waste products from embryo's blood. As far as we know, the effects of exposure to Wi-Fi (2.4 GHz) signals on placenta have not been evaluated. Hence, we examined the effect of prenatal exposure to Wi-Fi signals on anti-oxidant capacity, expressions of CDKNA1, and GADD45a as well as apoptosis in placenta and pregnancy outcome. MATERIALS AND METHODS Pregnant mice were exposed to Wi-Fi signal (2.4 GHz) for 2 and 4 hr. Placenta tissues were examined to measure the MDA and SOD levels. To measure SOD, CDKNA1, GADD45a, Bax, and Bcl-2 expressions were compared by real-time PCR analysis. TUNEL assay was used to assess apoptosis in placenta tissues. The results were analyzed by one-way analysis of variance (ANOVA) using Prism version 6.0 software. RESULTS MDA and SOD levels had significantly increased in exposed Wi-Fi signal groups (P-value< 0.05). Also, quantitative PCR experiment showed that SOD mRNA expression significantly increased in Wi-Fi signal groups. The data showed that CDKN1A and GADD45a genes were increased in Wi-Fi groups (P-value<0.05). The quantitative PCR and the TUNEL assay showed that apoptosis increased in Wi-Fi groups (P-value<0.05). CONCLUSION Our results provide evidence that Wi-Fi signals increase lipid peroxidation, SOD activity (oxidative stres), apoptosis and CDKN1A and GADD45a overexpression in mice placenta tissue. However, further experimental studies are warranted to investigate other genes and aspects of pregnancy to determine the role of Wi-Fi radiation on fertility and pregnancy.
Collapse
Affiliation(s)
- Homeira Vafaei
- Maternal Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Kavari
- Maternal Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Izadi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zare Dorahi
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Human Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afrooz Daneshparvar
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Lambo CA, Edwards AK, Bazer FW, Dunlap K, Satterfield MC. Development of a surgical procedure for removal of a placentome from a pregnant ewe during gestation. J Anim Sci Biotechnol 2020; 11:48. [PMID: 32467754 PMCID: PMC7222564 DOI: 10.1186/s40104-020-00454-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background In recent decades, there has been a growing interest in the impact of insults during pregnancy on postnatal health and disease. It is known that changes in placental development can impact fetal growth and subsequent susceptibility to adult onset diseases; however, a method to collect sufficient placental tissues for both histological and gene expression analyses during gestation without compromising the pregnancy has not been described. The ewe is an established biomedical model for the study of fetal development. Due to its cotyledonary placental type, the sheep has potential for surgical removal of materno-fetal exchange tissues, i.e., placentomes. A novel surgical procedure was developed in well-fed control ewes to excise a single placentome at mid-gestation. Results A follow-up study was performed in a cohort of nutrient-restricted ewes to investigate rapid placental changes in response to undernutrition. The surgery averaged 19 min, and there were no viability differences between control and sham ewes. Nutrient restricted fetuses were smaller than controls (4.7 ± 0.1 kg vs. 5.6 ± 0.2 kg; P < 0.05), with greater dam weight loss (− 32.4 ± 1.3 kg vs. 14.2 ± 2.2 kg; P < 0.01), and smaller placentomes at necropsy (5.7 ± 0.3 g vs. 7.2 ± 0.9 g; P < 0.05). Weight of sampled placentomes and placentome numbers did not differ. Conclusions With this technique, gestational studies in the sheep model will provide insight into the onset and complexity of changes in gene expression in placentomes resulting from undernutrition (as described in our study), overnutrition, alcohol or substance abuse, and environmental or disease factors of relevance and concern regarding the reproductive health and developmental origins of health and disease in humans and in animals.
