1
|
Huang P, Chen G, Zhu Z, Wang S, Chen Z, Chai Y, Li W, Ou G. Phosphorylation-dependent regional motility of the ciliary kinesin OSM-3. J Cell Biol 2025; 224:e202407152. [PMID: 40272473 DOI: 10.1083/jcb.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/29/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Kinesin motor proteins, vital for intracellular microtubule-based transport, display region-specific motility within cells, a phenomenon that remains molecularly enigmatic. This study focuses on the localized activation of OSM-3, an intraflagellar transport kinesin crucial for the assembly of ciliary distal segments in Caenorhabditis elegans sensory neurons. Fluorescence lifetime imaging microscopy unveiled an extended, active conformation of OSM-3 in the ciliary base and middle segments, where OSM-3 is conveyed as cargo by kinesin-II. We demonstrate that NEKL-3, a never in mitosis kinase-like protein, directly phosphorylates the motor domain of OSM-3, inhibiting its in vitro activity. NEKL-3 and NEKL-4, localized at the ciliary base, function redundantly to restrict OSM-3 activation. Elevated levels of protein phosphatase 2A at the ciliary transition zone or middle segments triggered premature OSM-3 motility, while its deficiency resulted in reduced OSM-3 activity and shorter cilia. These findings elucidate a phosphorylation-mediated mechanism governing the regional motility of kinesins.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Zhiwen Zhu
- Institute of Molecular Enzymology, Soochow University , Suzhou, China
| | - Shimin Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wei Li
- School of Basic Medical Sciences, Tsinghua University , Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| |
Collapse
|
2
|
Guan G, Li Z, Ma Y, Ye P, Cao J, Wong MK, Ho VWS, Chan LY, Yan H, Tang C, Zhao Z. Cell lineage-resolved embryonic morphological map reveals signaling associated with cell fate and size asymmetry. Nat Commun 2025; 16:3700. [PMID: 40251161 PMCID: PMC12008310 DOI: 10.1038/s41467-025-58878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
How cells change shape is crucial for the development of tissues, organs and embryos. However, studying these shape changes in detail is challenging. Here we present a comprehensive real-time cellular map that covers over 95% of the cells formed during Caenorhabditis elegans embryogenesis, featuring nearly 400,000 3D cell regions. This map includes information on each cell's identity, lineage, fate, shape, volume, surface area, contact area, and gene expression profiles, all accessible through our user-friendly software and website. Our map allows for detailed analysis of key developmental processes, including dorsal intercalation, intestinal formation, and muscle assembly. We show how Notch and Wnt signaling pathways, along with mechanical forces from cell interactions, regulate cell fate decisions and size asymmetries. Our findings suggest that repeated Notch signaling drives size disparities in the large excretory cell, which functions like a kidney. This work sets the stage for in-depth studies of the mechanisms controlling cell fate differentiation and morphogenesis.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zelin Li
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianfeng Cao
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Physics, Peking University, Beijing, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Liu H, Earley B, Mendoza A, Hunt P, Teng S, Schneider DL, Kornfeld K. A single high-zinc activation enhancer can control two genes orientated head-to-head in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.19.624376. [PMID: 40196504 PMCID: PMC11974713 DOI: 10.1101/2024.11.19.624376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Enhancers play critical roles in gene expression, but a full understanding of their complex functions has yet to be defined. The cellular response to excess zinc levels in C. elegans requires the HIZR-1 transcription factor, which binds the high-zinc activation (HZA) enhancer in the promoters of multiple target genes. Cadmium hijacks the excess zinc response by binding and activating HIZR-1. By analyzing the genome-wide transcriptional response to excess zinc and cadmium, we identified two positions in the genome where head-to-head oriented genes are both induced by metals. In both examples, a single predicted HZA enhancer is positioned between the two translational start sites. We hypothesized that a single enhancer can control both head-to-head genes, an arrangement that has not been extensively characterized. To test this hypothesis, we used CRISPR genome editing to precisely delete the HZAmT enhancer positioned between mtl-2 and T08G5.1; in this mutant, both head-to-head genes display severely reduced zinc-activated transcription, whereas zinc-activated transcription of more distant genes was not strongly affected. Deleting the HZAcF enhancer positioned between cdr-1 and F35E8.10 caused both head-to-head genes to display reduced cadmium-activated transcription, whereas cadmium-activated transcription of more distant genes was not strongly affected. These studies rigorously document that a single HZA enhancer can control two head-to-head genes, advancing our understanding of the diverse functions of enhancers.
Collapse
Affiliation(s)
- Hanwenheng Liu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | - Brian Earley
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
- Current address: Blackfoot High School, 870 S. Fisher Avenue, Blackfoot, Idaho 83221, USA
| | - Adelita Mendoza
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
- Current address: University of Colorado at Boulder, 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Patrick Hunt
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | - Sean Teng
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
- Current address: Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Hall AN, Morton EA, Walters R, Cuperus JT, Queitsch C. Phenotypic tolerance for rDNA copy number variation within the natural range of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644675. [PMID: 40196474 PMCID: PMC11974728 DOI: 10.1101/2025.03.21.644675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The genes for ribosomal RNA (rRNA) are encoded by ribosomal DNA (rDNA), whose structure is notable for being present in arrays of tens to thousands of tandemly repeated copies in eukaryotic genomes. The exact number of rDNA copies per genome is highly variable within a species, with differences between individuals measuring in potentially hundreds of copies and megabases of DNA. The extent to which natural variation in rDNA copy number impacts whole-organism phenotypes such as fitness and lifespan is poorly understood, in part due to difficulties in manipulating such large and repetitive tracts of DNA even in model organisms. Here, we used the natural resource of copy number variation in C. elegans wild isolates to generate new tools and investigated the phenotypic consequences of this variation. Specifically, we generated a panel of recombinant inbred lines (RILs) using a laboratory strain derivative with ∼130 haploid rDNA copies and a wild isolate with ∼417 haploid rDNA copies, one of the highest validated C. elegans rDNA copy number arrays. We find that rDNA copy number is stable in the RILs, rejecting prior hypotheses that predicted copy number instability and copy number reversion. To isolate effects of rDNA copy number on phenotype, we produced a series of near isogenic lines (NILs) with rDNA copy numbers representing the high and low end of the rDNA copy number spectrum in C. elegans wild isolates. We find no correlation between rDNA copy number and phenotypes of rRNA abundance, competitive fitness, early life fertility, lifespan, or global transcriptome under standard laboratory conditions. These findings demonstrate a remarkable ability of C. elegans to tolerate substantial variation in a locus critical to fundamental cell function. Our study provides strain resources for future investigations into the boundaries of this tolerance.
