1
|
Kozak KM, Escalona M, Chumchim N, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, Seligmann W, Conroy C, Patton JL, Bowie RCK, Nachman MW. A highly contiguous genome assembly for the pocket mouse Perognathus longimembris longimembris. J Hered 2024; 115:130-138. [PMID: 37793045 PMCID: PMC10838119 DOI: 10.1093/jhered/esad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
The little pocket mouse, Perognathus longimembris, and its nine congeners are small heteromyid rodents found in arid and seasonally arid regions of Western North America. The genus is characterized by behavioral and physiological adaptations to dry and often harsh environments, including nocturnality, seasonal torpor, food caching, enhanced osmoregulation, and a well-developed sense of hearing. Here we present a genome assembly of Perognathus longimembris longimembris generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing as part of the California Conservation Genomics Project. The assembly has a length of 2.35 Gb, contig N50 of 11.6 Mb, scaffold N50 of 73.2 Mb, and includes 93.8% of the BUSCO Glires genes. Interspersed repetitive elements constitute 41.2% of the genome. A comparison with the highly endangered Pacific pocket mouse, P. l. pacificus, reveals broad synteny. These new resources will enable studies of local adaptation, genetic diversity, and conservation of threatened taxa.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chris Conroy
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - James L Patton
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
2
|
Taylor HR, Costanzi J, Dicks KL, Senn HV, Robinson S, Dowse G, Ball AD. The genetic legacy of the first successful reintroduction of a mammal to Britain: Founder events and attempted genetic rescue in Scotland's beaver population. Evol Appl 2024; 17:e13629. [PMID: 38343777 PMCID: PMC10853653 DOI: 10.1111/eva.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 10/28/2024] Open
Abstract
Conservation translocations often inherently involve a risk of genetic diversity loss, and thus loss of adaptive potential, but this risk is rarely quantified or monitored through time. The reintroduction of beavers to Scotland, via the Scottish Beaver Trial in Knapdale, is an example of a translocation that took place in the absence of genetic data for the founder individuals and resulted in a small and suspected to be genetically depauperate population. In this study we use a high-density SNP panel to assess the genetic impact of that initial translocation and the effect of subsequent reinforcement translocations using animals from a different genetic source to the original founders. We demonstrate that the initial translocation did, indeed, lead to low genetic diversity (H o = 0.052) and high mean kinship (KING-robust = 0.159) in the Knapdale population compared to other beaver populations. We also show that the reinforcement translocations have succeeded in increasing genetic diversity (H o = 0.196) and reducing kinship (KING robust = 0.028) in Knapdale. As yet, there is no evidence of admixture between the two genetic lineages that are now present in Knapdale and such admixture is necessary to realise the full genetic benefits of the reinforcement and for genetic reinforcement and then rescue to occur; future genetic monitoring will be required to assess whether this has happened. We note that, should admixture occur, the Knapdale population will harbour combinations of genetic diversity not currently seen elsewhere in Eurasian beavers, posing important considerations for the future management of this population. We consider our results in the wider context of beaver conservation throughout Scotland and the rest of Britain, and advocate for more proactive genetic sampling of all founders to allow the full integration of genetic data into translocation planning in general.
Collapse
Affiliation(s)
- Helen R. Taylor
- Field ConservationRoyal Zoological Society of ScotlandEdinburghUK
| | - Jean‐Marc Costanzi
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
- Microbiology and Infection ControlAkershus University HospitalOsloNorway
| | - Kara L. Dicks
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| | - Helen V. Senn
- Field ConservationRoyal Zoological Society of ScotlandEdinburghUK
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| | | | | | - Alex D. Ball
- WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghUK
| |
Collapse
|
3
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics 2022; 74:475-485. [PMID: 35419618 DOI: 10.1007/s00251-022-01262-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLRs) are one of the most ancient and widely studied innate immune receptors responsible for host defense against invading pathogens. Among the known TLRs, TLR7 and TLR8 sense and recognize single-stranded (ss) RNAs with a dynamic evolutionary history. While TLR8 was lost in birds and duplicated in turtles and crocodiles, TLR7 is duplicated in some birds, but in other tetrapods, there is only one copy. In mammals, with the exception of lagomorphs, TLR7 and TLR8 are highly conserved. Here, we aim to study the evolution of TLR7 and TLR8 in mammals, with a special focus in the order Lagomorpha. By searching public sequence databases, conducting evolutionary analysis, and evaluating gene expression, we were able to confirm that TLR8 is absent in hares but widely expressed in the European rabbit. In contrast, TLR7 is absent in the European rabbit and quite divergent in hares. Our results suggest that, in lagomorphs, more in particular in leporids, TLR7 and TLR8 genes have evolved faster than in any other mammalian group. The long history of interaction with viruses and their location in highly dynamic telomeric regions might explain the pattern observed.
