1
|
Fujinaga D, Nolan C, Yamanaka N. Functional characterization of eicosanoid signaling in Drosophila development. PLoS Genet 2025; 21:e1011705. [PMID: 40344083 PMCID: PMC12088517 DOI: 10.1371/journal.pgen.1011705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 05/19/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have not been thoroughly investigated. Our phylogenetic analysis indicated that, in clear contrast to the presence of numerous receptors for oxylipins and other lipid mediators in humans, the Drosophila genome only possesses a single ortholog of such receptors, which is homologous to human prostanoid receptors. This G protein-coupled receptor, named Prostaglandin Receptor or PGR, is activated by PGE2 and its isomer PGD2 in Drosophila S2 cells. PGR mutant flies die as pharate adults with insufficient tracheal development, which can be rescued by supplying high oxygen. Consistent with this, through a comprehensive mutagenesis approach, we identified a Drosophila PGE synthase whose mutants show similar pharate adult lethality with hypoxia responses. Drosophila thus has a highly simplified eicosanoid signaling pathway as compared to humans, and it may provide an ideal model system for investigating evolutionarily conserved aspects of eicosanoid signaling.
Collapse
Affiliation(s)
- Daiki Fujinaga
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Cebrina Nolan
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
2
|
Zhu Y, Wunderlich Z, Lander AD. Epithelial cell competition is promoted by signaling from immune cells. Nat Commun 2025; 16:3710. [PMID: 40251197 PMCID: PMC12008283 DOI: 10.1038/s41467-025-59130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
In epithelial tissues, juxtaposition of cells of different phenotypes can trigger cell competition, a process whereby one type of cell drives death and extrusion of another. During growth and homeostasis, cell competition is thought to serve a quality control function, eliminating cells that are "less fit". Tissues may also attack and eliminate newly arising tumor cells, exploiting mechanisms shared with other instances of cell competition, but that differ, reportedly, in the involvement of the immune system. Whereas immune cells have been shown to play a direct role in killing tumor cells, this has not been observed in other cases of cell competition, suggesting that tissues recognize and handle cancer cells differently. Here, we challenge this view, showing that, in the fruit fly Drosophila, innate immune cells play similar roles in cell killing during classical cell competition as in eliminating tumors. These findings suggest that immune suppression of cancer may exploit the same mechanisms as are involved in promoting phenotypic uniformity among epithelial cells.
Collapse
Affiliation(s)
- Yilun Zhu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Karling T, Weavers H. Immune cells adapt to confined environments in vivo to optimise nuclear plasticity for migration. EMBO Rep 2025; 26:1238-1268. [PMID: 39915297 PMCID: PMC11894099 DOI: 10.1038/s44319-025-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Cells navigating in complex 3D microenvironments frequently encounter narrow spaces that physically challenge migration. While in vitro studies identified nuclear stiffness as a key rate-limiting factor governing the movement of many cell types through artificial constraints, how cells migrating in vivo respond dynamically to confinement imposed by local tissue architecture, and whether these encounters trigger molecular adaptations, is unclear. Here, we establish an innovative in vivo model for mechanistic analysis of nuclear plasticity as Drosophila immune cells transition into increasingly confined microenvironments. Integrating live in vivo imaging with molecular genetic analyses, we demonstrate how rapid molecular adaptation upon environmental confinement (including fine-tuning of the nuclear lamina) primes leukocytes for enhanced nuclear deformation while curbing damage (including rupture and micronucleation), ultimately accelerating movement through complex tissues. We find nuclear dynamics in vivo are further impacted by large organelles (phagosomes) and the plasticity of neighbouring cells, which themselves deform during leukocyte passage. The biomechanics of cell migration in vivo are thus shaped both by factors intrinsic to individual immune cells and the malleability of the surrounding microenvironment.
Collapse
Affiliation(s)
- Tua Karling
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
5
|
Siekhaus DE, Stanley-Ahmed JA. Discovering mechanisms of macrophage tissue infiltration with Drosophila. Curr Opin Immunol 2024; 91:102502. [PMID: 39536472 DOI: 10.1016/j.coi.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages' and monocytes' ability to invade into the tissues where they carry out these functions. Drosophila plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.