Collapse
|
5
|
Falsztyn IB, Taylor SM, Baugh LR. Developmental and conditional regulation of DAF-2/INSR ubiquitination in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf009. [PMID: 39837352 PMCID: PMC11917487 DOI: 10.1093/g3journal/jkaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less understood mechanisms. For example, stability of the only known insulin/IGF receptor in Caenorhabditis elegans, DAF-2/INSR, is regulated by CHIP-dependent ubiquitination. Disruption of chn-1/CHIP reduces longevity in C. elegans by increasing DAF-2/INSR abundance and IIS activity in adults. Likewise, mutation of a ubiquitination site causes daf-2(gk390525) to display gain-of-function phenotypes in adults. However, we show that this allele displays loss-of-function phenotypes in larvae and that its effect on IIS activity transitions from negative to positive during development. In contrast, the allele acts like a gain-of-function in larvae cultured at high temperature, inhibiting temperature-dependent dauer formation. Disruption of chn-1/CHIP causes an increase in IIS activity in starved L1 larvae, unlike daf-2(gk390525). CHN-1/CHIP ubiquitinates DAF-2/INSR at multiple sites. These results suggest that the sites that are functionally relevant to negative regulation of IIS vary in larvae and adults, at different temperatures, and in nutrient-dependent fashion, revealing additional layers of IIS regulation.
Collapse
Affiliation(s)
- Ivan B Falsztyn
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seth M Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Gavrilova A, Korabel N, Allan VJ, Fedotov S. Heterogeneous model for superdiffusive movement of dense core vesicles in C. elegans. Sci Rep 2025; 15:6996. [PMID: 40016327 PMCID: PMC11868511 DOI: 10.1038/s41598-024-83602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
Transport of dense core vesicles (DCVs) in neurons is crucial for distributing molecules like neuropeptides and growth factors. We studied the experimental trajectories of dynein-driven directed movement of DCVs in the ALA neuron in C. elegans over a duration of up to 6 seconds. We analysed the DCV movement in three strains of C. elegans: (1) with normal kinesin-1 function, (2) with reduced function in kinesin light chain 2 (KLC-2), and (3) a null mutation in kinesin light chain 1 (KLC-1). We find that DCVs move superdiffusively with displacement variance [Formula: see text] in all three strains with low reversal rates and frequent immobilization of DCVs. The distribution of DCV displacements fits a beta-binomial distribution with the mean and the variance following linear and quadratic growth patterns, respectively. We propose a simple heterogeneous random walk model to explain the observed superdiffusive retrograde transport behaviour of DCV movement. This model involves a random probability with the beta density for a DCV to resume its movement or remain in the same position. To validate our model further, we measure the first passage time for a DCV to reach a certain threshold for the first time. According to the model, the first passage time distribution should follow a beta-negative binomial distribution with the same parameters as the DCV displacement distributions. Our experimental data confirm this prediction.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester, M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester, M13 9PT, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
7
|
Rosero M, Bai J. AFD Thermosensory Neurons Mediate Tactile-Dependent Locomotion Modulation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639001. [PMID: 40060420 PMCID: PMC11888201 DOI: 10.1101/2025.02.19.639001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Sensory neurons drive animal behaviors by detecting environmental stimuli and relaying information to downstream circuits. Beyond their primary roles in sensing, these neurons often form additional synaptic connections outside their main sensory modality, suggesting broader contributions to behavior modulation. Here, we uncover an unexpected role for the thermosensory neuron AFD in coupling tactile experience to locomotion modulation in Caenorhabditis elegans. We show that while AFD employs cGMP signaling for both thermotaxis and tactile-dependent modulation, the specific molecular components of the cGMP pathway differ between these two processes. Interestingly, disrupting the dendritic sensory apparatus of AFD, which is essential for thermotaxis, does not impair tactile-based locomotion modulation, indicating that AFD can mediate tactile-dependent behavior independently of its thermosensory apparatus. In contrast, ablating the AFD neuron eliminates tactile-dependent modulation, pointing to an essential role for AFD itself, rather than its sensory dendritic endings. Further, we find tactile-dependent modulation requires the AIB interneuron, which connects AFD to touch circuits via electrical synapses. Removing innexins expressed in AFD and AIB abolishes this modulation, while re-establishing AFD-AIB connections with engineered electrical synapses restores it. Collectively, these findings uncover a previously unrecognized function of AFD beyond thermosensation, highlighting its influence on context-dependent neuroplasticity and behavioral modulation through broader circuit connectivity.
Collapse
Affiliation(s)
- Manuel Rosero
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109
| |
Collapse
|
8
|
Yan J, Bhanshali F, Shuzenji C, Mendenhall TT, Taylor SKB, Ermakova G, Cheng X, Bai P, Diwan G, Seraj D, Meyer JN, Sorensen PH, Hartman JH, Taubert S. Eukaryotic Elongation Factor 2 Kinase EFK-1/eEF2K promotes starvation resistance by preventing oxidative damage in C. elegans. Nat Commun 2025; 16:1752. [PMID: 39966347 PMCID: PMC11836464 DOI: 10.1038/s41467-025-56766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Cells and organisms frequently experience starvation. To survive, they mount an evolutionarily conserved stress response. A vital component in the mammalian starvation response is eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), which suppresses translation in starvation by phosphorylating and inactivating the translation elongation driver eEF2. C. elegans EFK-1/eEF2K phosphorylates EEF-2/eEF2 on a conserved residue and is required for starvation survival, but how it promotes survival remains unclear. Surprisingly, we found that eEF2 phosphorylation is unchanged in starved C. elegans and EFK-1's kinase activity is dispensable for starvation survival, suggesting that efk-1 promotes survival via a noncanonical pathway. We show that efk-1 upregulates transcription of DNA repair pathways, nucleotide excision repair (NER) and base excision repair (BER), to promote starvation survival. Furthermore, efk-1 suppresses oxygen consumption and ROS production in starvation to prevent oxidative stress. Thus, efk-1 enables starvation survival by protecting animals from starvation-induced oxidative damage through an EEF-2-independent pathway.
Collapse
Affiliation(s)
- Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Forum Bhanshali
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Catalera BioSolutions, 199 W 6th Ave, Vancouver, BC, V5Y 1K3, Canada
| | - Chiaki Shuzenji
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Tsultrim T Mendenhall
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Shane K B Taylor
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Canada's Michael Smith Genome Sciences Centre, 570 W 7th Ave, Vancouver, BC, V5Z 4S6, Canada
| | - Pamela Bai
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Gahan Diwan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Donna Seraj
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, 675 W 10th Ave, Vancouver, BC, V6T 1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
9
|
Tuckowski AM, Beydoun S, Kitto ES, Bhat A, Howington MB, Sridhar A, Bhandari M, Chambers K, Leiser SF. fmo-4 promotes longevity and stress resistance via ER to mitochondria calcium regulation in C. elegans. eLife 2025; 13:RP99971. [PMID: 39951337 PMCID: PMC11828484 DOI: 10.7554/elife.99971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.
Collapse
Affiliation(s)
- Angela M Tuckowski
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Safa Beydoun
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Elizabeth S Kitto
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Ajay Bhat
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Marshall B Howington
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Aditya Sridhar
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Mira Bhandari
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kelly Chambers
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Scott F Leiser
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| |
Collapse
|
10
|
Zhebrun A, Ni JZ, Corveleyn L, Ghosh Roy S, Sidoli S, Gu SG. Two H3K23 histone methyltransferases, SET-32 and SET-21, function synergistically to promote nuclear RNAi-mediated transgenerational epigenetic inheritance in Caenorhabditis elegans. Genetics 2025; 229:iyae206. [PMID: 39661453 PMCID: PMC11796467 DOI: 10.1093/genetics/iyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Nuclear RNAi in Caenorhabditis elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively as germline nuclear RNAi factors and promote the germline immortality under the heat stress.
