1
|
Hernández-Núñez I, Urman A, Zhang X, Jacobs W, Hoffman C, Rebba S, Harding EG, Li Q, Mao F, Cani AK, Chen S, Dawlaty MM, Rao RC, Ruzycki PA, Edwards JR, Clark BS. Active DNA demethylation is upstream of rod-photoreceptor fate determination and required for retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636318. [PMID: 39975078 PMCID: PMC11838574 DOI: 10.1101/2025.02.03.636318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Retinal cell fate specification from multipotent retinal progenitors is governed by dynamic changes in chromatin structure and gene expression. Methylation at cytosines in DNA (5mC) is actively regulated for proper control of gene expression and chromatin architecture. Numerous genes display active DNA demethylation across retinal development; a process that requires oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and is controlled by the ten-eleven translocation methylcytosine dioxygenase (TET) enzymes. Using an allelic series of conditional TET enzyme mutants, we determine that DNA demethylation is required upstream of NRL and NR2E3 expression for the establishment of rod-photoreceptor fate. Using histological, behavioral, transcriptomic, and base-pair resolution DNA methylation analyses, we establish that inhibition of active DNA demethylation results in global changes in gene expression and methylation patterns that prevent photoreceptor precursors from adopting a rod-photoreceptor fate, instead producing a retina in which all photoreceptors specify as cones. Our results establish the TET enzymes and DNA demethylation as critical regulators of retinal development and cell fate specification, elucidating a novel mechanism required for the specification of rod-photoreceptors.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaodong Zhang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - William Jacobs
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christy Hoffman
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sohini Rebba
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Shiming Chen
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Genetics, and Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department and Center of Computational Medicine and Bioinformatics, Comprehensive Cancer Center, A. Alfred Taubman Medical Research Institute, Center for RNA Biomedicine, Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgery Section, VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Edwards
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Powell J, Talenti A, Fisch A, Hemmink JD, Paxton E, Toye P, Santos I, Ferreira BR, Connelley TK, Morrison LJ, Prendergast JGD. Profiling the immune epigenome across global cattle breeds. Genome Biol 2023; 24:127. [PMID: 37218021 DOI: 10.1186/s13059-023-02964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages. RESULTS We find extensive epigenetic divergence between the taurine and indicine cattle breeds across immune cell types, which is linked to the levels of local DNA sequence divergence between the two cattle sub-species. The unique cell type profiles enable the deconvolution of complex cellular mixtures using digital cytometry approaches. Finally, we show distinct sub-categories of CpG islands based on their chromatin and methylation profiles that discriminate between classes of distal and gene proximal islands linked to discrete transcriptional states. CONCLUSIONS Our study provides a comprehensive resource of DNA methylation, chromatin accessibility and RNA expression profiles of three diverse cattle populations. The findings have important implications, from understanding how genetic editing across breeds, and consequently regulatory backgrounds, may have distinct impacts to designing effective cattle epigenome-wide association studies in non-European breeds.
Collapse
Affiliation(s)
- Jessica Powell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - Andrea Talenti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Johanneke D Hemmink
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Philip Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, PO Box 30709, Nairobi, 00100, Kenya
| | - Isabel Santos
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Beatriz R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tim K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
4
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Nikolaienko O, Lønning PE, Knappskog S. epialleleR: an R/Bioconductor package for sensitive allele-specific methylation analysis in NGS data. Gigascience 2022; 12:giad087. [PMID: 37919976 PMCID: PMC10622323 DOI: 10.1093/gigascience/giad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Low-level mosaic epimutations within the BRCA1 gene promoter occur in 5-8% of healthy individuals and are associated with a significantly elevated risk of breast and ovarian cancer. Similar events may also affect other tumor suppressor genes, potentially being a significant contributor to cancer burden. While this opens a new area for translational research, detection of low-level mosaic epigenetic events requires highly sensitive and robust methodology for methylation analysis. We here present epialleleR, a computational framework for sensitive detection, quantification, and visualization of mosaic epimutations in methylation sequencing data. Analyzing simulated and real data sets, we provide in-depth assessments of epialleleR performance and show that linkage to epihaplotype data is necessary to detect low-level methylation events. The epialleleR is freely available at https://github.com/BBCG/epialleleR and https://bioconductor.org/packages/epialleleR/ as an open-source R/Bioconductor package.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - Per Eystein Lønning
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway
| | - Stian Knappskog
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
6
|