Collapse
Affiliation(s)
- Colleen A Lambo
- 1Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843 USA
| | - Ashley K Edwards
- 2Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843 USA
| | - Fuller W Bazer
- 2Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843 USA
| | - Kathrin Dunlap
- 2Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843 USA
| | - M Carey Satterfield
- 2Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843 USA
| |
Collapse
|
34
|
Razak A, Faden M. Association of small for gestational age with retinopathy of prematurity: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2020; 105:270-278. [PMID: 31326921 DOI: 10.1136/archdischild-2019-316976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/03/2022]
Abstract
CONTEXT The association between small for gestational age (SGA) and retinopathy of prematurity (ROP) is unclear. OBJECTIVE A systematic review and meta-analysis was conducted to evaluate the association between ROP and SGA in preterm infants <37 weeks' gestational age (GA) admitted to neonatal intensive care unit. METHODS Medline, PubMed, Web of Science and Cochrane Central databases were searched from inception through 15 January 2019. Studies reporting outcomes based on SGA as the primary exposure variable were included. Data were extracted independently by two coauthors. Modified Newcastle-Ottawa scale was used for risk of bias assessment. RESULTS Database search yielded 536 records (Medline=152, PubMed=171, Web of Science=144 and Cochrane Central=69). Twenty-one studies evaluating 190 946 infants were included. SGA was associated with significantly higher odds of any stage of ROP on unadjusted analysis (unadjusted OR (uOR) 1.55; 95% CI 1.22 to 1.98; 10 studies) but not on adjusted analysis (adjusted OR (aOR) 2.16; 95% CI 0.66 to 7.11; 3 studies). SGA was associated with significantly higher odds of severe ROP (aOR 1.92; 95% CI 1.57 to 2.34; nine studies). SGA was also significantly associated with higher odds of treated ROP (aOR 1.39; 95% CI 1.18 to 1.65; three studies). In subgroup analysis of infants <29 weeks' GA, SGA was significantly associated with increased odds of ROP (uOR 1.64; 95% CI 1.19 to 2.26; two studies), severe ROP (aOR 1.61; 95% CI 1.23 to 2.10; four studies) and treated ROP (aOR 1.37; 95% CI 1.16 to 1.62; two studies). CONCLUSION SGA was associated with increased odds of any stage of ROP, severe ROP and treated ROP in preterm infants. Neonatologists should incorporate SGA into the risk assessment during ROP evaluation and while providing counselling to the families of preterm SGA infants. ROP screening guidelines should look into the frequency of follow-up examination in SGA infants in aim to offer early detection and treatment.
Collapse
Affiliation(s)
- Abdul Razak
- Pediatrics, Princess Nourah bint Abdulrahman University, King Abdullah bin Abdulaziz University Hospital, Riyadh, Al Riyadh, Saudi Arabia.,Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Maher Faden
- Pediatrics, Princess Nourah bint Abdulrahman University, King Abdullah bin Abdulaziz University Hospital, Riyadh, Al Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Sutherland AE, Yawno T, Castillo-Melendez M, Allison BJ, Malhotra A, Polglase GR, Cooper LJ, Jenkin G, Miller SL. Does Antenatal Betamethasone Alter White Matter Brain Development in Growth Restricted Fetal Sheep? Front Cell Neurosci 2020; 14:100. [PMID: 32425758 PMCID: PMC7203345 DOI: 10.3389/fncel.2020.00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy often associated with neurological impairments. Currently, there is no treatment for FGR, hence it is likely these babies will be delivered prematurely, thus being exposed to antenatal glucocorticoids. While there is no doubt that antenatal glucocorticoids reduce neonatal mortality and morbidities, their effects on the fetal brain, particularly in FGR babies, are less well recognized. We investigated the effects of both short- and long-term exposure to antenatal betamethasone treatment in both FGR and appropriately grown fetal sheep brains. Surgery was performed on pregnant Border-Leicester