Collapse
Affiliation(s)
- Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Julie Z Ni
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Gent 9000, Belgium
| | - Siddharth Ghosh Roy
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Simone Sidoli
- Department of Chemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sam G Gu
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
VanDerMolen KR, Newman MA, Breen PC, Gao Y, Huff LA, Dowen RH. Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis. Cell Rep 2025; 44:115191. [PMID: 39786994 PMCID: PMC11834565 DOI: 10.1016/j.celrep.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor TRA-1/GLI, but rather via non-canonical signaling that engages mammalian target of rapamycin complex 2 (mTORC2). Hh mutants display impaired lipid homeostasis, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we find that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation to modulate lipid homeostasis. Our findings reveal a non-canonical role for Hh signaling in lipid metabolism via regulation of core homeostatic pathways.
Collapse
Affiliation(s)
- Kylie R VanDerMolen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjing Gao
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Huff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert H Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Khan H, Huang X, Raj V, Wang H. A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans. PLoS Genet 2025; 21:e1011541. [PMID: 39841730 PMCID: PMC11753634 DOI: 10.1371/journal.pgen.1011541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.
Collapse
Affiliation(s)
- Haania Khan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinyu Huang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishnu Raj
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Han Wang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Scott K, Singh N, Gordon KL. An RNAi screen of Rab GTPase genes in C. elegans reveals that somatic cells of the reproductive system depend on rab-1 for morphogenesis but not stem cell niche maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626641. [PMID: 39677816 PMCID: PMC11642880 DOI: 10.1101/2024.12.03.626641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Membrane trafficking is a crucial function of all cells and is regulated at multiple levels from vesicle formation, packaging, and localization to fusion, exocytosis, and endocytosis. Rab GTPase proteins are core regulators of eukaryotic membrane trafficking, but developmental roles of specific Rab GTPases are less well characterized, potentially because of their essentiality for basic cellular function. C. elegans gonad development entails the coordination of cell growth, proliferation, and migration-processes in which membrane trafficking is known to be required. Here we take an organ-focused approach to Rab GTPase function in vivo to assess the roles of Rab genes in reproductive system development. We performed a whole-body RNAi screen of the entire Rab family in C. elegans to uncover Rabs essential for gonad development. Notable gonad defects resulted from RNAi knockdown of rab-1, the key regulator of ER-Golgi trafficking. We then examined the effects of tissue-specific RNAi knockdown of rab-1 in somatic reproductive system and germline cells. We interrogated the dual functions of the distal tip cell (DTC) as both a leader cell of gonad organogenesis and the germline stem cell niche. We find that rab-1 functions cell-autonomously and non-cell-autonomously to regulate both somatic gonad and germline development. Gonad migration, elongation, and gamete differentiation-but surprisingly not germline stem niche function-are highly sensitive to rab-1 RNAi.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- UNC Lineberger Comprehensive Cancer Center
| |
Collapse
|
14
|
Popiel EM, Ahluwalia R, Schuetz S, Yu B, Derry WB. MRCK-1 activates non-muscle myosin for outgrowth of a unicellular tube in Caenorhabditis elegans. Development 2024; 151:dev202772. [PMID: 39494605 PMCID: PMC11634028 DOI: 10.1242/dev.202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The formation and patterning of unicellular biological tubes is essential for metazoan development. It is well established that vascular tubes and neurons use similar guidance cues to direct their development, but the downstream mechanisms that promote the outgrowth of biological tubes are not well characterized. We show that the conserved kinase MRCK-1 and its substrate the regulatory light chain of non-muscle myosin, MLC-4, are required for outgrowth of the unicellular excretory canal in C. elegans. Ablation of MRCK-1 or MLC-4 in the canal causes severe truncations with unlumenized projections of the basal membrane. Structure-function analysis of MRCK-1 indicates that the kinase domain, but not the small GTPase-binding CRIB domain, is required for canal outgrowth. Expression of a phosphomimetic form of MLC-4 rescues canal truncations in mrck-1 mutants and shows enrichment at the growing canal tip. Moreover, our work reveals a previously unreported function for non-muscle myosin downstream of MRCK-1 in excretory canal outgrowth that may be conserved in the development of seamless tubes in other organisms.
Collapse
Affiliation(s)
- Evelyn M. Popiel
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Rhea Ahluwalia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, ON M5G 0A3, Canada
| | - Stefan Schuetz
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| |
Collapse
|
15
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
16
|
Liu K, Grover M, Trusch F, Vagena-Pantoula C, Ippolito D, Barkoulas M. Paired C-type lectin receptors mediate specific recognition of divergent oomycete pathogens in C. elegans. Cell Rep 2024; 43:114906. [PMID: 39460939 DOI: 10.1016/j.celrep.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immune responses can be triggered upon detection of pathogen- or damage-associated molecular patterns by host receptors that are often present on the surface of immune cells. While invertebrates like Caenorhabditis elegans lack professional immune cells, they still mount pathogen-specific responses. However, the identity of host receptors in the nematode remains poorly understood. Here, we show that C-type lectin receptors mediate species-specific recognition of divergent oomycetes in C. elegans. A CLEC-27/CLEC-35 pair is essential for recognition of the oomycete Myzocytiopsis humicola, while a CLEC-26/CLEC-36 pair is required for detection of Haptoglossa zoospora. Both clec pairs are transcriptionally regulated through a shared promoter by the conserved PRD-like homeodomain transcription factor CEH-37/OTX2 and act in sensory neurons and the anterior intestine to trigger a protective immune response in the epidermis. This system enables redundant tissue sensing of oomycete threats through canonical CLEC receptors and host defense via cross-tissue communication.
Collapse
Affiliation(s)
- Kenneth Liu
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Manish Grover
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Franziska Trusch
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | | | | | | |
Collapse
|
17
|
Jash E, Tan ZM, Rakozy AI, Azhar AA, Mendoza H, Csankovszki G. Multi-level transcriptional regulation of embryonic sex determination and dosage compensation by the X-signal element sex-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624987. [PMID: 39605562 PMCID: PMC11601627 DOI: 10.1101/2024.11.23.624987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The C. elegans nuclear hormone receptor sex-1 is known to be an embryonic X-signal element that represses xol-1, the sex-switch gene that is the master regulator of sex determination and dosage compensation. Several prior studies on sex-1 function have suggested that sex-1 may have additional downstream roles beyond the regulation of xol-1 expression. In this study we characterize some of these additional roles of sex-1 in regulating the dual processes of sex determination and dosage compensation during embryogenesis. Our study reveals that sex-1 acts on many of the downstream targets of xol-1 in a xol-1-independent manner. Further analysis of these shared but independently regulated downstream targets uncovered that sex-1 mediates the expression of hermaphrodite- and male-biased genes during embryogenesis. We validated sex-1 binding on one of these downstream targets, the male-developmental gene her-1. Our data suggests a model where sex-1 exhibits multi-level direct transcriptional regulation on several targets, including xol-1 and genes downstream of xol-1, to reinforce the appropriate expression of sex-biased transcripts in XX embryos. Furthermore, we found that xol-1 sex-1 double mutants show defects in dosage compensation. Our study provides evidence that misregulation of dpy-21, one of the components of the dosage compensation complex, and the subsequent misregulation of H4K20me1 enrichment on the X chromosomes, may contribute to this defect.