Loaeza-Loaeza J, Cerecedo-Castillo AJ, Rodríguez-Ruiz HA, Castro-Coronel Y, Del Moral-Hernández O, Recillas-Targa F, Hernández-Sotelo D. DNMT3B overexpression downregulates genes with CpG islands, common motifs, and transcription factor binding sites that interact with DNMT3B. Sci Rep 2022; 12:20839. [PMID: 36460706 PMCID: PMC9718745 DOI: 10.1038/s41598-022-24186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is a key epigenetic modification to regulate gene expression in mammalian cells. Abnormal DNA methylation in gene promoters is common across human cancer types. DNMT3B is the main de novo methyltransferase enhanced in several primary tumors. How de novo methylation is established in genes related to cancer is poorly understood. CpG islands (CGIs), common sequences, and transcription factors (TFs) that interact with DNMT3B have been associated with abnormal de novo methylation. We initially identified cis elements associated with DNA methylation to investigate the contribution of DNMT3B overexpression to the deregulation of its possible target genes in an epithelial cell model. In a set of downregulated genes (n = 146) from HaCaT cells with DNMT3B overexpression, we found CGI, common sequences, and TFs Binding Sites that interact with DNMT3B (we called them P-down-3B). PPL1, VAV3, IRF1, and BRAF are P-down-3B genes that are downregulated and increased their methylation in DNMT3B presence. Together these findings suggest that methylated promoters aberrantly have some cis elements that could conduce de novo methylation by DNMT3B.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Angel Josué Cerecedo-Castillo
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- grid.412856.c0000 0001 0699 2934Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Yaneth Castro-Coronel
- grid.412856.c0000 0001 0699 2934Laboratorio de Citopatología e Inmunohistoquímica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Oscar Del Moral-Hernández
- grid.412856.c0000 0001 0699 2934Laboratorio de Virus y Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Félix Recillas-Targa
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Daniel Hernández-Sotelo
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| |
Collapse
|
7
|
Chatterjee S, Ouidir M, Tekola-Ayele F. Genetic and in utero environmental contributions to DNA methylation variation in placenta. Hum Mol Genet 2021; 30:1968-1976. [PMID: 34155504 PMCID: PMC8522638 DOI: 10.1093/hmg/ddab161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic and prenatal environmental factors shape fetal development and cardiometabolic health in later life. A key target of genetic and prenatal environmental factors is the epigenome of the placenta, an organ that is implicated in fetal growth and diseases in later life. This study had two aims: (1) to identify and functionally characterize placental variably methylated regions (VMRs), which are regions in the epigenome with high inter-individual methylation variability; and (2) to investigate the contributions of fetal genetic loci and 12 prenatal environmental factors (maternal cardiometabolic-,psychosocial-, demographic- and obstetric-related) on methylation at each VMR. Akaike's information criterion was used to select the best model out of four models [prenatal environment only, genotype only, additive effect of genotype and prenatal environment (G + E), and their interaction effect (G × E)]. We identified 5850 VMRs in placenta. Methylation at 70% of VMRs was best explained by G × E, followed by genotype only (17.7%), and G + E (12.3%). Prenatal environment alone best explained only 0.03% of VMRs. We observed that 95.4% of G × E models and 93.9% of G + E models included maternal age, parity, delivery mode, maternal depression or gestational weight gain. VMR methylation sites and their regulatory genetic variants were enriched (P < 0.05) for genomic regions that have known links with regulatory functions and complex traits. This study provided a genome-wide catalog of VMRs in placenta and highlighted that variation in placental DNA methylation at loci with regulatory and trait relevance is best elucidated by integrating genetic and prenatal environmental factors, and rarely by environmental factors alone.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| |
Collapse
|
8
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
9
|
i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties. Genes (Basel) 2021; 12:genes12081117. [PMID: 34440291 PMCID: PMC8393747 DOI: 10.3390/genes12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023] Open
Abstract
DNA is subject to epigenetic modification by the molecule N4-methylcytosine (4mC). N4-methylcytosine plays a crucial role in DNA repair and replication, protects host DNA from degradation, and regulates DNA expression. However, though current experimental techniques can identify 4mC sites, such techniques are expensive and laborious. Therefore, computational tools that can predict 4mC sites would be very useful for understanding the biological mechanism of this vital type of DNA modification. Conventional machine-learning-based methods rely on hand-crafted features, but the new method saves time and computational cost by making use of learned features instead. In this study, we propose i4mC-Deep, an intelligent predictor based on a convolutional neural network (CNN) that predicts 4mC modification sites in DNA samples. The CNN is capable of automatically extracting important features from input samples during training. Nucleotide chemical properties and nucleotide density, which together represent a DNA sequence, act as CNN input data. The outcome of the proposed method outperforms several state-of-the-art predictors. When i4mC-Deep was used to analyze G. subterruneus DNA, the accuracy of the results was improved by 3.9% and MCC increased by 10.5% compared to a conventional predictor.
Collapse
|
10
|
DNA methylation landscape of 16 canine somatic tissues by methylation-sensitive restriction enzyme-based next generation sequencing. Sci Rep 2021; 11:10005. [PMID: 33976289 PMCID: PMC8113467 DOI: 10.1038/s41598-021-89279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps of 16 somatic tissues from two dogs. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (> 70%, 52.5-64.6% of all CpG sites analyzed) or unmethylated (< 30%, 22.5-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Our study provides basic dataset for DNA methylation profiles in dogs.