Merino crossbred ewes at 105-110 days gestation (term ~150 days) to induce FGR by single umbilical artery ligation (SUAL) or sham surgery. Ewes were then treated with a clinical dose of betamethasone (11.4 mg intramuscularly) or saline at 113 and 114 days gestation. Animals were euthanized at 115 days (48 h following the initial betamethasone administration) or 125 days (10 days following the initial dose of betamethasone) and fetal brains collected for analysis. FGR fetuses were significantly smaller than controls (115 days: 1.68 ± 0.11 kg vs. 1.99 ± 0.11 kg, 125 days: 2.70 ± 0.15 kg vs. 3.31 ± 0.20 kg, P < 0.001) and betamethasone treatment reduced body weight in both control (115 days: 1.64 ± 0.10 kg, 125 days: 2.53 ± 0.10 kg) and FGR fetuses (115 days: 1.41 ± 0.10 kg, 125 days: 2.16 ± 0.17 kg, P < 0.001). Brain: body weight ratios were significantly increased with FGR (P < 0.001) and betamethasone treatment (P = 0.002). Within the fetal brain, FGR reduced CNPase-positive myelin staining in the subcortical white matter (SCWM; P = 0.01) and corpus callosum (CC; P = 0.01), increased GFAP staining in the SCWM (P = 0.02) and reduced the number of Olig2 cells in the periventricular white matter (PVWM; P = 0.04). Betamethasone treatment significantly increased CNPase staining in the external capsule (EC; P = 0.02), reduced GFAP staining in the CC (P = 0.03) and increased Olig2 staining in the SCWM (P = 0.04). Here we show that FGR has progressive adverse effects on the fetal brain, particularly within the white matter. Betamethasone exacerbated growth restriction in the FGR offspring, but betamethasone did not worsen white matter brain injury.
Collapse
Affiliation(s)
- Amy E Sutherland
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Tamara Yawno
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Margie Castillo-Melendez
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Leo J Cooper
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
37
|
Prenatal high-salt diet impaired vasodilatation with reprogrammed renin-angiotensin system in offspring rats. J Hypertens 2019; 36:2369-2379. [PMID: 30382958 DOI: 10.1097/hjh.0000000000001865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS High-salt diet is linked to hypertension, and prenatal high-salt diet increases the risk of cardiovascular diseases in the offspring. The present study investigated whether and how prenatal high-salt diet influenced nitric oxide-mediated vasodilatation in the offspring. METHODS AND RESULTS Pregnant rats were fed either normal-salt (1% sodium chloride) or high-salt (8% sodium chloride) diet during gestation. Experiments were conducted in 5-month-old male offspring. Sodium nitroprusside (SNP, nitric oxide donor)-induced hypotensive responses (in vivo) and vascular dilatation (in vitro) was significantly attenuated (Emax: 84 ± 2 vs. 51 ± 2, high-salt vs. control, P < 0.001) in the high-salt offspring, indicating reduced vascular relaxations. Pretreatment with Tempol (reactive oxygen species scavenger) alleviated this attenuation. The high-salt offspring showed an increased level of oxidative stress markers in both mesenteric arteries and plasma samples. The antioxidant activity, serum superoxide dismutase and catalase were significantly reduced, whereas malondialdehyde was increased in the high-salt offspring. O2 production, and protein expression of Nox2 and Nox4 in mesenteric arteries was significantly increased in the high-salt offspring whereas Nox1 showed no changes. The local renin-angiotensin system in mesenteric arteries was activated, associated with an increased NADPH oxidase. DNA methylation at the proximal promoter of angiotensin-converting enzyme gene in the lung was significantly increased in the high-salt offspring (P = 0.004). CONCLUSION The results suggest that prenatal high-salt diet impairs nitric oxide-mediated vasodilatation because of the increased oxidative stress-affected renin-angiotensin system in the high-salt offspring, providing new information for understanding, and early prevention of cardiovascular diseases in fetal origins.