Collapse
Affiliation(s)
- Daria E Siekhaus
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA.
| | - Jasmine A Stanley-Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA; Centre for Mechanobiochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
6
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler TK, MacDonald J, Pallanck LJ. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. PLoS Genet 2024; 20:e1011105. [PMID: 39527642 PMCID: PMC11581407 DOI: 10.1371/journal.pgen.1011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Samantsidis GR, Smith RC. Exploring new dimensions of immune cell biology in Anopheles gambiae through genetic immunophenotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619690. [PMID: 39484609 PMCID: PMC11526922 DOI: 10.1101/2024.10.22.619690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mosquito immune cells, or hemocytes, are integral components of the innate immune responses that define vector competence. However, the lack of genetic resources has limited their characterization and our understanding of their functional roles in immune signaling. To overcome these challenges, we engineered transgenic Anopheles gambiae that express fluorescent proteins under the control of candidate hemocyte promoters. Following the characterization of five transgenic constructs through gene expression and microscopy-based approaches, we examine mosquito immune cell populations by leveraging advanced spectral imaging flow cytometry. Our results comprehensively map the composition of mosquito hemocytes, classifying them into twelve distinct populations based on size, granularity, ploidy, phagocytic capacity, and the expression of PPO6, SPARC, and LRIM15 genetic markers. Together, our novel use of morphological properties and genetic markers provides increased resolution into our understanding of mosquito hemocytes, highlighting the complexity and plasticity of these immune cell populations, while providing the foundation for deeper investigations into their roles in immunity and pathogen transmission.
Collapse
Affiliation(s)
| | - Ryan C Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Davidson AJ, Heron R, Das J, Overholtzer M, Wood W. Ferroptosis-like cell death promotes and prolongs inflammation in Drosophila. Nat Cell Biol 2024; 26:1535-1544. [PMID: 38918597 PMCID: PMC11392819 DOI: 10.1038/s41556-024-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Ferroptosis is a distinct form of necrotic cell death caused by overwhelming lipid peroxidation, and emerging evidence indicates a major contribution to organ damage in multiple pathologies. However, ferroptosis has not yet been visualized in vivo due to a lack of specific probes, which has severely limited the study of how the immune system interacts with ferroptotic cells and how this process contributes to inflammation. Consequently, whether ferroptosis has a physiological role has remained a key outstanding question. Here we identify a distinct, ferroptotic-like, necrotic cell death occurring in vivo during wounding of the Drosophila embryo using live imaging. We further demonstrate that macrophages rapidly engage these necrotic cells within the embryo but struggle to engulf them, leading to prolonged, frustrated phagocytosis and frequent corpse disintegration. Conversely, suppression of the ferroptotic programme during wounding delays macrophage recruitment to the injury site, pointing to conflicting roles for ferroptosis during inflammation in vivo.
Collapse
Affiliation(s)
- Andrew J Davidson
- Wolfson Wohl Centre for Cancer Research, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rosalind Heron
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jyotirekha Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Will Wood
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Chasse AY, Bandyadka S, Wertheimer MC, Serizier SB, McCall K. Professional phagocytes are recruited for the clearance of obsolete nonprofessional phagocytes in the Drosophila ovary. Front Immunol 2024; 15:1389674. [PMID: 38994369 PMCID: PMC11236694 DOI: 10.3389/fimmu.2024.1389674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cell death is an important process in the body, as it occurs throughout every tissue during development, disease, and tissue regeneration. Phagocytes are responsible for clearing away dying cells and are typically characterized as either professional or nonprofessional phagocytes. Professional phagocytes, such as macrophages, are found in nearly every part of the body while nonprofessional phagocytes, such as epithelial cells, are found in every tissue type. However, there are organs that are considered "immune-privileged" as they have little to no immune surveillance and rely on nonprofessional phagocytes to engulf dying cells. These organs are surrounded by barriers to protect the tissue from viruses, bacteria, and perhaps even immune cells. The Drosophila ovary is considered immune-privileged, however the presence of hemocytes, the macrophages of Drosophila, around the ovary suggests they may have a potential function. Here we analyze hemocyte localization and potential functions in response to starvation-induced cell death in the ovary. Hemocytes were found to accumulate in the oviduct in the vicinity of mature eggs and follicle cell debris. Genetic ablation of hemocytes revealed that the presence of hemocytes affects oogenesis and that they phagocytose ovarian cell debris and in their absence fecundity decreases. Unpaired3, an IL-6 like cytokine, was found to be required for the recruitment of hemocytes to the oviduct to clear away obsolete follicle cells. These findings demonstrate a role for hemocytes in the ovary, providing a more thorough understanding of phagocyte communication and cell clearance in a previously thought immune-privileged organ.