Collapse
|
18
|
Tuckowski AM, Beydoun S, Kitto ES, Bhat A, Howington MB, Sridhar A, Bhandari M, Chambers K, Leiser SF. fmo-4 promotes longevity and stress resistance via ER to mitochondria calcium regulation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594584. [PMID: 38915593 PMCID: PMC11195083 DOI: 10.1101/2024.05.17.594584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.
Collapse
|
19
|
Zhebrun A, Ni JZ, Corveleyn L, Roy SG, Sidoli S, Gu SG. Two H3K23 histone methyltransferases, SET-32 and SET-21, function synergistically to promote nuclear RNAi-mediated transgenerational epigenetic inheritance in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622152. [PMID: 39574755 PMCID: PMC11580914 DOI: 10.1101/2024.11.05.622152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nuclear RNAi in C. elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively to ensure the robustness of germline nuclear RNAi and promotes the germline immortality under the heat stress.
Collapse
Affiliation(s)
- Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Julie Z. Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Gent, Belgium, 9000
| | - Siddharth Ghosh Roy
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Simone Sidoli
- Department of Chemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA10461
| | - Sam G. Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| |
Collapse
|
20
|
Lu L, Abbott AL. Role of male gonad-enriched microRNAs in sperm production in Caenorhabditis elegans. Genetics 2024; 228:iyae147. [PMID: 39259277 DOI: 10.1093/genetics/iyae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing (RNA-seq) of dissected gonads and functional analysis of new loss-of-function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of individual miRNAs (mir-58.1 and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and a set of miRNAs (mir-49, mir-57, mir-83, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mutants missing mir-58.1, mir-83, mir-235, and mir-4807-4810.1, which may contribute to the observed defects in sperm production. Further, analysis of multiple mutants of these miRNAs suggested genetic interactions between these miRNAs. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53201, USA
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
21
|
Buckley M, Jacob WP, Bortey L, McClain ME, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Nenadovich M, Kutoloski T, Rademacher L, Alva A, Heinecke O, Adkins R, Parkar S, Bhagat R, Lunato J, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission. PLoS Genet 2024; 20:e1011461. [PMID: 39561202 PMCID: PMC11614273 DOI: 10.1371/journal.pgen.1011461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/03/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1-deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1/GαS, acy-1/adenylyl cyclase and sphk-1/sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for intestinal FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
Affiliation(s)
- Morgan Buckley
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - William P. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Letitia Bortey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Makenzi E. McClain
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alyssa L. Ritter
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Amy Godfrey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Allyson S. Munneke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Julie C. Kolnik
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Sarah Olofsson
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Tanner Kutoloski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Lillian Rademacher
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alexandra Alva
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Olivia Heinecke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Ryan Adkins
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shums Parkar
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Reesha Bhagat
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Jaelin Lunato
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Jennifer R. Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| |
Collapse
|
22
|
Vidya E, Jami-Alahmadi Y, Mayank AK, Rizwan J, Xu JMS, Cheng T, Leventis R, Sonenberg N, Wohlschlegel JA, Vera M, Duchaine TF. EDC-3 and EDC-4 regulate embryonic mRNA clearance and biomolecular condensate specialization. Cell Rep 2024; 43:114781. [PMID: 39331503 DOI: 10.1016/j.celrep.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Animal development is dictated by the selective and timely decay of mRNAs in developmental transitions, but the impact of mRNA decapping scaffold proteins in development is unclear. This study unveils the roles and interactions of the DCAP-2 decapping scaffolds EDC-3 and EDC-4 in the embryonic development of C. elegans. EDC-3 facilitates the timely removal of specific embryonic mRNAs, including cgh-1, car-1, and ifet-1 by reducing their expression and preventing excessive accumulation of DCAP-2 condensates in somatic cells. We further uncover a role for EDC-3 in defining the boundaries between P bodies, germ granules, and stress granules. Finally, we show that EDC-4 counteracts EDC-3 and engenders the assembly of DCAP-2 with the GID (CTLH) complex, a ubiquitin ligase involved in maternal-to-zygotic transition (MZT). Our findings support a model where multiple RNA decay mechanisms temporally clear maternal and zygotic mRNAs throughout embryonic development.
Collapse
Affiliation(s)
- Elva Vidya
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Jia Ming Stella Xu
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Tianhao Cheng
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Rania Leventis
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada.
| |
Collapse
|
23
|
Lo JY, Adam KM, Garrison JL. Neuropeptide inactivation regulates egg-laying behavior to influence reproductive health in Caenorhabditis elegans. Curr Biol 2024; 34:4715-4728.e4. [PMID: 39395417 PMCID: PMC12009563 DOI: 10.1016/j.cub.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
Neural communication requires both fast-acting neurotransmitters and neuromodulators that function on slower timescales to communicate. Endogenous bioactive peptides, often called "neuropeptides," comprise the largest and most diverse class of neuromodulators that mediate crosstalk between the brain and peripheral tissues to regulate physiology and behaviors conserved across the animal kingdom. Neuropeptide signaling can be terminated through receptor binding and internalization or degradation by extracellular enzymes called neuropeptidases. Inactivation by neuropeptidases can shape the dynamics of signaling in vivo by specifying both the duration of signaling and the anatomic path neuropeptides can travel before they are degraded. For most neuropeptides, the identity of the relevant inactivating peptidase(s) is unknown. Here, we established a screening platform in C. elegans utilizing mass spectrometry-based peptidomics to discover neuropeptidases and simultaneously profile the in vivo specificity of these enzymes against each of more than 250 endogenous peptides. We identified NEP-2, a worm ortholog of the mammalian peptidase neprilysin-2, and demonstrated that it regulates specific neuropeptides, including those in the egg-laying circuit. We found that NEP-2 is required in muscle cells to regulate signals from neurons to modulate both behavior and health in the reproductive system. Taken together, our results demonstrate that peptidases, which are an important node of regulation in neuropeptide signaling, affect the dynamics of signaling to impact behavior, physiology, and aging.