Collapse
|
38
|
Cahill LS, Hoggarth J, Lerch JP, Seed M, Macgowan CK, Sled JG. Fetal brain sparing in a mouse model of chronic maternal hypoxia. J Cereb Blood Flow Metab 2019; 39:1172-1184. [PMID: 29271304 PMCID: PMC6547196 DOI: 10.1177/0271678x17750324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypoxic stress is a common occurrence during human pregnancy, yet little is known about its effects on the fetal brain. This study examined the fetal hemodynamic responses to chronic hypoxia in an experimental mouse model of chronic maternal hypoxia (11% O2 from E14.5 to E17.5). Using high-frequency Doppler ultrasound, we found fetal cerebral and ductus venosus blood flow were both elevated by 69% and pulmonary blood flow was decreased by 62% in the fetuses exposed to chronic hypoxia compared to controls. This demonstrates that brain sparing persists during chronic fetal hypoxia and is mediated by "streaming," where highly oxygenated blood preferentially flows through the ductus venosus towards the cerebral circulation, bypassing the liver and the lungs. Consistent with these changes in blood flow, the fetal brain volume measured by MRI is preserved, while the liver and lung volumes decreased compared to controls. However, hypoxia exposed fetuses were rendered vulnerable to an acute hypoxic challenge (8% O2 for 3 min), demonstrating global blood flow decreases consistent with imminent fetal demise rather than elevated cerebral blood flow. Despite this vulnerability, there were no differences in adult brain morphology in the mice exposed to chronic maternal hypoxia compared to controls.
Collapse
Affiliation(s)
- Lindsay S Cahill
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathan Hoggarth
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,3 Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Mike Seed
- 4 Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,5 Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- 2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,5 Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,5 Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Valent D, Yeste N, Hernández-Castellano LE, Arroyo L, Wu W, García-Contreras C, Vázquez-Gómez M, González-Bulnes A, Bendixen E, Bassols A. SWATH-MS quantitative proteomic investigation of intrauterine growth restriction in a porcine model reveals sex differences in hippocampus development. J Proteomics 2019; 204:103391. [PMID: 31129268 DOI: 10.1016/j.jprot.2019.103391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Intrauterine growth restriction (IUGR) is characterized by reduced growth and weight of the foetus, mainly due to the lack of nutrients and oxygen. Animals affected by IUGR show changes in specific brain areas and several neuronal processes. Female offspring affected by IUGR show increased survival and development compared to males. The objective of this study was to analyse changes in the hippocampus proteome in male and female piglets affected by IUGR. Seven pregnant Iberian sows were fed from Day 35 of pregnancy onwards at 50% of their requirements. At Day 100 of pregnancy, foetuses were obtained and classified by sex and weight, as mild IUGR (Normal Body Weight) versus severe IUGR (Low Body Weight). Hippocampi were dissected and the proteomes analysed by SWATH-MS DIA. In this study, 1497 proteins were identified of which 260 were quantitatively analysed. All differential proteins were more abundant in females versus males and were involved in protein synthesis, neuronal development, metabolism, antiapoptotic signalling and vesicular transport. Our findings support that female foetuses tolerate nutrient limitation better than males, especially under mild IUGR. Under severe IUGR, females still seems to maintain normal lipid metabolism and antiapoptotic signalling, which may be related to the increased female survival. SIGNIFICANCE: In the last years, proteomics have been used to evidence differences related to sex in non-reproductive organs. Intrauterine Growth Restriction (IUGR) can affect female and male offspring differently. Female offspring has stronger protective strategies compared to males, enhancing growth and postnatal survival. Most studies regarding this issue have focused on metabolic organs (i.e. liver). However, the predominance of neurodevelopmental disorders in males suggests that the central nervous system in female offspring adapt better to nutritional stress conditions than that of males. Based on the differential protein expression in hippocampal samples, our work demonstrates that female foetuses indeed adapt better to IUGR than males, especially under mild IUGR conditions. In severe IUGR conditions, differences between males and females were not so evident, but even in this case, the remaining differences suggest increased survival in females than in males.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lorenzo E Hernández-Castellano
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Wei Wu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Marta Vázquez-Gómez
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Comparative Physiology Group, INIA, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
40
|
Maternal Metformin Treatment Improves Developmental and Metabolic Traits of IUGR Fetuses. Biomolecules 2019; 9:biom9050166. [PMID: 31035702 PMCID: PMC6572102 DOI: 10.3390/biom9050166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Metformin is an anti-hyperglycemic drug widely used for the treatment of insulin resistance and glucose intolerance and is currently considered for preventing large-for-gestational-age (LGA) offspring in pregnant women affected by obesity or diabetes. Our hypothesis was the opposite—metformin may be used for improving the development of offspring affected by intrauterine growth restriction (IUGR) and preventing the appearance of small-for-gestational-age (SGA) neonates in non-obese and non-diabetic but malnourished pregnancies. The current study, performed in a swine preclinical model of IUGR by undernutrition, showed that fetuses in the treated group showed no significant increases in body-weight, but showed a significantly higher weight of the brain, the total thoracic and abdominal viscera, the liver, the kidneys, the spleen, and the adrenal glands. Maternal metformin treatment was also related to significant increases in the fetal plasma concentration of parameters indicative of glycemic (glucose and fructosamine) and lipid profiles (triglycerides). Overall, these results suggest a protective effect of the treatment on the developmental competence of the fetuses. These findings may be of high value for human medicine in case of maternal malnutrition, since metformin is a cheap drug easily available, but also in case of placental deficiency, since metformin seems to improve placental development and function.