Collapse
Affiliation(s)
- Alexandra Y. Chasse
- Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, United States
| | - Shruthi Bandyadka
- Program in Bioinformatics, Boston University, Boston, MA, United States
| | | | - Sandy B. Serizier
- Program in Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, United States
| | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
10
|
Maurya D, Rai G, Mandal D, Mondal BC. Transient caspase-mediated activation of caspase-activated DNase causes DNA damage required for phagocytic macrophage differentiation. Cell Rep 2024; 43:114251. [PMID: 38761374 PMCID: PMC7617294 DOI: 10.1016/j.celrep.2024.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Phagocytic macrophages are crucial for innate immunity and tissue homeostasis. Most tissue-resident macrophages develop from embryonic precursors that populate every organ before birth to lifelong self-renew. However, the mechanisms for versatile macrophage differentiation remain unknown. Here, we use in vivo genetic and cell biological analysis of the Drosophila larval hematopoietic organ, the lymph gland that produces macrophages. We show that the developmentally regulated transient activation of caspase-activated DNase (CAD)-mediated DNA strand breaks in intermediate progenitors is essential for macrophage differentiation. Insulin receptor-mediated PI3K/Akt signaling regulates the apoptosis signal-regulating kinase 1 (Ask1)/c-Jun kinase (JNK) axis to control sublethal levels of caspase activation, causing DNA strand breaks during macrophage development. Furthermore, caspase activity is also required for embryonic-origin macrophage development and efficient phagocytosis. Our study provides insights into developmental signaling and CAD-mediated DNA strand breaks associated with multifunctional and heterogeneous macrophage differentiation.
Collapse
Affiliation(s)
- Deepak Maurya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gayatri Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Debleena Mandal
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bama Charan Mondal
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
11
|
Datta I, Bangi E. Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila. Dev Cell 2024; 59:566-578.e3. [PMID: 38309266 PMCID: PMC10939848 DOI: 10.1016/j.devcel.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Cellular senescence is a conserved biological process that plays a crucial and context-dependent role in cancer. The highly heterogeneous and dynamic nature of senescent cells and their small numbers in tissues make in vivo mechanistic studies of senescence challenging. As a result, how multiple senescence-inducing signals are integrated in vivo to drive senescence in only a small number of cells is unclear. Here, we identify cells that exhibit multiple features of senescence in a Drosophila model of intestinal transformation, which emerge in response to concurrent activation of AKT, JNK, and DNA damage signaling within transformed tissue. Eliminating senescent cells, genetically or by treatment with senolytic compounds, reduces overgrowth and improves survival. We find that senescent cells promote tumorigenesis by recruiting Drosophila macrophages to the transformed tissue, which results in non-autonomous activation of JNK signaling. These findings identify senescent cell-macrophage interactions as an important driver of epithelial transformation.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
12
|
Brooks EC, Zeidler MP, Ong ACM, Evans IR. Macrophage subpopulation identity in Drosophila is modulated by apoptotic cell clearance and related signalling pathways. Front Immunol 2024; 14:1310117. [PMID: 38283366 PMCID: PMC10811221 DOI: 10.3389/fimmu.2023.1310117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
In Drosophila blood, plasmatocytes of the haemocyte lineage represent the functional equivalent of vertebrate macrophages and have become an established in vivo model with which to study macrophage function and behaviour. However, the use of plasmatocytes as a macrophage model has been limited by a historical perspective that plasmatocytes represent a homogenous population of cells, in contrast to the high levels of heterogeneity of vertebrate macrophages. Recently, a number of groups have reported transcriptomic approaches which suggest the existence of plasmatocyte heterogeneity, while we identified enhancer elements that identify subpopulations of plasmatocytes which exhibit potentially pro-inflammatory behaviours, suggesting conservation of plasmatocyte heterogeneity in Drosophila. These plasmatocyte subpopulations exhibit enhanced responses to wounds and decreased rates of efferocytosis when compared to the overall plasmatocyte population. Interestingly, increasing the phagocytic requirement placed upon plasmatocytes is sufficient to decrease the size of these plasmatocyte subpopulations in the embryo. However, the mechanistic basis for this response was unclear. Here, we examine how plasmatocyte subpopulations are modulated by apoptotic cell clearance (efferocytosis) demands and associated signalling pathways. We show that loss of the phosphatidylserine receptor Simu prevents an increased phagocytic burden from modulating specific subpopulation cells, while blocking other apoptotic cell receptors revealed no such rescue. This suggests that Simu-dependent efferocytosis is specifically involved in determining fate of particular subpopulations. Supportive of our original finding, mutations in amo (the Drosophila homolog of PKD2), a calcium-permeable channel which operates downstream of Simu, phenocopy simu mutants. Furthermore, we show that Amo is involved in the acidification of the apoptotic cell-containing phagosomes, suggesting that this reduction in pH may be associated with macrophage reprogramming. Additionally, our results also identify Ecdysone receptor signalling, a pathway related to control of cell death during developmental transitions, as a controller of plasmatocyte subpopulation identity. Overall, these results identify fundamental pathways involved in the specification of plasmatocyte subpopulations and so further validate Drosophila plasmatocytes as a heterogeneous population of macrophage-like cells within this important developmental and immune model.