Collapse
Affiliation(s)
- Jacqueline Y Lo
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Katelyn M Adam
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA; Center for Healthy Aging in Women, 8001 Redwood Boulevard, Novato, CA 94945, USA; Productive Health Global Consortium, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
24
|
Binti S, Edeen PT, Fay DS. Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects. G3 (BETHESDA, MD.) 2024; 14:jkae244. [PMID: 39428996 PMCID: PMC11631496 DOI: 10.1093/g3journal/jkae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The conserved Caenorhabditis elegans protein kinases NEKL-2 and NEKL-3 regulate membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 encodes a membrane-associated P4-type ATPase involved in Na+-K+ exchange. A previous study found that wild-type worms exposed to the nicotinic agonist dimethylphenylpiperazinium (DMPP) exhibited larval arrest and molting-associated defects, which were suppressed by inhibition of catp-1. By testing a spectrum catp-1 alleles, we found that resistance to DMPP toxicity and the suppression of nekl defects did not strongly correlate, suggesting key differences in the mechanism of catp-1-mediated suppression. Through whole genome sequencing of additional nekl-2; nekl-3 suppressor strains, we identified two additional coding-altering mutations in catp-1. However, neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR, was sufficient to elicit robust suppression of molting defects, suggesting the involvement of other loci. Endogenously tagged CATP-1 was primarily expressed in epidermal cells within punctate structures located near the apical plasma membrane, consistent with a role in regulating cellular processes within the epidermis. Based on previous studies, we tested the hypothesis that catp-1 inhibition induces entry into the pre-dauer L2d stage, potentially accounting for the ability of catp-1 mutants to suppress nekl molting defects. However, we found no evidence that loss of catp-1 leads to entry into L2d. As such, loss of catp-1 may suppress nekl-associated and DMPP-induced defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
25
|
Tatnell HR, Novakovic S, Boag PR, Davis GM. EYA-1 is required for genomic integrity independent of H2AX signalling in Caenorhabditis elegans. Mol Biol Rep 2024; 51:1009. [PMID: 39316168 PMCID: PMC11422256 DOI: 10.1007/s11033-024-09933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Resolving genomic insults is essential for the survival of any species. In the case of eukaryotes, several pathways comprise the DNA damage repair network, and many components have high evolutionary conservation. These pathways ensure that DNA damage is resolved which prevents disease associated mutations from occurring in a de novo manner. In this study, we investigated the role of the Eyes Absent (EYA) homologue in Caenorhabditis elegans and its role in DNA damage repair. Current understanding of mammalian EYA1 suggests that EYA1 is recruited in response to H2AX signalling to dsDNA breaks. C. elegans do not possess a H2AX homologue, although they do possess homologues of the core DNA damage repair proteins. Due to this, we aimed to determine if eya-1 contributes to DNA damage repair independent of H2AX. METHODS AND RESULTS We used a putative null mutant for eya-1 in C. elegans and observed that absence of eya-1 results in abnormal chromosome morphology in anaphase embryos, including chromosomal bridges, missegregated chromosomes, and embryos with abnormal nuclei. Additionally, inducing different types of genomic insults, we show that eya-1 mutants are highly sensitive to induction of DNA damage, yet show little change to induced DNA replication stress and display a mortal germline resulting in sterility over successive generations. CONCLUSIONS Collectively, this study suggests that the EYA family of proteins may have a greater involvement in maintaining genomic integrity than previously thought and unveils novel roles of EYA associated DNA damage repair.
Collapse
Affiliation(s)
- Hannah R Tatnell
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Stevan Novakovic
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Gregory M Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia.
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia.
| |
Collapse
|
26
|
Moseley-Alldredge M, Aragón C, Vargus M, Alley D, Somia N, Chen L. The L1CAM SAX-7 is an antagonistic modulator of Erk Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613091. [PMID: 39345534 PMCID: PMC11429911 DOI: 10.1101/2024.09.14.613091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
L1CAMs are immunoglobulin superfamily cell adhesion molecules that ensure proper nervous system development and function. In addition to being associated with the autism and schizophrenia spectrum disorders, mutations in the L1CAM family of genes also underlie distinct developmental syndromes with neurological conditions, such as intellectual disability, spastic paraplegia, hypotonia and congenital hydrocephalus. Studies in both vertebrate and invertebrate model organisms have established conserved neurodevelopmental roles for L1CAMs; these include axon guidance, dendrite morphogenesis, synaptogenesis, and maintenance of neural architecture, among others. In Caenorhabditis elegans , L1CAMs, encoded by the sax-7 gene, are required for coordinated locomotion. We previously uncovered a genetic interaction between sax-7 and components of synaptic vesicle cycle, revealing a non-developmental role for sax-7 in regulating synaptic activity. More recently, we determined that sax-7 also genetically interacts with extracellular signal-related kinase (ERK) signaling in controlling coordinated locomotion. C. elegans ERK, encoded by the mpk-1 gene, is a serine/threonine protein kinase belonging to the mitogen-activated protein kinase (MAPK) family that governs multiple aspects of animal development and cellular homeostasis. Here, we show this genetic interaction between sax-7 and mpk-1 occurs not only in cholinergic neurons for coordinated locomotion, but also extends outside the nervous system, revealing novel roles for SAX-7/L1CAM in non-neuronal processes, including vulval development. Our genetic findings in both the nervous system and developing vulva are consistent with SAX-7/L1CAM acting as an antagonistic modulator of ERK signaling.
Collapse
|
27
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
28
|
Hegde S, Modi S, Deihl EW, Glomb OV, Yogev S, Hoerndli FJ, Koushika SP. Axonal mitochondria regulate gentle touch response through control of axonal actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607780. [PMID: 39185223 PMCID: PMC11343141 DOI: 10.1101/2024.08.13.607780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Actin in neuronal processes is both stable and dynamic. The origin & functional roles of the different pools of actin is not well understood. We find that mutants that lack mitochondria, ric-7 and mtx-2; miro-1, in neuronal processes also lack dynamic actin. Mitochondria can regulate actin dynamics upto a distance ~80 μm along the neuronal process. Absence of axonal mitochondria and dynamic actin does not markedly alter the Spectrin Membrane Periodic Skeleton (MPS) in touch receptor neurons (TRNs). Restoring mitochondria inTRNs cell autonomously restores dynamic actin in a sod-2 dependent manner. We find that dynamic actin is necessary and sufficient for the localization of gap junction proteins in the TRNs and for the C. elegans gentle touch response. We identify an in vivo mechanism by which axonal mitochondria locally facilitate actin dynamics through reactive oxygen species that we show is necessary for electrical synapses & behaviour.
Collapse
Affiliation(s)
- Sneha Hegde
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Souvik Modi
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Ennis W. Deihl
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Oliver Vinzenz Glomb
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
- Current address: Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany
| | - Shaul Yogev
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
| | - Frederic J. Hoerndli
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Sandhya P. Koushika
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| |
Collapse
|
29
|
Cornell R, Cao W, Harradine B, Godini R, Handley A, Pocock R. Neuro-intestinal acetylcholine signalling regulates the mitochondrial stress response in Caenorhabditis elegans. Nat Commun 2024; 15:6594. [PMID: 39097618 PMCID: PMC11297972 DOI: 10.1038/s41467-024-50973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.
Collapse
Affiliation(s)
- Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Wei Cao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Bernie Harradine
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
30
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
31
|
Yanagi KS, Jochim B, Kunjo SO, Breen P, Ruvkun G, Lehrbach N. Mutations in nucleotide metabolism genes bypass proteasome defects in png-1/NGLY1-deficient Caenorhabditis elegans. PLoS Biol 2024; 22:e3002720. [PMID: 38991033 PMCID: PMC11265709 DOI: 10.1371/journal.pbio.3002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/23/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.