Collapse
|
41
|
Darby JRT, Mohd Dollah MHB, Regnault TRH, Williams MT, Morrison JL. Systematic review: Impact of resveratrol exposure during pregnancy on maternal and fetal outcomes in animal models of human pregnancy complications-Are we ready for the clinic? Pharmacol Res 2019; 144:264-278. [PMID: 31029765 DOI: 10.1016/j.phrs.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol (RSV) has been reported to have potential beneficial effects in the complicated pregnancy. Various pregnancy complications lead to a suboptimal in utero environment that impacts fetal growth during critical windows of development. Detrimental structural changes to key organ systems in utero persist into adult life and predispose offspring to an increased risk of chronic non-communicable metabolic diseases such as cardiovascular disease, diabetes and obesity. The aim of this systematic review was to determine the effect of gestational RSV exposure on both maternal and fetal outcomes. Publicly available databases (n = 8) were searched for original studies reporting maternal and/or fetal outcomes after RSV exposure during pregnancy irrespective of species. Of the 115 studies screened, 31 studies were included in this review. RSV exposure occurred for different durations across a range of species (Rats n = 18, Mice n = 7, Japanese Macaques n = 3 and Sheep n = 3), models of complicated pregnancy (eg. maternal dietary manipulations, gestational diabetes, maternal hypoxia, teratogen exposure, etc.), dosages and administration routes. Maternal and fetal outcomes differed not only based on the model of complicated pregnancy assessed but also as a result of species. Given the heterogenic nature of these studies, further investigation assessing RSV exposure during the complicated pregnancy is warranted. In order to make an informed decision regarding the use of RSV to intervene in pregnancy complications, we suggest a minimum data set for consideration in future studies.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Murni H B Mohd Dollah
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynaecology and Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada; Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada
| | - Marie T Williams
- Health and Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
42
|
Reduced white matter fractional anisotropy mediates cortical thickening in adults born preterm with very low birthweight. Neuroimage 2019; 188:217-227. [DOI: 10.1016/j.neuroimage.2018.11.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
|
43
|
Sales F, Peralta OA, Narbona E, McCoard S, De Los Reyes M, González-Bulnes A, Parraguez VH. Hypoxia and Oxidative Stress Are Associated with Reduced Fetal Growth in Twin and Undernourished Sheep Pregnancies. Animals (Basel) 2018; 8:ani8110217. [PMID: 30463237 PMCID: PMC6262616 DOI: 10.3390/ani8110217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Low birth weight has profound implications for perinatal mortality and morbidity in lambs, causing higher mortality and lower growth potential. Low birth weight, as a consequence of fetal growth restriction, occurs in undernourished and multiple pregnancies, where hypoxia and oxidative stress could play a critical role. Our aim was to establish the effects of nutritional deprivation and pregnancy rank on fetal growth, oxygenation, and oxidative status in sheep pregnancies under extensive Patagonian conditions. At 30 days after mating, single- and twin-bearing ewes were offered only natural pasture (undernutrition group) or natural pasture plus concentrate supplementation (well-nourished group). At day 140 of gestation, blood gases and redox status were evaluated in venous cord blood, and fetal biometric characteristics were obtained after cesarean section. Both maternal undernutrition and twinning led to decreased oxygen supply to the fetuses (p = 0.016 and p = 0.050, respectively), which was associated with decreased intrauterine growth (r = 0.446, p < 0.01). Moreover, twinning increased oxidative stress in cord blood (p < 0.05), which might also contribute to fetal growth restriction. These results reinforce the importance of maternal nutrition, especially for those ewes bearing multiples, and opens new possibilities for nutritional or antioxidant interventions for preventing fetal hypoxia and oxidative stress.