Collapse
|
11
|
Czamara D, Tissink E, Tuhkanen J, Martins J, Awaloff Y, Drake AJ, Khulan B, Palotie A, Winter SM, Nemeroff CB, Craighead WE, Dunlop BW, Mayberg HS, Kinkead B, Mathew SJ, Iosifescu DV, Neylan TC, Heim CM, Lahti J, Eriksson JG, Räikkönen K, Ressler KJ, Provençal N, Binder EB. Combined effects of genotype and childhood adversity shape variability of DNA methylation across age. Transl Psychiatry 2021; 11:88. [PMID: 33526782 PMCID: PMC7851167 DOI: 10.1038/s41398-020-01147-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Lasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.
Collapse
Affiliation(s)
- Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.
| | - Elleke Tissink
- grid.12380.380000 0004 1754 9227Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johanna Tuhkanen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Jade Martins
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | | | - Amanda J. Drake
- grid.4305.20000 0004 1936 7988University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Batbayar Khulan
- grid.4305.20000 0004 1936 7988University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Aarno Palotie
- grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Sibylle M. Winter
- grid.6363.00000 0001 2218 4662Department of Child and Adolescent Psychiatry, Charité—Universitätsmedizin Berlin, Campus Virchow, 13353 Berlin, Germany
| | - Charles B. Nemeroff
- grid.89336.370000 0004 1936 9924Department of Psychiatry, Dell Medical School, University of Texas at Austin, 1601 Trinity St, Austin, TX 78712 USA
| | - W. Edward Craighead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Boadie W. Dunlop
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Helen S. Mayberg
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029 USA
| | - Becky Kinkead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Sanjay J. Mathew
- grid.413890.70000 0004 0420 5521Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine Mental Health Care Line, Michael E. Debakey VA Medical Center, Houston, TX USA
| | - Dan V. Iosifescu
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029 USA ,grid.137628.90000 0004 1936 8753NYU School of Medicine and Nathan Kline Institute, New York, NY USA
| | - Thomas C. Neylan
- grid.266102.10000 0001 2297 6811Departments of Psychiatry and Neurology, University of California, San Francisco, CA USA
| | - Christine M. Heim
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Luisenstraße 57, 10117 Berlin, Germany
| | - Jari Lahti
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland ,grid.1374.10000 0001 2097 1371Turku Institute for Advanced Studies, University of Turku, 20500 Turku, Finland
| | - Johan G. Eriksson
- grid.7737.40000 0004 0410 2071Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00250 Helsinki, Finland ,grid.4280.e0000 0001 2180 6431Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Katri Räikkönen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Kerry J. Ressler
- Mailman Research Center, 115 Mill St., Mailstop 339, Belmont, MA 02478 USA
| | - Nadine Provençal
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC Canada ,grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute, Vancouver, BC Canada
| | - Elisabeth B. Binder
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| |
Collapse
|
12
|
LaBarre JL, McCabe CF, Jones TR, Song PX, Domino SE, Treadwell MC, Dolinoy DC, Padmanabhan V, Burant CF, Goodrich JM. Maternal lipodome across pregnancy is associated with the neonatal DNA methylome. Epigenomics 2020; 12:2077-2092. [PMID: 33290095 DOI: 10.2217/epi-2020-0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To classify the association between the maternal lipidome and DNA methylation in cord blood leukocytes. Materials & methods: Untargeted lipidomics was performed on first trimester maternal plasma (M1) and delivery maternal plasma (M3) in 100 mothers from the Michigan Mother-Infant Pairs cohort. Cord blood leukocyte DNA methylation was profiled using the Infinium EPIC bead array and empirical Bayes modeling identified differential DNA methylation related to maternal lipid groups. Results: M3-saturated lysophosphatidylcholine was associated with 45 differentially methylated loci and M3-saturated lysophosphatidylethanolamine was associated with 18 differentially methylated loci. Biological pathways enriched among differentially methylated loci by M3 saturated lysophosphatidylcholines were related to cell proliferation and growth. Conclusion: The maternal lipidome may be influential in establishing the infant epigenome.