Collapse
Affiliation(s)
- Katherine S. Yanagi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Briar Jochim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sheikh Omar Kunjo
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas Lehrbach
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
32
|
Frédérick PM, Jannot G, Banville I, Simard M. Interaction between a J-domain co-chaperone and a specific Argonaute protein contributes to microRNA function in animals. Nucleic Acids Res 2024; 52:6253-6268. [PMID: 38613392 PMCID: PMC11194074 DOI: 10.1093/nar/gkae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of several biological processes. They are loaded onto Argonaute (AGO) proteins to achieve their repressive function, forming the microRNA-Induced Silencing Complex known as miRISC. While several AGO proteins are expressed in plants and animals, it is still unclear why specific AGOs are strictly binding miRNAs. Here, we identified the co-chaperone DNJ-12 as a new interactor of ALG-1, one of the two major miRNA-specific AGOs in Caenorhabditis elegans. DNJ-12 does not interact with ALG-2, the other major miRNA-specific AGO, and PRG-1 and RDE-1, two AGOs involved in other small RNA pathways, making it a specific actor in ALG-1-dependent miRNA-mediated gene silencing. The loss of DNJ-12 causes developmental defects associated with defective miRNA function. Using the Auxin Inducible Degron system, a powerful tool to acutely degrade proteins in specific tissues, we show that DNJ-12 depletion hampers ALG-1 interaction with HSP70, a chaperone required for miRISC loading in vitro. Moreover, DNJ-12 depletion leads to the decrease of several miRNAs and prevents their loading onto ALG-1. This study uncovers the importance of a co-chaperone for the miRNA function in vivo and provides insights to explain how different small RNAs associate with specific AGO in animals.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Guillaume Jannot
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Isabelle Banville
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec—Université Laval Research Center, Québec, QC G1R 3S3, Canada
- Université Laval Cancer Research Centre, Québec, QC G1R 3S3, Canada
| |
Collapse
|
33
|
Kolli S, Kline CJ, Rad KM, Wehman AM. Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599770. [PMID: 38948720 PMCID: PMC11212964 DOI: 10.1101/2024.06.19.599770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched in the polar body phagolysosome independent of membrane association or autophagosome formation. We demonstrate that ATG-16.1 and ATG-16.2, which promote membrane association of lipidated Atg8/LC3 proteins, redundantly promote polar body membrane breakdown in phagolysosomes independent of their role in macroautophagy. We also show that the lipid scramblase ATG-9 is needed for autophagosome formation in early embryos but is dispensable for timely polar body membrane breakdown or protein cargo degradation. These findings demonstrate that macroautophagy is not required to promote polar body degradation, in contrast to recent findings with apoptotic corpse clearance in C. elegans embryos. Determining how membrane association of Atg8/LC3 promotes the breakdown of different types of cell corpses in distinct cell types or metabolic states is likely to give insights into the mechanisms of immunoregulation during normal development, physiology, and disease.
Collapse
Affiliation(s)
- Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Cassidy J. Kline
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kimya M. Rad
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Ann M. Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
34
|
Graziano B, Wang L, White OR, Kaplan DH, Fernandez-Abascal J, Bianchi L. Glial KCNQ K + channels control neuronal output by regulating GABA release from glia in C. elegans. Neuron 2024; 112:1832-1847.e7. [PMID: 38460523 PMCID: PMC11156561 DOI: 10.1016/j.neuron.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
Collapse
Affiliation(s)
- Bianca Graziano
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Olivia R White
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daryn H Kaplan
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Holzapfel R, Prell A, Schumacher F, Perschin V, Friedmann Angeli JP, Kleuser B, Stigloher C, Fazeli G. Degradation of hexosylceramides is required for timely corpse clearance via formation of cargo-containing phagolysosomal vesicles. Eur J Cell Biol 2024; 103:151411. [PMID: 38582051 DOI: 10.1016/j.ejcb.2024.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
Collapse
Affiliation(s)
- Rebecca Holzapfel
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Core-Facility BioSupraMol, Pharma-MS subunit, Freie Universität Berlin, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Gholamreza Fazeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
36
|
Falsztyn IB, Taylor SM, Baugh LR. Developmental and conditional regulation of DAF-2/INSR ubiquitination in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595723. [PMID: 38854056 PMCID: PMC11160630 DOI: 10.1101/2024.05.24.595723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms. For example, stability of the only known insulin/IGF receptor in C. elegans, DAF-2/INSR, is regulated by CHIP-dependent ubiquitination. Disruption of chn-1/CHIP reduces longevity in C. elegans by increasing DAF-2/INSR abundance and IIS activity in adults. Likewise, mutation of a ubiquitination site causes daf-2(gk390525) to display gain-of-function phenotypes in adults. However, we show that this allele displays loss-of-function phenotypes in larvae, and that its effect on IIS activity transitions from negative to positive during development. In contrast, the allele acts like a gain-of-function in larvae cultured at high temperature, inhibiting temperature-dependent dauer formation. Disruption of chn-1/CHIP causes an increase in IIS activity in starved L1 larvae, unlike daf-2(gk390525). CHN-1/CHIP ubiquitinates DAF-2/INSR at multiple sites. These results suggest that the sites that are functionally relevant to negative regulation of IIS vary in larvae and adults, at different temperatures, and in nutrient-dependent fashion, revealing additional layers of IIS regulation.
Collapse
Affiliation(s)
| | - Seth M. Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
37
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
38
|
Nakayama A, Watanabe M, Yamashiro R, Kuroyanagi H, Matsuyama HJ, Oshima A, Mori I, Nakano S. A hyperpolarizing neuron recruits undocked innexin hemichannels to transmit neural information in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2406565121. [PMID: 38753507 PMCID: PMC11127054 DOI: 10.1073/pnas.2406565121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
While depolarization of the neuronal membrane is known to evoke the neurotransmitter release from synaptic vesicles, hyperpolarization is regarded as a resting state of chemical neurotransmission. Here, we report that hyperpolarizing neurons can actively signal neural information by employing undocked hemichannels. We show that UNC-7, a member of the innexin family in Caenorhabditis elegans, functions as a hemichannel in thermosensory neurons and transmits temperature information from the thermosensory neurons to their postsynaptic interneurons. By monitoring neural activities in freely behaving animals, we find that hyperpolarizing thermosensory neurons inhibit the activity of the interneurons and that UNC-7 hemichannels regulate this process. UNC-7 is required to control thermotaxis behavior and functions independently of synaptic vesicle exocytosis. Our findings suggest that innexin hemichannels mediate neurotransmission from hyperpolarizing neurons in a manner that is distinct from the synaptic transmission, expanding the way of neural circuitry operations.