Collapse
Affiliation(s)
| | - Oscar A Peralta
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
| | - Eileen Narbona
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
| | - Sue McCoard
- AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Mónica De Los Reyes
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
| | - Antonio González-Bulnes
- INIA-Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Víctor H Parraguez
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile.
- Faculty of Agricultural Sciences, University of Chile, Santiago 8820808, Chile.
| |
Collapse
|
44
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
45
|
Piglet birth weight, subsequent performance, carcass traits and pork quality: A meta-analytical study. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Peine JL, Jia G, Van Emon ML, Neville TL, Kirsch JD, Hammer CJ, O’Rourke ST, Reynolds LP, Caton JS. Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J Anim Sci 2018; 96:3471-3481. [PMID: 29893847 PMCID: PMC6095351 DOI: 10.1093/jas/sky221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The hypothesis of this study was that arginine supplementation would overcome negative effects of restricted maternal feed intake during the last two-thirds of gestation on ewe performance and positively affect postnatal lamb growth and development. Multiparous, Rambouillet ewes (n = 32) were allocated to 3 treatments in a completely random design at 54 ± 3.9 d of gestation. Dietary treatments were 100% of nutrient requirements (control, CON), 60% of control (restricted, RES), or RES plus a rumen-protected arginine supplement dosed at 180 mg/kg BW once daily (RES-ARG). Ewes were penned individually in a temperature-controlled facility. At parturition, lambs were immediately removed from dams and reared independently. At day 54 ± 3 of age, lambs were stunned using captive bolt, exsanguinated, and organs were collected and weighed. Ewe BW from day 68 of gestation through parturition was greater (P ≤ 0.03) in CON compared with RES or RES-ARG. Similarly, ewe BCS from day 68 of gestation through parturition was greater (P ≤ 0.03) in CON than either RES or RES-ARG. Total ewe colostrum mass (g) at 3 h after parturition was greater (P ≤ 0.001) in CON than RES or RES-ARG. Lamb birth weight was greater (P = 0.04) in CON than RES ewes and tended (P = 0.10) to be greater in CON vs. RES-ARG. Lambs born to CON ewes had greater (P ≤ 0.03) BW than lambs from RES ewes at 7, 14, and 33 d postpartum. On day 19, lambs from CON and RES-ARG ewes both had greater (P ≤ 0.04) BW than lambs from RES ewes (12.0 and 11.5 vs. 10.3 ± 0.41 kg, respectively). Lambs born to CON and RES-ARG ewes had greater (P ≤ 0.04) ADG than lambs from RES ewes on day 19 (355.0 and 354.0 vs. 306.4 ± 15.77 g, respectively). Lambs from CON and RES-ARG ewes also had greater (P ≤ 0.02) girth circumference than lambs from RES ewes on day 19 (55.4 and 54.6 vs. 51.3 ± 0.97 cm, respectively). On day 54, lambs from RES-ARG ewes had greater (P = 0.003) curved crown rump length than lambs from RES ewes (99.8 vs. 93.9 ± 1.28 cm, respectively). Adrenal glands in lambs from CON dams had greater (P = 0.01) mass than adrenal glands in lambs from RES dams. Livers from lambs born to RES-ARG ewes weighed more (P = 0.05) than livers from lambs born to RES ewes. These results confirm our hypothesis that arginine supplementation during the last two-thirds of gestation can mitigate offspring, but not maternal negative consequences associated with restricted maternal nutrition.