Collapse
Affiliation(s)
- Elliot C. Brooks
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Martin P. Zeidler
- School of Biosciences and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Albert C. M. Ong
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Iwan R. Evans
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler T, MacDonald J, Pallanck L. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571406. [PMID: 38168223 PMCID: PMC10760128 DOI: 10.1101/2023.12.13.571406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Bazzi W, Monticelli S, Delaporte C, Riet C, Giangrande A, Cattenoz PB. Gcm counteracts Toll-induced inflammation and impacts hemocyte number through cholinergic signaling. Front Immunol 2023; 14:1293766. [PMID: 38035083 PMCID: PMC10684909 DOI: 10.3389/fimmu.2023.1293766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Hemocytes, the myeloid-like immune cells of Drosophila, fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm. In addition, our data reveal the expression of acetylcholine receptors in hemocytes and that Toll activation affects their expressions, disclosing a novel aspect of the inflammatory response mediated by neurotransmitters. Finally, we provide evidence for acetylcholine receptor nicotinic acetylcholine receptor alpha 6 (nAchRalpha6) regulating hemocyte proliferation in a cell autonomous fashion and for non-cell autonomous cholinergic signaling regulating the number of hemocytes. Altogether, this study provides new insights on the molecular pathways involved in the inflammatory response.
Collapse
Affiliation(s)
- Wael Bazzi
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Sara Monticelli
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Claude Delaporte
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Céline Riet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Angela Giangrande
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Pierre B. Cattenoz
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
15
|
Hirschhäuser A, Molitor D, Salinas G, Großhans J, Rust K, Bogdan S. Single-cell transcriptomics identifies new blood cell populations in Drosophila released at the onset of metamorphosis. Development 2023; 150:dev201767. [PMID: 37681301 PMCID: PMC10560556 DOI: 10.1242/dev.201767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.
Collapse
Affiliation(s)
- Alexander Hirschhäuser
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Darius Molitor
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| |
Collapse
|
16
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Serna-Morales E, Sánchez-Sánchez BJ, Marcotti S, Nichols A, Bhargava A, Dragu A, Hirvonen LM, Díaz-de-la-Loza MDC, Mink M, Cox S, Rayfield E, Lee RM, Hobson CM, Chew TL, Stramer BM. Extracellular matrix assembly stress initiates Drosophila central nervous system morphogenesis. Dev Cell 2023; 58:825-835.e6. [PMID: 37086718 PMCID: PMC10390342 DOI: 10.1016/j.devcel.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 03/05/2023] [Indexed: 04/24/2023]
Abstract
Forces controlling tissue morphogenesis are attributed to cellular-driven activities, and any role for extracellular matrix (ECM) is assumed to be passive. However, all polymer networks, including ECM, can develop autonomous stresses during their assembly. Here, we examine the morphogenetic function of an ECM before reaching homeostatic equilibrium by analyzing de novo ECM assembly during Drosophila ventral nerve cord (VNC) condensation. Asymmetric VNC shortening and a rapid decrease in surface area correlate with the exponential assembly of collagen IV (Col4) surrounding the tissue. Concomitantly, a transient developmentally induced Col4 gradient leads to coherent long-range flow of ECM, which equilibrates the Col4 network. Finite element analysis and perturbation of Col4 network formation through the generation of dominant Col4 mutations that affect assembly reveal that VNC morphodynamics is partially driven by a sudden increase in ECM-driven surface tension. These data suggest that ECM assembly stress and associated network instabilities can actively participate in tissue morphogenesis.