Collapse
|
5
|
Zhang Q, Tombline G, Ablaeva J, Zhang L, Zhou X, Smith Z, Zhao Y, Xiaoli AM, Wang Z, Lin JR, Jabalameli MR, Mitra J, Nguyen N, Vijg J, Seluanov A, Gladyshev VN, Gorbunova V, Zhang ZD. Genomic expansion of Aldh1a1 protects beavers against high metabolic aldehydes from lipid oxidation. Cell Rep 2021; 37:109965. [PMID: 34758328 PMCID: PMC8656434 DOI: 10.1016/j.celrep.2021.109965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
The North American beaver is an exceptionally long-lived and cancer-resistant rodent species. Here, we report the evolutionary changes in its gene coding sequences, copy numbers, and expression. We identify changes that likely increase its ability to detoxify aldehydes, enhance tumor suppression and DNA repair, and alter lipid metabolism, potentially contributing to its longevity and cancer resistance. Hpgd, a tumor suppressor gene, is uniquely duplicated in beavers among rodents, and several genes associated with tumor suppression and longevity are under positive selection in beavers. Lipid metabolism genes show positive selection signals, changes in copy numbers, or altered gene expression in beavers. Aldh1a1, encoding an enzyme for aldehydes detoxification, is particularly notable due to its massive expansion in beavers, which enhances their cellular resistance to ethanol and capacity to metabolize diverse aldehyde substrates from lipid oxidation and their woody diet. We hypothesize that the amplification of Aldh1a1 may contribute to the longevity of beavers. Zhang et al. examine the genome of North American beavers and find evolutionary changes that could contribute to beavers’ longevity. In particular, Aldh1a1, encoding an enzyme for aldehyde detoxification, is massively expanded in the beaver genome, protecting them against exposure to aldehydes from lipid oxidation and their woody diet.
Collapse
Affiliation(s)
- Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Lei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alus M Xiaoli
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Vedelek B, Maddali AK, Davenova N, Vedelek V, Boros IM. TERT promoter alterations could provide a solution for Peto's paradox in rodents. Sci Rep 2020; 10:20815. [PMID: 33257697 PMCID: PMC7704627 DOI: 10.1038/s41598-020-77648-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is a genetic disease caused by changes in gene expression resulting from somatic mutations and epigenetic changes. Although the probability of mutations is proportional with cell number and replication cycles, large bodied species do not develop cancer more frequently than smaller ones. This notion is known as Peto's paradox, and assumes stronger tumor suppression in larger animals. One of the possible tumor suppressor mechanisms involved could be replicative senescence caused by telomere shortening in the absence of telomerase activity. We analysed telomerase promoter activity and transcription factor binding in mammals to identify the key element of telomerase gene inactivation. We found that the GABPA transcription factor plays a key role in TERT regulation in somatic cells of small rodents, but its binding site is absent in larger beavers. Protein binding and reporter gene assays verify different use of this site in different species. The presence or absence of the GABPA TF site in TERT promoters of rodents correlates with TERT promoter activity; thus it could determine whether replicative senescence plays a tumor suppressor role in these species, which could be in direct relation with body mass. The GABPA TF binding sites that contribute to TERT activity in somatic cells of rodents are analogous to those mutated in human tumors, which activate telomerase by a non-ALT mechanism.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Asha Kiran Maddali
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Nurgul Davenova
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
7
|
Zhou X, Dou Q, Fan G, Zhang Q, Sanderford M, Kaya A, Johnson J, Karlsson EK, Tian X, Mikhalchenko A, Kumar S, Seluanov A, Zhang ZD, Gorbunova V, Liu X, Gladyshev VN. Beaver and Naked Mole Rat Genomes Reveal Common Paths to Longevity. Cell Rep 2020; 32:107949. [PMID: 32726638 PMCID: PMC9385191 DOI: 10.1016/j.celrep.2020.107949] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Long-lived rodents have become an attractive model for the studies on aging. To understand evolutionary paths to long life, we prepare chromosome-level genome assemblies of the two longest-lived rodents, Canadian beaver (Castor canadensis) and naked mole rat (NMR, Heterocephalus glaber), which were scaffolded with in vitro proximity ligation and chromosome conformation capture data and complemented with long-read sequencing. Our comparative genomic analyses reveal that amino acid substitutions at "disease-causing" sites are widespread in the rodent genomes and that identical substitutions in long-lived rodents are associated with common adaptive phenotypes, e.g., enhanced resistance to DNA damage and cellular stress. By employing a newly developed substitution model and likelihood ratio test, we find that energy and fatty acid metabolism pathways are enriched for signals of positive selection in both long-lived rodents. Thus, the high-quality genome resource of long-lived rodents can assist in the discovery of genetic factors that control longevity and adaptive evolution.