Collapse
Affiliation(s)
- Jena L Peine
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - Guangquiang Jia
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - Megan L Van Emon
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Tammi L Neville
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - James D Kirsch
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Stephen T O’Rourke
- Departments of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | | | - Joel S Caton
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
47
|
Urie NJ, Lombard JE, Shivley CB, Kopral CA, Adams AE, Earleywine TJ, Olson JD, Garry FB. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J Dairy Sci 2018; 101:9229-9244. [PMID: 29935825 PMCID: PMC7094390 DOI: 10.3168/jds.2017-14019] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/02/2018] [Indexed: 01/02/2023]
Abstract
The objective of this study was to evaluate morbidity and mortality in preweaned dairy heifer calves based on different health, feeding, and management practices, as well as environmental factors. This study was conducted as part of the calf component of the National Animal Health Monitoring System's Dairy 2014 study, which included 104 dairy operations in 13 states. The calf component was an 18-mo longitudinal study focused on dairy heifer calves from birth to weaning; data were collected on 2,545 calves. The percentage morbidity for all calves enrolled in the study was 33.9%. Backward elimination model selection was used after univariate screening to determine which management practices and environmental factors significantly affected morbidity and mortality. The final morbidity model included birth weight, serum IgG concentration, ventilation type, and average temperature-humidity index (THI) during the preweaning period. After controlling for other independent variables in the model, calves born at a higher birth weight had a lower predicted risk of morbidity than calves with a lower birth weight. An increase in serum IgG concentration was associated with decreased morbidity. Calves housed in positive- or cross-ventilated systems had a 2.2 times higher odds of developing disease compared with calves housed in natural ventilation systems. Average THI during the preweaning period was inversely correlated with morbidity; as THI increased, the predicted morbidity risk decreased. The percent mortality for all calves enrolled in the study was 5.0%. The final mortality model included birth weight, serum IgG concentration, amount of fat/day in the liquid diet, and morbidity. After controlling for other independent variables in the model, calves born at a higher birth weight had a lower risk of mortality. An increase in serum IgG concentration decreased the risk of mortality. The odds of mortality were 3.1 times higher in calves fed ≤0.15 kg of fat/d in the liquid diet compared with calves fed ≥0.22 kg of fat/d. The odds of mortality were 4.7 times higher in calves that experienced any disease throughout the preweaning period than in calves with no disease. In summary, morbidity and mortality were both associated with birth weight and serum IgG concentration. Additionally, morbidity was associated with ventilation type and average monthly THI, and mortality was associated with amount of fat per day in the liquid diet and morbidity.
Collapse
Affiliation(s)
- N J Urie
- USDA-Animal and Plant Health Inspection Service (APHIS)-Veterinary Services (VS) Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO 80526-8117; Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523-1678
| | - J E Lombard
- USDA-Animal and Plant Health Inspection Service (APHIS)-Veterinary Services (VS) Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO 80526-8117.
| | - C B Shivley
- USDA-Animal and Plant Health Inspection Service (APHIS)-Veterinary Services (VS) Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO 80526-8117; Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins 80523-1171
| | - C A Kopral
- USDA-Animal and Plant Health Inspection Service (APHIS)-Veterinary Services (VS) Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO 80526-8117
| | - A E Adams
- USDA-Animal and Plant Health Inspection Service (APHIS)-Veterinary Services (VS) Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO 80526-8117; Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins 80523-1171
| | - T J Earleywine
- Land O'Lakes Animal Milk Products Co., Cottage Grove, WI 53527
| | - J D Olson
- Zoetis, 5 Giralda Farms, Madison, NJ 07940
| | - F B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523-1678
| |
Collapse
|
48
|
Maresca S, Lopez Valiente S, Rodriguez A, Long N, Pavan E, Quintans G. Effect of protein restriction of bovine dams during late gestation on offspring postnatal growth, glucose-insulin metabolism and IGF-1 concentration. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Zhang S, Barker P, Botting KJ, Roberts CT, McMillan CM, McMillen IC, Morrison JL. Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxemia. Physiol Rep 2018; 4:4/23/e13049. [PMID: 27923976 PMCID: PMC5357827 DOI: 10.14814/phy2.13049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/02/2016] [Accepted: 10/31/2016] [Indexed: 01/12/2023] Open