Collapse
Affiliation(s)
- Eduardo Serna-Morales
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | | | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Angus Nichols
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Anushka Bhargava
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Liisa M Hirvonen
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | | | - Matyas Mink
- Institute of Medical Biology, University of Szeged, 6720 Szeged, Hungary
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Emily Rayfield
- School of Earth Sciences, University of Bristol, BS8 1QU Bristol, UK
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK.
| |
Collapse
|
18
|
Stephenson HN, Streeck R, Grüblinger F, Goosmann C, Herzig A. Hemocytes are essential for Drosophila melanogaster post-embryonic development, independent of control of the microbiota. Development 2022; 149:dev200286. [PMID: 36093870 PMCID: PMC9641648 DOI: 10.1242/dev.200286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/19/2022] [Indexed: 09/22/2023]
Abstract
Proven roles for hemocytes (blood cells) have expanded beyond the control of infections in Drosophila. Despite this, the crucial role of hemocytes in post-embryonic development has long thought to be limited to control of microorganisms during metamorphosis. This has previously been shown by rescue of adult development in hemocyte-ablation models under germ-free conditions. Here, we show that hemocytes have an essential role in post-embryonic development beyond their ability to control the microbiota. Using a newly generated strong hemocyte-specific driver line for the GAL4/UAS system, we show that specific ablation of hemocytes is early pupal lethal, even under axenic conditions. Genetic rescue experiments prove that this is a hemocyte-specific phenomenon. RNA-seq data suggests that dysregulation of the midgut is a prominent consequence of hemocyte ablation in larval stages, resulting in reduced gut lengths. Dissection suggests that multiple processes may be affected during metamorphosis. We believe this previously unreported role for hemocytes during metamorphosis is a major finding for the field.
Collapse
Affiliation(s)
- Holly N. Stephenson
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
- Peninsula Medical School, Faculty of Health,University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Robert Streeck
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Florian Grüblinger
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Christian Goosmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Alf Herzig
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
19
|
Bakopoulos D, Whisstock JC, Warr CG, Johnson TK. Macrophage self‐renewal is regulated by transient expression of
PDGF‐ and VEGF‐related factor 2. FEBS J 2022; 289:3735-3751. [DOI: 10.1111/febs.16364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Bakopoulos
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - James C. Whisstock
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University Clayton Vic. Australia
- Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Coral G. Warr
- School of Biological Sciences Monash University Clayton Vic. Australia
- School of Molecular Sciences La Trobe University Bundoora Vic. Australia
| | - Travis K. Johnson
- School of Biological Sciences Monash University Clayton Vic. Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University Clayton Vic. Australia
| |
Collapse
|
20
|
Akhmanova M, Emtenani S, Krueger D, Gyoergy A, Guarda M, Vlasov M, Vlasov F, Akopian A, Ratheesh A, De Renzis S, Siekhaus DE. Cell division in tissues enables macrophage infiltration. Science 2022; 376:394-396. [PMID: 35446632 DOI: 10.1126/science.abj0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
Collapse
Affiliation(s)
- Maria Akhmanova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daniel Krueger
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mariana Guarda
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Fedor Vlasov
- Bundesgymnasium Klosterneuburg, Klosterneuburg, Austria
| | | | - Aparna Ratheesh
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daria E Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
21
|
Akhmanova M, Emtenani S, Krueger D, Gyoergy A, Guarda M, Vlasov M, Vlasov F, Akopian A, Ratheesh A, De Renzis S, Siekhaus DE. Cell division in tissues enables macrophage infiltration. Science 2022; 376:394-396. [PMID: 35446632 DOI: 10.1101/2021.04.19.438995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
Collapse
Affiliation(s)
- Maria Akhmanova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daniel Krueger
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mariana Guarda
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Fedor Vlasov
- Bundesgymnasium Klosterneuburg, Klosterneuburg, Austria
| | | | - Aparna Ratheesh
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daria E Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
22
|
Emtenani S, Martin ET, Gyoergy A, Bicher J, Genger JW, Köcher T, Akhmanova M, Guarda M, Roblek M, Bergthaler A, Hurd TR, Rangan P, Siekhaus DE. Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila. EMBO J 2022; 41:e109049. [PMID: 35319107 PMCID: PMC9194793 DOI: 10.15252/embj.2021109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD‐box protein, and of two metabolic enzymes, lysine‐α‐ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors.