Collapse
Affiliation(s)
- Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, MA 02142, USA
| | - Qianhui Dou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Quanwei Zhang
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Alaattin Kaya
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, MA 02142, USA; Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Jeremy Johnson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, MA 02142, USA
| | - Elinor K Karlsson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, MA 02142, USA; University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Aleksei Mikhalchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester, Rochester, NY 14627, USA
| | | | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|
8
|
Luo H, Liu H, Zhang J, Hu B, Zhou C, Xiang M, Yang Y, Zhou M, Jing T, Li Z, Zhou X, Lv G, He W, Zeng B, Xiao S, Li Q, Ye H. Full-length transcript sequencing accelerates the transcriptome research of Gymnocypris namensis, an iconic fish of the Tibetan Plateau. Sci Rep 2020; 10:9668. [PMID: 32541658 PMCID: PMC7296019 DOI: 10.1038/s41598-020-66582-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Gymnocypris namensis, the only commercial fish in Namtso Lake of Tibet in China, is rated as nearly threatened species in the Red List of China's Vertebrates. As one of the highest-altitude schizothorax fish in China, G. namensis has strong adaptability to the plateau harsh environment. Although being an indigenous economic fish with high value in research, the biological characterization, genetic diversity, and plateau adaptability of G. namensis are still unclear. Here, we used Pacific Biosciences single molecular real time long read sequencing technology to generate full-length transcripts of G. namensis. Sequences clustering analysis and error correction with Illumina-produced short reads to obtain 319,044 polished isoforms. After removing redundant reads, 125,396 non-redundant isoforms were obtained. Among all transcripts, 103,286 were annotated to public databases. Natural selection has acted on 42 genes for G. namensis, which were enriched on the functions of mismatch repair and Glutathione metabolism. Total 89,736 open reading frames, 95,947 microsatellites, and 21,360 long non-coding RNAs were identified across all transcripts. This is the first study of transcriptome in G. namensis by using PacBio Iso-seq. The acquisition of full-length transcript isoforms might accelerate the transcriptome research of G. namensis and provide basis for further research.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Haiping Liu
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Jie Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Bingjie Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Chaowei Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mengbin Xiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Yuejing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mingrui Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Tingsen Jing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Zhe Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Xinghua Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Guangjun Lv
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Wenping He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Shijun Xiao
- Department of Computer Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qinglu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China.
| |
Collapse
|
9
|
Hardin A, Nevonen KA, Eckalbar WL, Carbone L, Ahituv N. Comparative Genomic Characterization of the Multimammate Mouse Mastomys coucha. Mol Biol Evol 2020; 36:2805-2812. [PMID: 31424545 PMCID: PMC6878952 DOI: 10.1093/molbev/msz188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mastomys are the most widespread African rodent and carriers of various diseases such as the plague or Lassa virus. In addition, mastomys have rapidly gained a large number of mammary glands. Here, we generated a genome, variome, and transcriptomes for Mastomys coucha. As mastomys diverged at similar times from mouse and rat, we demonstrate their utility as a comparative genomic tool for these commonly used animal models. Furthermore, we identified over 500 mastomys accelerated regions, often residing near important mammary developmental genes or within their exons leading to protein sequence changes. Functional characterization of a noncoding mastomys accelerated region, located in the HoxD locus, showed enhancer activity in mouse developing mammary glands. Combined, our results provide genomic resources for mastomys and highlight their potential both as a comparative genomic tool and for the identification of mammary gland number determining factors.