Abstract
Placental restriction and insufficiency are associated with altered patterns of placental growth, morphology, substrate transport capacity, growth factor expression, and glucocorticoid exposure. We have used a pregnant sheep model in which the intrauterine environment has been perturbed by uterine carunclectomy (Cx). This procedure results in early restriction of placental growth and either the development of chronic fetal hypoxemia (PaO2≤17 mmHg) in late gestation or in compensatory placental growth and the maintenance of fetal normoxemia (PaO2>17 mmHg). Based on fetal PaO2, Cx, and Control ewes were assigned to either a normoxemic fetal group (Nx) or a hypoxemic fetal group (Hx) in late gestation, resulting in 4 groups. Cx resulted in a decrease in the volumes of fetal and maternal connective tissues in the placenta and increased placental mRNA expression of IGF2, vascular endothelial growth factor (VEGF), VEGFR‐2,ANGPT2, and TIE2. There were reduced volumes of trophoblast, maternal epithelium, and maternal connective tissues in the placenta and a decrease in placental GLUT1 and 11βHSD2 mRNA expression in the Hx compared to Nx groups. Our data show that early restriction of placental growth has effects on morphological and functional characteristics of the placenta in late gestation, independent of whether the fetus becomes hypoxemic. Similarly, there is a distinct set of placental changes that are only present in fetuses that were hypoxemic in late gestation, independent of whether Cx occurred. Thus, we provide further understanding of the different placental cellular and molecular mechanisms that are present in early placental restriction and in the emergence of later placental insufficiency.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Paige Barker
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Claire T Roberts
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christine M McMillan
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Isabella Caroline McMillen
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Farzad Mohajeri Z, Aalipour S, Sheikh M, Shafaat M, Hantoushzadeh S, Borna S, Khazardoost S. Ultrasound measurement of fetal adrenal gland in fetuses with intrauterine growth restriction, an early predictive method for adverse outcomes. J Matern Fetal Neonatal Med 2017; 32:1485-1491. [PMID: 29251009 DOI: 10.1080/14767058.2017.1410125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Comparing the sonographic measurements of fetal adrenal gland in pregnancies with intrauterine growth restriction (IUGR) versus healthy controls and to assess whether the changes in adrenal gland measurements could predict adverse pregnancy outcomes in IUGR fetuses. METHODS This prospective cohort study evaluated 97 pregnant women (48 with IUGR pregnancies and 49 healthy controls) during their third gestational trimester. All mothers underwent two dimensional ultrasonography of the fetal adrenal gland, and the fetal zone in transverse, sagittal, and coronal planes. Adrenal gland volume (AGV) and fetal zone volume (FZV) were calculated and corrected (c) for fetal weight. The mothers were then followed until delivery. RESULTS Fetuses in the IUGR group had larger corrected adrenal gland volume (c_AGV) and smaller corrected fetal zone volume (c_FZV) compared to the fetuses in the control groups (p < .001). In the IUGR group, significantly smaller c_AGV and higher fetal/adrenal were detected in IUGR fetuses who had nonreassuring fetal status before delivery, preterm birth, very low birth weight delivery, and also those who required neonatal intensive care unit admission (p < .01 for all). CONCLUSIONS Third trimester fetal adrenal gland sonography could potentially be used as an easy noninvasive method for identifying those IUGR fetuses who might have poorer outcomes.
Collapse
Affiliation(s)
- Zohre Farzad Mohajeri
- a Maternal, Fetal and Neonatal Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Soroush Aalipour
- a Maternal, Fetal and Neonatal Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdi Sheikh
- a Maternal, Fetal and Neonatal Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Masoumeh Shafaat
- b Breastfeeding Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Sedigheh Hantoushzadeh
- a Maternal, Fetal and Neonatal Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran.,b Breastfeeding Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Sedigheh Borna
- a Maternal, Fetal and Neonatal Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran.,b Breastfeeding Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Soghra Khazardoost
- a Maternal, Fetal and Neonatal Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran.,b Breastfeeding Research Center , Vali-asr Hospital, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|