Collapse
Affiliation(s)
- Jennifer L LaBarre
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carolyn F McCabe
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Peter Xk Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Steven E Domino
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marjorie C Treadwell
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:8138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
14
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
15
|
Aref-Eshghi E, Biswas S, Chen C, Sadikovic B, Chakrabarti S. Glucose-induced, duration-dependent genome-wide DNA methylation changes in human endothelial cells. Am J Physiol Cell Physiol 2020; 319:C268-C276. [PMID: 32459505 DOI: 10.1152/ajpcell.00011.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a critical epigenetic mechanism, plays an important role in governing gene expressions during biological processes such as aging, which is well known to be accelerated in hyperglycemia (diabetes). In the present study, we investigated the effects of glucose on whole genome DNA methylation in small [human retinal microvascular endothelial cells (HRECs)] and large [human umbilical vein endothelial cells (HUVECs)] vessel endothelial cell (EC) lines exposed to basal or high glucose-containing media for variable lengths of time. Using the Infinium EPIC array, we obtained 773,133 CpG sites (probes) for analysis. Unsupervised clustering of the top 5% probes identified four distinct clusters within EC groups, with significant methylation differences attributed to EC types and the duration of cell culture rather than glucose stimuli alone. When comparing the ECs incubated for 2 days versus 7 days, hierarchical clustering analyses [methylation change >10% and false discovery rate (FDR) <0.05] identified 17,354 and 128 differentially methylated CpGs for HUVECs and HRECs, respectively. Predominant DNA hypermethylation was associated with the length of culture and was enriched for gene enhancer elements and regions surrounding CpG shores and shelves. We identified 88 differentially methylated regions (DMRs) for HUVECs and 8 DMRs for HRECs (all FDR <0.05). Pathway enrichment analyses of DMRs highlighted involvement of regulators of embryonic development (i.e., HOX genes) and cellular differentiation [transforming growth factor-β (TGF-β) family members]. Collectively, our findings suggest that DNA methylation is a complex process that involves tightly coordinated, cell-specific mechanisms. Such changes in methylation overlap genes critical for cellular differentiation and embryonic development.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Charlie Chen
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Wang M, Zhang K, Ngo V, Liu C, Fan S, Whitaker JW, Chen Y, Ai R, Chen Z, Wang J, Zheng L, Wang W. Identification of DNA motifs that regulate DNA methylation. Nucleic Acids Res 2019; 47:6753-6768. [PMID: 31334813 PMCID: PMC6649826 DOI: 10.1093/nar/gkz483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark but how its locus-specificity is decided in relation to DNA sequence is not fully understood. Here, we have analyzed 34 diverse whole-genome bisulfite sequencing datasets in human and identified 313 motifs, including 92 and 221 associated with methylation (methylation motifs, MMs) and unmethylation (unmethylation motifs, UMs), respectively. The functionality of these motifs is supported by multiple lines of evidence. First, the methylation levels at the MM and UM motifs are respectively higher and lower than the genomic background. Second, these motifs are enriched at the binding sites of methylation modifying enzymes including DNMT3A and TET1, indicating their possible roles of recruiting these enzymes. Third, these motifs significantly overlap with "somatic QTLs" (quantitative trait loci) of methylation and expression. Fourth, disruption of these motifs by mutation is associated with significantly altered methylation level of the CpGs in the neighbor regions. Furthermore, these motifs together with somatic mutations are predictive of cancer subtypes and patient survival. We revealed some of these motifs were also associated with histone modifications, suggesting a possible interplay between the two types of epigenetic modifications. We also found some motifs form feed forward loops to contribute to DNA methylation dynamics.
Collapse
Affiliation(s)
- Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Vu Ngo
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Chengyu Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shicai Fan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - John W Whitaker
- Department of Genomics, Denovo Biopharma, 10240 Science Center Dr., San Diego, CA, USA
| | - Yue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhao Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jun Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns. Nat Commun 2019; 10:2548. [PMID: 31186427 PMCID: PMC6559955 DOI: 10.1038/s41467-019-10461-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk. Environmental influences during prenatal development may have implications for health and disease later in life. Here, Czamara et al. assess DNA methylation in cord blood from new-born under various models including environmental and genetic effects individually and their additive or interaction effects.
Collapse
|
18
|
Husquin LT, Rotival M, Fagny M, Quach H, Zidane N, McEwen LM, MacIsaac JL, Kobor MS, Aschard H, Patin E, Quintana-Murci L. Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation. Genome Biol 2018; 19:222. [PMID: 30563547 PMCID: PMC6299574 DOI: 10.1186/s13059-018-1601-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation is influenced by both environmental and genetic factors and is increasingly thought to affect variation in complex traits and diseases. Yet, the extent of ancestry-related differences in DNA methylation, their genetic determinants, and their respective causal impact on immune gene regulation remain elusive. RESULTS We report extensive population differences in DNA methylation between 156 individuals of African and European descent, detected in primary monocytes that are used as a model of a major innate immunity cell type. Most of these differences (~ 70%) are driven by DNA sequence variants nearby CpG sites, which account for ~ 60% of the variance in DNA methylation. We also identify several master regulators of DNA methylation variation in trans, including a regulatory hub nearby the transcription factor-encoding CTCF gene, which contributes markedly to ancestry-related differences in DNA methylation. Furthermore, we establish that variation in DNA methylation is associated with varying gene expression levels following mostly, but not exclusively, a canonical model of negative associations, particularly in enhancer regions. Specifically, we find that DNA methylation highly correlates with transcriptional activity of 811 and 230 genes, at the basal state and upon immune stimulation, respectively. Finally, using a Bayesian approach, we estimate causal mediation effects of DNA methylation on gene expression in ~ 20% of the studied cases, indicating that DNA methylation can play an active role in immune gene regulation. CONCLUSION Using a system-level approach, our study reveals substantial ancestry-related differences in DNA methylation and provides evidence for their causal impact on immune gene regulation.