Collapse
Affiliation(s)
- Airi Nakayama
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Riku Yamashiro
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Hiroo Kuroyanagi
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Atsunori Oshima
- Department of Basic Biology, Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya464-8601, Japan
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi464-8601, Japan
- Molecular Physiology Division, Institute for Glyco-core Research, Nagoya University, Chikusa-ku, Nagoya464-8601, Japan
- Division of Innovative Modality Development, Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu501-11193, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
- Chinese Institute for Brain Research, Changping District, Beijing102206, China
| | - Shunji Nakano
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| |
Collapse
|
39
|
Hernández-Cruz EY, Aparicio-Trejo OE, Eugenio-Pérez D, Juárez-Peredo E, Zurita-León M, Valdés VJ, Pedraza-Chaverri J. Sulforaphane Exposure Prevents Cadmium-Induced Toxicity and Mitochondrial Dysfunction in the Nematode Caenorhabditis elegans by Regulating the Insulin/Insulin-like Growth Factor Signaling (IIS) Pathway. Antioxidants (Basel) 2024; 13:584. [PMID: 38790689 PMCID: PMC11117759 DOI: 10.3390/antiox13050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria. This study aimed to evaluate the impact of sulforaphane (SFN) pre-exposure against cadmium chloride (CdCl2)-induced toxicity and mitochondrial alterations in the nematode Caenorhabditis elegans (C. elegans), by exploring the role of the insulin/insulin-like growth factor signaling pathway (IIS). The results revealed that prior exposure to SFN protected against CdCl2-induced mortality and increased lifespan, body length, and mobility while reducing lipofuscin levels. Furthermore, SFN prevented mitochondrial alterations by increasing mitochondrial membrane potential (Δψm) and restoring mitochondrial oxygen consumption rate, thereby decreasing mitochondrial reactive oxygen species (ROS) production. The improvement in mitochondrial function was associated with increased mitochondrial mass and the involvement of the daf-16 and skn-1c genes of the IIS signaling pathway. In conclusion, exposure to SFN before exposure to CdCl2 mitigates toxic effects and mitochondrial alterations, possibly by increasing mitochondrial mass, which may be related to the regulation of the IIS pathway. These discoveries open new possibilities for developing therapies to reduce the damage caused by Cd toxicity and oxidative stress in biological systems, highlighting antioxidants with mitochondrial action as promising tools.
Collapse
Affiliation(s)
- Estefani Yaquelin Hernández-Cruz
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Dianelena Eugenio-Pérez
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Biochemical Sciences, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elí Juárez-Peredo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
| | - Mariana Zurita-León
- Departamento de Biología y Desarrollo Celular, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (M.Z.-L.); (V.J.V.)
| | - Víctor Julián Valdés
- Departamento de Biología y Desarrollo Celular, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (M.Z.-L.); (V.J.V.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
| |
Collapse
|
40
|
Osterli E, Ellenbecker M, Wang X, Terzo M, Jacobson K, Cuello D, Voronina E. COP9 signalosome component CSN-5 stabilizes PUF proteins FBF-1 and FBF-2 in Caenorhabditis elegans germline stem and progenitor cells. Genetics 2024; 227:iyae033. [PMID: 38427913 PMCID: PMC11075551 DOI: 10.1093/genetics/iyae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1. The interaction between FBF-2 and CSN-5 can be detected in vivo by proximity ligation. csn-5 mutation results in the destabilization of FBF proteins, which may explain previously observed decrease in the numbers of germline stem and progenitor cells, and disruption of oogenesis. The loss of csn-5 does not decrease the levels of a related PUF protein PUF-3, and csn-5(lf) phenotype is not enhanced by fbf-1/2 knockdown, suggesting that the effect is specific to FBFs. The effect of csn-5 on oogenesis is largely independent of the COP9 signalosome and is cell autonomous. Surprisingly, the regulation of FBF protein levels involves a combination of COP9-dependent and COP9-independent mechanisms differentially affecting FBF-1 and FBF-2. This work supports a previously unappreciated role for CSN-5 in the stabilization of germline stem cell regulatory proteins FBF-1 and FBF-2.
Collapse
Affiliation(s)
- Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ketch Jacobson
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - DeAnna Cuello
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
41
|
Kywe C, Lundquist EA, Ackley BD, Lansdon P. The MAB-5/Hox family transcription factor is important for Caenorhabditis elegans innate immune response to Staphylococcus epidermidis infection. G3 (BETHESDA, MD.) 2024; 14:jkae054. [PMID: 38478633 PMCID: PMC11075571 DOI: 10.1093/g3journal/jkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.
Collapse
Affiliation(s)
- Christopher Kywe
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Patrick Lansdon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
42
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Differentiation 2024; 137:100765. [PMID: 38522217 PMCID: PMC11196158 DOI: 10.1016/j.diff.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
43
|
Montgomery BE, Knittel TL, Reed KJ, Chong MC, Isolehto IJ, Cafferty ER, Smith MJ, Sprister RA, Magelky CN, Scherman H, Ketting RF, Montgomery TA. Regulation of Microprocessor assembly and localization via Pasha's WW domain in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590772. [PMID: 38712061 PMCID: PMC11071396 DOI: 10.1101/2024.04.23.590772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Primary microRNA (pri-miRNA) transcripts are processed by the Microprocessor, a protein complex that includes the ribonuclease Drosha and its RNA binding partner DGCR8/Pasha. We developed a live, whole animal, fluorescence-based sensor that reliably monitors pri-miRNA processing with high sensitivity in C. elegans. Through a forward genetic selection for alleles that desilence the sensor, we identified a mutation in the conserved G residue adjacent to the namesake W residue of Pasha's WW domain. Using genome editing we also mutated the W residue and reveal that both the G and W residue are required for dimerization of Pasha and proper assembly of the Microprocessor. Surprisingly, we find that the WW domain also facilitates nuclear localization of Pasha, which in turn promotes nuclear import or retention of Drosha. Furthermore, depletion of Pasha or Drosha causes both components of the Microprocessor to mislocalize to the cytoplasm. Thus, Pasha and Drosha mutually regulate each other's spatial expression in C. elegans.
Collapse
Affiliation(s)
| | - Thiago L. Knittel
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kailee J. Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Madeleine C. Chong
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ida J. Isolehto
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- International PhD Program on Gene Regulation, Epigenetics and Genome Stability, Mainz, Germany
| | - Erin R. Cafferty
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Margaret J. Smith
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Reese A. Sprister
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Colin N. Magelky
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hataichanok Scherman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rene F. Ketting
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Taiowa A. Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
44
|
Xu J, Sabatino B, Yan J, Ermakova G, Doering KRS, Taubert S. The unfolded protein response of the endoplasmic reticulum protects Caenorhabditis elegans against DNA damage caused by stalled replication forks. G3 (BETHESDA, MD.) 2024; 14:jkae017. [PMID: 38267027 PMCID: PMC10989892 DOI: 10.1093/g3journal/jkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Brendil Sabatino
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kelsie R S Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
45
|
Lesnik C, Kaletsky R, Ashraf JM, Sohrabi S, Cota V, Sengupta T, Keyes W, Luo S, Murphy CT. Enhanced branched-chain amino acid metabolism improves age-related reproduction in C. elegans. Nat Metab 2024; 6:724-740. [PMID: 38418585 DOI: 10.1038/s42255-024-00996-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.