Collapse
Affiliation(s)
- Aaron Hardin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Kashyap A, Rhodes A, Kronmiller B, Berger J, Champagne A, Davis EW, Finnegan MV, Geniza M, Hendrix DA, Löhr CV, Petro VM, Sharpton TJ, Wells J, Epps CW, Jaiswal P, Tyler BM, Ramsey SA. Pan-tissue transcriptome analysis of long noncoding RNAs in the American beaver Castor canadensis. BMC Genomics 2020; 21:153. [PMID: 32050897 PMCID: PMC7014947 DOI: 10.1186/s12864-019-6432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have roles in gene regulation, epigenetics, and molecular scaffolding and it is hypothesized that they underlie some mammalian evolutionary adaptations. However, for many mammalian species, the absence of a genome assembly precludes the comprehensive identification of lncRNAs. The genome of the American beaver (Castor canadensis) has recently been sequenced, setting the stage for the systematic identification of beaver lncRNAs and the characterization of their expression in various tissues. The objective of this study was to discover and profile polyadenylated lncRNAs in the beaver using high-throughput short-read sequencing of RNA from sixteen beaver tissues and to annotate the resulting lncRNAs based on their potential for orthology with known lncRNAs in other species. RESULTS Using de novo transcriptome assembly, we found 9528 potential lncRNA contigs and 187 high-confidence lncRNA contigs. Of the high-confidence lncRNA contigs, 147 have no known orthologs (and thus are putative novel lncRNAs) and 40 have mammalian orthologs. The novel lncRNAs mapped to the Oregon State University (OSU) reference beaver genome with greater than 90% sequence identity. While the novel lncRNAs were on average shorter than their annotated counterparts, they were similar to the annotated lncRNAs in terms of the relationships between contig length and minimum free energy (MFE) and between coverage and contig length. We identified beaver orthologs of known lncRNAs such as XIST, MEG3, TINCR, and NIPBL-DT. We profiled the expression of the 187 high-confidence lncRNAs across 16 beaver tissues (whole blood, brain, lung, liver, heart, stomach, intestine, skeletal muscle, kidney, spleen, ovary, placenta, castor gland, tail, toe-webbing, and tongue) and identified both tissue-specific and ubiquitous lncRNAs. CONCLUSIONS To our knowledge this is the first report of systematic identification of lncRNAs and their expression atlas in beaver. LncRNAs-both novel and those with known orthologs-are expressed in each of the beaver tissues that we analyzed. For some beaver lncRNAs with known orthologs, the tissue-specific expression patterns were phylogenetically conserved. The lncRNA sequence data files and raw sequence files are available via the web supplement and the NCBI Sequence Read Archive, respectively.
Collapse
Affiliation(s)
- Amita Kashyap
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Adelaide Rhodes
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Josie Berger
- College of Forestry, Oregon State University, Corvallis, OR, USA
| | - Ashley Champagne
- College of Forestry, Oregon State University, Corvallis, OR, USA
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | | | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Christiane V Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Vanessa M Petro
- College of Forestry, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.,Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Jackson Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Clinton W Epps
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA. .,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Lipka A, Paukszto L, Majewska M, Jastrzebski JP, Panasiewicz G, Szafranska B. De novo characterization of placental transcriptome in the Eurasian beaver (Castor fiber L.). Funct Integr Genomics 2019; 19:421-435. [PMID: 30778795 PMCID: PMC6456477 DOI: 10.1007/s10142-019-00663-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/17/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Our pioneering data provide the first comprehensive view of placental transcriptome of the beaver during single and multiple gestation. RNA-Seq and a de novo approach allowed global pattern identification of C. fiber placental transcriptome. Non-redundant beaver transcriptome comprised 211,802,336 nt of placental transcripts, grouped into 128,459 contigs and clustered into 83,951 unigenes. An Ensembl database search revealed 14,487, 14,994, 15,004, 15,267 and 15,892 non-redundant homologs for Ictidomys tridecemlineatus, Rattus norvegicus, Mus musculus, Homo sapiens and Castor canadensis, respectively. Due to expression levels, the identified transcripts were divided into two sets: non-redundant and highly expressed (FPKM > 2 in at least three examined samples), analysed simultaneously. Among 17,009 highly expressed transcripts, 12,147 had BLASTx hits. GO annotations (175,882) were found for 4301 transcripts that were assigned to biological process (16,386), cellular component (9149) and molecular function (8338) categories; 666 unigenes were also classified into 122 KEGG pathways. Comprehensive analyses were performed for 411 and 3078 highly expressed transcripts annotated with a list of processes linked to ‘placenta’ (31 GO terms) or ‘embryo’ (324 GO terms), respectively. Among transcripts with entire CDS annotation, 281 (placenta) and 34 (embryo) alternative splicing events were identified. A total of 8499 putative SNVs (~ 6.2 SNV/transcript and 1.7 SNV/1 kb) were predicted with 0.1 minimum frequency and maximum variant quality (p value 10e−9). Our results provide a broad-based characterization of the global expression pattern of the beaver placental transcriptome. Enhancement of transcriptomic resources for C. fiber should improve understanding of crucial pathways relevant to proper placenta development and successful reproduction.