Collapse
Affiliation(s)
- Lucas T. Husquin
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2000, 75015 Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2000, 75015 Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Maud Fagny
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine (CNRGH), CEA-Institut de Biologie François Jacob, 91000 Evry, France
| | - Hélène Quach
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2000, 75015 Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Nora Zidane
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2000, 75015 Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Lisa M. McEwen
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, BC Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, BC Canada
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, BC Canada
| | - Hugues Aschard
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Etienne Patin
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2000, 75015 Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2000, 75015 Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
19
|
Benetatos L, Vartholomatos G. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 2018; 75:1999-2009. [PMID: 29484447 PMCID: PMC11105366 DOI: 10.1007/s00018-018-2783-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression 'fine-tuners', are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers' activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers' activity in normal and mainly myeloid malignancies.
Collapse
|
20
|
Palma-Gudiel H, Córdova-Palomera A, Tornador C, Falcón C, Bargalló N, Deco G, Fañanás L. Increased methylation at an unexplored glucocorticoid responsive element within exon 1 D of NR3C1 gene is related to anxious-depressive disorders and decreased hippocampal connectivity. Eur Neuropsychopharmacol 2018; 28:579-588. [PMID: 29650294 DOI: 10.1016/j.euroneuro.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
Among the major psychiatric disorders, anxious-depressive disorders stand out as one of the more prevalent and more frequently associated with hypothalamic-pituitary-adrenal (HPA) axis abnormalities. Methylation at the exon 1F of the glucocorticoid receptor gene NR3C1 has been associated with both early stress exposure and risk for developing a psychiatric disorder; however, other NR3C1 promoter regions have been underexplored. Exon 1D emerges as a suggestive new target in stress-related disorders epigenetically sensitive to early adversity. After assessment of 48 monozygotic twin pairs (n=96 subjects) informative for lifetime history of anxious-depressive disorders, they were classified as concordant, discordant or healthy in function of whether both, one or neither twin in each pair had a lifetime diagnosis of anxious-depressive disorders. DNA for epigenetic analysis was extracted from peripheral blood. Exon 1F and exon 1D CpG-specific methylation was analysed by means of pyrosequencing technology. Functional magnetic resonance imaging was available for 54 subjects (n=27 twin pairs). Exon 1D CpG-specific methylation within a glucocorticoid responsive element (GRE) was correlated with familial burden of anxious-depressive disorders (r=0.35, z=2.26, p=0.02). Right hippocampal connectivity was significantly associated with CpG-specific GRE methylation (β=-2.33, t=-2.85, p=0.01). Exon 1F was uniformly hypomethylated across all subgroups of the present sample. GRE hypermethylation at exon 1D of the NR3C1 gene in monozygotic twins concordant for anxious-depressive disorders suggests this region plays a role in increasing vulnerability to psychosocial stress, partly mediated by altered hippocampal connectivity.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Aldo Córdova-Palomera
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Cristian Tornador
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Falcón
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Zaragoza, Spain; BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Medical Image Core facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Medical Image Core facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Diagnóstico por Imagen, Hospital Clínico, Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lourdes Fañanás
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
21
|
Bell CG, Gao F, Yuan W, Roos L, Acton RJ, Xia Y, Bell J, Ward K, Mangino M, Hysi PG, Wang J, Spector TD. Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci. Nat Commun 2018; 9:8. [PMID: 29295990 PMCID: PMC5750212 DOI: 10.1038/s41467-017-01586-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Integrating epigenetic data with genome-wide association study (GWAS) results can reveal disease mechanisms. The genome sequence itself also shapes the epigenome, with CpG density and transcription factor binding sites (TFBSs) strongly encoding the DNA methylome. Therefore, genetic polymorphism impacts on the observed epigenome. Furthermore, large genetic variants alter epigenetic signal dosage. Here, we identify DNA methylation variability between GWAS-SNP risk and non-risk haplotypes. In three subsets comprising 3128 MeDIP-seq peripheral-blood DNA methylomes, we find 7173 consistent and functionally enriched Differentially Methylated Regions. 36.8% can be attributed to common non-SNP genetic variants. CpG-SNPs, as well as facilitative TFBS-motifs, are also enriched. Highlighting their functional potential, CpG-SNPs strongly associate with allele-specific DNase-I hypersensitivity sites. Our results demonstrate strong DNA methylation allelic differences driven by obligatory or facilitative genetic effects, with potential direct or regional disease-related repercussions. These allelic variations require disentangling from pure tissue-specific modifications, may influence array studies, and imply underestimated population variability in current reference epigenomes. Genomic polymorphisms affect the epigenome, which in turn influences how epigenome- and genome-wide analysis are interpreted. Here, the authors characterise allelic differences in DNA methylation driven by obligatory or facilitative genetic effects, which may affect disease-related loci.