Collapse
Affiliation(s)
- Chen Lesnik
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Faculty of Natural Sciences, Department of Human Biology, University of Haifa, Haifa, Israel
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Jasmine M Ashraf
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Salman Sohrabi
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Vanessa Cota
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Department of Biology, Tacoma Community College, Tacoma, WA, USA
| | - Titas Sengupta
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - William Keyes
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Shijing Luo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- LSI Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
46
|
Zhang MG, Seyedolmohadesin M, Hawk S, Park H, Finnen N, Schroeder F, Venkatachalam V, Sternberg PW. Sensory integration of food availability and population density during the diapause exit decision involves insulin-like signaling in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586022. [PMID: 38586049 PMCID: PMC10996498 DOI: 10.1101/2024.03.20.586022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Decisions made over long time scales, such as life cycle decisions, require coordinated interplay between sensory perception and sustained gene expression. The Caenorhabditis elegans dauer (or diapause) exit developmental decision requires sensory integration of population density and food availability to induce an all-or-nothing organismal-wide response, but the mechanism by which this occurs remains unknown. Here, we demonstrate how the ASJ chemosensory neurons, known to be critical for dauer exit, perform sensory integration at both the levels of gene expression and calcium activity. In response to favorable conditions, dauers rapidly produce and secrete the dauer exit-promoting insulin-like peptide INS-6. Expression of ins-6 in the ASJ neurons integrate population density and food level and can reflect decision commitment since dauers committed to exiting have higher ins-6 expression levels than those of non-committed dauers. Calcium imaging in dauers reveals that the ASJ neurons are activated by food, and this activity is suppressed by pheromone, indicating that sensory integration also occurs at the level of calcium transients. We find that ins-6 expression in the ASJ neurons depends on neuronal activity in the ASJs, cGMP signaling, a CaM-kinase pathway, and the pheromone components ascr#8 and ascr#2. We propose a model in which decision commitment to exit the dauer state involves an autoregulatory feedback loop in the ASJ neurons that promotes high INS-6 production and secretion. These results collectively demonstrate how insulin-like peptide signaling helps animals compute long-term decisions by bridging sensory perception to decision execution.
Collapse
Affiliation(s)
- Mark G Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Soraya Hawk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nerissa Finnen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Frank Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
47
|
Osterhoudt K, Bagno O, Katzman S, Zahler AM. Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3' splice site usage. RNA (NEW YORK, N.Y.) 2024; 30:404-417. [PMID: 38282418 PMCID: PMC10946429 DOI: 10.1261/rna.079888.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
RNA helicases drive necessary rearrangements and ensure fidelity during the pre-mRNA splicing cycle. DEAD-box helicase DDX41 has been linked to human disease and has recently been shown to interact with DEAH-box helicase PRP22 in the spliceosomal C* complex, yet its function in splicing remains unknown. Depletion of DDX41 homolog SACY-1 from somatic cells has been previously shown to lead to changes in alternative 3' splice site (3'ss) usage. Here, we show by transcriptomic analysis of published and novel data sets that SACY-1 perturbation causes a previously unreported pattern in alternative 3' splicing in introns with pairs of 3' splice sites ≤18 nt away from each other. We find that both SACY-1 depletion and the allele sacy-1(G533R) lead to a striking unidirectional increase in the usage of the proximal (upstream) 3'ss. We previously discovered a similar alternative splicing pattern between germline tissue and somatic tissue, in which there is a unidirectional increase in proximal 3'ss usage in the germline for ∼200 events; many of the somatic SACY-1 alternative 3' splicing events overlap with these developmentally regulated events. We generated targeted mutant alleles of the Caenorhabditis elegans homolog of PRP22, mog-5, in the region of MOG-5 that is predicted to interact with SACY-1 based on the human C* structure. These viable alleles, and a mimic of the myelodysplastic syndrome-associated allele DDX41(R525H), all promote the usage of proximal alternative adjacent 3' splice sites. We show that PRP22/MOG-5 and DDX41/SACY-1 have overlapping roles in proofreading the 3'ss.
Collapse
Affiliation(s)
- Kenneth Osterhoudt
- Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Orazio Bagno
- Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Sol Katzman
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Alan M Zahler
- Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
48
|
Grover M, Gang SS, Troemel ER, Barkoulas M. Proteasome inhibition triggers tissue-specific immune responses against different pathogens in C. elegans. PLoS Biol 2024; 22:e3002543. [PMID: 38466732 PMCID: PMC10957088 DOI: 10.1371/journal.pbio.3002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/21/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Protein quality control pathways play important roles in resistance against pathogen infection. For example, the conserved transcription factor SKN-1/NRF up-regulates proteostasis capacity after blockade of the proteasome and also promotes resistance against bacterial infection in the nematode Caenorhabditis elegans. SKN-1/NRF has 3 isoforms, and the SKN-1A/NRF1 isoform, in particular, regulates proteasomal gene expression upon proteasome dysfunction as part of a conserved bounce-back response. We report here that, in contrast to the previously reported role of SKN-1 in promoting resistance against bacterial infection, loss-of-function mutants in skn-1a and its activating enzymes ddi-1 and png-1 show constitutive expression of immune response programs against natural eukaryotic pathogens of C. elegans. These programs are the oomycete recognition response (ORR), which promotes resistance against oomycetes that infect through the epidermis, and the intracellular pathogen response (IPR), which promotes resistance against intestine-infecting microsporidia. Consequently, skn-1a mutants show increased resistance to both oomycete and microsporidia infections. We also report that almost all ORR/IPR genes induced in common between these programs are regulated by the proteasome and interestingly, specific ORR/IPR genes can be induced in distinct tissues depending on the exact trigger. Furthermore, we show that increasing proteasome function significantly reduces oomycete-mediated induction of multiple ORR markers. Altogether, our findings demonstrate that proteasome regulation keeps innate immune responses in check in a tissue-specific manner against natural eukaryotic pathogens of the C. elegans epidermis and intestine.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
49
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO J 2024; 43:956-992. [PMID: 38360995 PMCID: PMC10943081 DOI: 10.1038/s44318-024-00049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
While most glial cell types in the central nervous system (CNS) arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which envelop the brain neuropil and separate it from the circulatory system cavity. Transcriptome analysis shows that GLR glia combine astrocytic and endothelial characteristics, which are relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor also expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, the UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naive cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and promotes salt-induced paralysis, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neuronal differentiation, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
Affiliation(s)
- Nikolaos Stefanakis
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jessica Jiang
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Alexion Pharmaceuticals, Boston, MA, 02135, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
50
|
Buckley M, Jacob WP, Bortey L, McClain M, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Adkins R, Kutoloski T, Rademacher L, Heinecke O, Alva A, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycopeptide hormone receptor FSHR-1 regulates cholinergic neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.578699. [PMID: 38405708 PMCID: PMC10888917 DOI: 10.1101/2024.02.10.578699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1- deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1 / Gα S , acy-1 /adenylyl cyclase and sphk-1/ sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
|