Collapse
Affiliation(s)
- Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodległości Str 44, 10-045, Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082, Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| | - Bozena Szafranska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
12
|
Armstrong EE, Taylor RW, Prost S, Blinston P, van der Meer E, Madzikanda H, Mufute O, Mandisodza-Chikerema R, Stuelpnagel J, Sillero-Zubiri C, Petrov D. Cost-effective assembly of the African wild dog (Lycaon pictus) genome using linked reads. Gigascience 2019; 8:5140148. [PMID: 30346553 PMCID: PMC6350039 DOI: 10.1093/gigascience/giy124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background A high-quality reference genome assembly is a valuable tool for the study of non-model organisms. Genomic techniques can provide important insights about past population sizes and local adaptation and can aid in the development of breeding management plans. This information is important for fields such as conservation genetics, where endangered species require critical and immediate attention. However, funding for genomic-based methods can be sparse for conservation projects, as costs for general species management can consume budgets. Findings Here, we report the generation of high-quality reference genomes for the African wild dog (Lycaon pictus) at a low cost (<$3000), thereby facilitating future studies of this endangered canid. We generated assemblies for three individuals using the linked-read 10x Genomics Chromium system. The most continuous assembly had a scaffold and contig N50 of 21 Mb and 83 Kb, respectively, and completely reconstructed 95% of a set of conserved mammalian genes. Additionally, we estimate the heterozygosity and demographic history of African wild dogs, revealing that although they have historically low effective population sizes, heterozygosity remains high. Conclusions We show that 10x Genomics Chromium data can be used to effectively generate high-quality genomes from Illumina short-read data of intermediate coverage (∼25x–50x). Interestingly, the wild dog shows higher heterozygosity than other species of conservation concern, possibly due to its behavioral ecology. The availability of reference genomes for non-model organisms will facilitate better genetic monitoring of threatened species such as the African wild dog and help conservationists to better understand the ecology and adaptability of those species in a changing environment.
Collapse
Affiliation(s)
- Ellie E Armstrong
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| | - Ryan W Taylor
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| | - Stefan Prost
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA.,Department of Integrative Biology, 3040 Valley Life Science Building, University of California, Berkeley, CA, 94720-3140, USA
| | - Peter Blinston
- Painted Dog Conservation, PO Box 72, Dete, 00263, Zimbabwe
| | | | | | - Olivia Mufute
- The Zimbabwe Parks & Wildlife Management Authority, Corner Sandringham & Borrowdale Roads, Botanical Gardens. Causeway, Harare, 00263, Zimbabwe
| | - Roseline Mandisodza-Chikerema
- The Zimbabwe Parks & Wildlife Management Authority, Corner Sandringham & Borrowdale Roads, Botanical Gardens. Causeway, Harare, 00263, Zimbabwe
| | - John Stuelpnagel
- 10x Genomics, Inc., 7068 Koll Center Pkwy #401, Pleasanton, CA, 94566, USA
| | - Claudio Sillero-Zubiri
- Wildlife Conservation Research Unit, Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, UK014
| | - Dmitri Petrov
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Meyer WK, Jamison J, Richter R, Woods SE, Partha R, Kowalczyk A, Kronk C, Chikina M, Bonde RK, Crocker DE, Gaspard J, Lanyon JM, Marsillach J, Furlong CE, Clark NL. Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals. Science 2018; 361:591-594. [PMID: 30093596 DOI: 10.1126/science.aap7714] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 01/17/2023]
Abstract
Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species' blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors' lipid metabolism and/or bloodstream oxidative environment affecting PON1's role in fatty acid oxidation. PON1 loss also eliminates marine mammals' main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environments.
Collapse
Affiliation(s)
- Wynn K Meyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerrica Jamison
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Richter
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stacy E Woods
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Raghavendran Partha
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Kowalczyk
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Kronk
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert K Bonde
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | | - Janet M Lanyon
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Judit Marsillach
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Gubaev RF, Gorshkov VY, Gapa LM, Gogoleva NE, Vetchinkina EP, Gogolev YV. Algorithm for Physiological Interpretation of Transcriptome Profiling Data for Non-Model Organisms. Mol Biol 2018. [DOI: 10.1134/s0026893318040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|