Collapse
Affiliation(s)
- Christopher G Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK. .,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK. .,Epigenomic Medicine, Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK.
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Yuan
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Leonie Roos
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Richard J Acton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK.,Epigenomic Medicine, Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | | | - Jordana Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Kirsten Ward
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Jun Wang
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| |
Collapse
|
22
|
Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain. Cell Rep 2017; 17:3369-3384. [PMID: 28009303 PMCID: PMC5495578 DOI: 10.1016/j.celrep.2016.12.001] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of the human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. Demethylated regions (74% of 35,627) identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development.
Collapse
Affiliation(s)
- Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Madeline A Lancaster
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna 1030, Austria
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna 1030, Austria.
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Thomson JP, Ottaviano R, Buesen R, Moggs JG, Schwarz M, Meehan RR. Defining baseline epigenetic landscapes in the rat liver. Epigenomics 2017; 9:1503-1527. [PMID: 29130343 PMCID: PMC5957268 DOI: 10.2217/epi-2017-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Characterization of the hepatic epigenome following exposure to chemicals and therapeutic drugs provides novel insights into toxicological and pharmacological mechanisms, however appreciation of genome-wide inter- and intra-strain baseline epigenetic variation, particularly in under-characterized species such as the rat is limited. Material & methods To enhance the utility of epigenomic endpoints safety assessment, we map both DNA modifications (5-methyl-cytosine and 5-hydroxymethyl-cytosine) and enhancer related chromatin marks (H3K4me1 and H3K27ac) across multiple male and female rat livers for two important outbred laboratory rat strains (Sprague–Dawley and Wistar). Results & conclusion Integration of DNA modification, enhancer chromatin marks and gene expression profiles reveals clear gender-specific chromatin states at genes which exhibit gender-specific transcription. Taken together this work provides a valuable baseline liver epigenome resource for rat strains that are commonly used in chemical and pharmaceutical safety assessment.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Raffaele Ottaviano
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Roland Buesen
- BASF SE, Experimental Toxicology & Ecology, 67056 Ludwigshafen, Germany
| | - Jonathan G Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, CH-4057 Basel, Switzerland
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental & Clinical Pharmacology & Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Richard R Meehan
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
24
|
Integration of DNA methylation and gene transcription across nineteen cell types reveals cell type-specific and genomic region-dependent regulatory patterns. Sci Rep 2017; 7:3626. [PMID: 28620196 PMCID: PMC5472622 DOI: 10.1038/s41598-017-03837-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022] Open
Abstract
Despite numerous studies done on understanding the role of DNA methylation, limited work has focused on systems integration of cell type-specific interplay between DNA methylation and gene transcription. Through a genome-wide analysis of DNA methylation across 19 cell types with T-47D as reference, we identified 106,252 cell type-specific differentially-methylated CpGs categorized into 7,537 differentially (46.6% hyper- and 53.4% hypo-) methylated regions. We found 44% promoter regions and 75% CpG islands were T-47D cell type-specific methylated. Pyrosequencing experiments validated the cell type-specific methylation across three benchmark cell lines. Interestingly, these DMRs overlapped with 1,145 known tumor suppressor genes. We then developed a Bayesian Gaussian Regression model to measure the relationship among DNA methylation, genomic segment distribution, differential gene expression and tumor suppressor gene status. The model uncovered that 3′UTR methylation has much less impact on transcriptional activity than other regions. Integration of DNA methylation and 82 transcription factor binding information across the 19 cell types suggested diverse interplay patterns between the two regulators. Our integrative analysis reveals cell type-specific and genomic region-dependent regulatory patterns and provides a perspective for integrating hundreds of various omics-seq data together.
Collapse
|
25
|
Shen J, Wang C, Li D, Xu T, Myers J, Ashton JM, Wang T, Zuscik MJ, McAlinden A, O'Keefe RJ. DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight 2017; 2:93612. [PMID: 28614801 DOI: 10.1172/jci.insight.93612] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/10/2017] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a complex disease affecting the whole joint but is generally characterized by progressive degradation of articular cartilage. Recent genome-wide association screens have implicated distinct DNA methylation signatures in OA patients. We show that the de novo DNA methyltransferase (Dnmt) 3b, but not Dnmt3a, is present in healthy murine and human articular chondrocytes and its expression decreases in OA mouse models and in chondrocytes from human OA patients. Targeted deletion of Dnmt3b in murine articular chondrocytes results in an early-onset and progressive postnatal OA-like pathology. RNA-Seq and methylC-Seq analyses of Dnmt3b loss-of-function chondrocytes show that cellular metabolic processes are affected. Specifically, TCA metabolites and mitochondrial respiration are elevated. Importantly, a chondroprotective effect was found following Dnmt3b gain of function in murine articular chondrocytes in vitro and in vivo. This study shows that Dnmt3b plays a significant role in regulating postnatal articular cartilage homeostasis. Cellular pathways regulated by Dnmt3b in chondrocytes may provide novel targets for therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery and
| | | | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Taotao Xu
- Department of Orthopaedic Surgery and.,Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jason Myers
- Genomics Research Center, School of Medicine and Dentistry, and
| | - John M Ashton
- Genomics Research Center, School of Medicine and Dentistry, and.,Department of Microbiology and Immunology, School of Medicine and Dentistry, and
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Michael J Zuscik
- Department of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery and.,Department of Cell Biology & Physiology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
26
|
Abstract
Liver fibrosis arises because prolonged injury combined with excessive scar deposition within hepatic parenchyma arising from overactive wound healing response mediated by activated myofibroblasts. Fibrosis is the common end point for any type of chronic liver injury including alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, and cholestatic liver diseases. Although genetic influences are important, it is epigenetic mechanisms that have been shown to orchestrate many aspects of fibrogenesis in the liver. New discoveries in the field are leading toward the development of epigenetic biomarkers and targeted therapies. This review considers epigenetic mechanisms as well as recent advances in epigenetic programming in the context of hepatic fibrosis.
Collapse
Key Words
- CLD, chronic liver disease
- Chronic Liver Disease
- CpG, cytosine-phospho-guanine
- DNA Methylation
- DNMT, DNA methyltransferase
- Epigenetics
- HDAC, histone deacetylase
- HSC, hepatic stellate cell
- Histone Modifications
- Liver Fibrosis
- NAFLD, nonalcoholic fatty liver disease
- PPAR, peroxisome proliferator activated receptor
- TET, Ten Eleven Translocation
- miRNA, microRNA
- ncRNA, non-coding RNA
Collapse
Affiliation(s)
| | - Jelena Mann
- Correspondence Address correspondence to: Jelena Mann, PhD, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH United Kingdom. fax: +44-191-208-0723.Institute of Cellular MedicineFaculty of Medical Sciences4th FloorWilliam Leech BuildingNewcastle UniversityFramlington PlaceNewcastle upon TyneNE2 4HH United Kingdom
| |
Collapse
|
27
|
Lebrón R, Gómez-Martín C, Carpena P, Bernaola-Galván P, Barturen G, Hackenberg M, Oliver JL. NGSmethDB 2017: enhanced methylomes and differential methylation. Nucleic Acids Res 2017; 45:D97-D103. [PMID: 27794041 PMCID: PMC5210667 DOI: 10.1093/nar/gkw996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/08/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
The 2017 update of NGSmethDB stores whole genome methylomes generated from short-read data sets obtained by bisulfite sequencing (WGBS) technology. To generate high-quality methylomes, stringent quality controls were integrated with third-part software, adding also a two-step mapping process to exploit the advantages of the new genome assembly models. The samples were all profiled under constant parameter settings, thus enabling comparative downstream analyses. Besides a significant increase in the number of samples, NGSmethDB now includes two additional data-types, which are a valuable resource for the discovery of methylation epigenetic biomarkers: (i) differentially methylated single-cytosines; and (ii) methylation segments (i.e. genome regions of homogeneous methylation). The NGSmethDB back-end is now based on MongoDB, a NoSQL hierarchical database using JSON-formatted documents and dynamic schemas, thus accelerating sample comparative analyses. Besides conventional database dumps, track hubs were implemented, which improved database access, visualization in genome browsers and comparative analyses to third-part annotations. In addition, the database can be also accessed through a RESTful API. Lastly, a Python client and a multiplatform virtual machine allow for program-driven access from user desktop. This way, private methylation data can be compared to NGSmethDB without the need to upload them to public servers. Database website: http://bioinfo2.ugr.es/NGSmethDB.
Collapse
Affiliation(s)
- Ricardo Lebrón
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071-Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada, Spain
| | - Cristina Gómez-Martín
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071-Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada, Spain
| | - Pedro Carpena
- Department of Applied Physics II, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Guillermo Barturen
- Genetics of Complex Diseases Group, GENyO, Pfizer-University of Granada-Junta de Andalucía Center for Genomics and Oncological Research, 18100-Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071-Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada, Spain
| | - José L Oliver
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071-Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada, Spain
| |
Collapse
|
28
|
Thomson JP, Meehan RR. The application of genome-wide 5-hydroxymethylcytosine studies in cancer research. Epigenomics 2016; 9:77-91. [PMID: 27936926 DOI: 10.2217/epi-2016-0122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Early detection and characterization of molecular events associated with tumorgenesis remain high priorities. Genome-wide epigenetic assays are promising diagnostic tools, as aberrant epigenetic events are frequent and often cancer specific. The deposition and analysis of multiple patient-derived cancer epigenomic profiles contributes to our appreciation of the underlying biology; aiding the detection of novel identifiers for cancer subtypes. Modifying enzymes and co-factors regulating these epigenetic marks are frequently mutated in cancers, and as epigenetic modifications themselves are reversible, this makes their study very attractive with respect to pharmaceutical intervention. Here we focus on the novel modified base, 5-hydoxymethylcytosine, and discuss how genome-wide 5-hydoxymethylcytosine profiling expedites our molecular understanding of cancer, serves as a lineage tracer, classifies the mode of action of potentially carcinogenic agents and clarifies the roles of potential novel cancer drug targets; thus assisting the development of new diagnostic/prognostic tools.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
29
|
Zhang C, Hoshida Y, Sadler KC. Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence. Front Genet 2016; 7:110. [PMID: 27379160 PMCID: PMC4911366 DOI: 10.3389/fgene.2016.00110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/31/2016] [Indexed: 12/12/2022] Open
Abstract
The DNA methylation landscape is dynamically patterned during development and distinct methylation patterns distinguish healthy from diseased cells. However, whether tissue-specific methylation patterns are conserved across species is not known. We used comparative methylome analysis of base-resolution DNA methylation profiles from the liver and brain of mouse and zebrafish generated by reduced representation bisulfite sequencing to identify the conserved and divergent aspects of the methylome in these commonly used vertebrate model organisms. On average, 24% of CpGs are methylated in mouse livers and the pattern of methylation was highly concordant among four male mice from two different strains. The same level of methylation (24.2%) was identified in mouse brain. In striking contrast, zebrafish had 63 and 70% of CpG methylation in the liver and brain, respectively. This is attributed, in part, to the higher percentage of the zebrafish genome occupied by transposable elements (52% vs. 45% in mice). Thus, the species identity was more significant in determining methylome patterning than was the similarity in organ function. Conserved features of the methylome across tissues and species was the exclusion of methylation from promoters and from CpG islands near transcription start sites, and the clustering of methylated CpGs in gene bodies and intragenic regions. These data suggest that DNA methylation reflects species-specific genome structure, and supports the notion that DNA methylation in non-promoter regions may contribute to genome evolution.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
| | - Yujin Hoshida
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
| | - Kirsten C. Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New YorkNY, USA
- Program in Biology, New York University Abu DhabiAbu Dhabi, UAE
| |
Collapse
|
30
|
Hohos NM, Lee K, Ji L, Yu M, Kandasamy MM, Phillips BG, Baile CA, He C, Schmitz RJ, Meagher RB. DNA cytosine hydroxymethylation levels are distinct among non-overlapping classes of peripheral blood leukocytes. J Immunol Methods 2016; 436:1-15. [PMID: 27164004 PMCID: PMC5131182 DOI: 10.1016/j.jim.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Peripheral blood leukocytes are the most commonly used surrogates to study epigenome-induced risk and epigenomic response to disease-related stress. We considered the hypothesis that the various classes of peripheral leukocytes differentially regulate the synthesis of 5-methylcytosine (5mCG) and its removal via Ten-Eleven Translocation (TET) dioxygenase catalyzed hydroxymethylation to 5-hydroxymethylcytosine (5hmCG), reflecting their responsiveness to environment. Although it is known that reductions in TET1 and/or TET2 activity lead to the over-proliferation of various leukocyte precursors in bone marrow and in development of chronic myelomonocytic leukemia and myeloproliferative neoplasms, the role of 5mCG hydroxymethylation in peripheral blood is less well studied. RESULTS We developed simplified protocols to rapidly and reiteratively isolate non-overlapping leukocyte populations from a single small sample of fresh or frozen whole blood. Among peripheral leukocyte types we found extreme variation in the levels of transcripts encoding proteins involved in cytosine methylation (DNMT1, 3A, 3B), the turnover of 5mC by demethylation (TET1, 2, 3), and DNA repair (GADD45A, B, G) and in the global and gene-region-specific levels of DNA 5hmCG (CD4+ T cells≫CD14+ monocytes>CD16+ neutrophils>CD19+ B cells>CD56+ NK cells>Siglec8+ eosinophils>CD8+ T cells). CONCLUSIONS Our data taken together suggest a potential hierarchy of responsiveness among classes of leukocytes with CD4+, CD8+ T cells and CD14+ monocytes being the most distinctly poised for a rapid methylome response to physiological stress and disease.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA.
| | - Kevin Lee
- Department of Genetics, University of Georgia, Athens, GA, USA.
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| | - Miao Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | | | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, USA.
| | - Clifton A Baile
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|