Collapse
Affiliation(s)
- Shamsi Emtenani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Elliot T Martin
- Department of Biological Sciences, RNA Institute, University at Albany, Albany, NY, USA
| | - Attila Gyoergy
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Bicher
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jakob-Wendelin Genger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Maria Akhmanova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Mariana Guarda
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Prashanth Rangan
- Department of Biological Sciences, RNA Institute, University at Albany, Albany, NY, USA
| | - Daria E Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
23
|
Raymond MH, Davidson AJ, Shen Y, Tudor DR, Lucas CD, Morioka S, Perry JS, Krapivkina J, Perrais D, Schumacher LJ, Campbell RE, Wood W, Ravichandran KS. Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo. Science 2022; 375:1182-1187. [PMID: 35271315 PMCID: PMC7612538 DOI: 10.1126/science.abl4430] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis of cells and their subsequent removal through efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. We developed a genetically encoded fluorescent reporter, CharON (Caspase and pH Activated Reporter, Fluorescence ON), that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. When confronted with high rates of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment behaviors, leading to some efferocytic macrophages carrying high corpse burden. Overburdened macrophages were compromised in clearing wound debris. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo.
Collapse
Affiliation(s)
- Michael H. Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesvill, VA, USA
| | - Andrew J. Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Daniel R. Tudor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Christopher D. Lucas
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Sho Morioka
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, Division of Nephrology and CIIR, University of Virginia, Charlottesville, VA, USA
| | - Justin S.A. Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Julia Krapivkina
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Linus J. Schumacher
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Kodi S. Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Belyaeva V, Wachner S, Gyoergy A, Emtenani S, Gridchyn I, Akhmanova M, Linder M, Roblek M, Sibilia M, Siekhaus D. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biol 2022; 20:e3001494. [PMID: 34990456 PMCID: PMC8735623 DOI: 10.1371/journal.pbio.3001494] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. The infiltration of immune cells into tissue underlies the establishment of tissue-resident macrophages, and responses to infections and tumors, but how do they overcome tissue barriers? This study shows that macrophages upregulate the proto-oncogene Fos, increasing the density and crosslinking of cortical actin, thereby counteracting the tension of surrounding tissues and protecting the macrophage nucleus.
Collapse
Affiliation(s)
- Vera Belyaeva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephanie Wachner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Attila Gyoergy
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Igor Gridchyn
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Akhmanova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|
25
|
Boulet M, Renaud Y, Lapraz F, Benmimoun B, Vandel L, Waltzer L. Characterization of the Drosophila Adult Hematopoietic System Reveals a Rare Cell Population With Differentiation and Proliferation Potential. Front Cell Dev Biol 2021; 9:739357. [PMID: 34722521 PMCID: PMC8550105 DOI: 10.3389/fcell.2021.739357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
While many studies have described Drosophila embryonic and larval blood cells, the hematopoietic system of the imago remains poorly characterized and conflicting data have been published concerning adult hematopoiesis. Using a combination of blood cell markers, we show that the adult hematopoietic system is essentially composed of a few distinct mature blood cell types. In addition, our transcriptomics results indicate that adult and larval blood cells have both common and specific features and it appears that adult hemocytes reactivate many genes expressed in embryonic blood cells. Interestingly, we identify a small set of blood cells that does not express differentiation markers but rather maintains the expression of the progenitor marker domeMeso. Yet, we show that these cells are derived from the posterior signaling center, a specialized population of cells present in the larval lymph gland, rather than from larval blood cell progenitors, and that their maintenance depends on the EBF transcription factor Collier. Furthermore, while these cells are normally quiescent, we find that some of them can differentiate and proliferate in response to bacterial infection. In sum, our results indicate that adult flies harbor a small population of specialized cells with limited hematopoietic potential and further support the idea that no substantial hematopoiesis takes place during adulthood.
Collapse
Affiliation(s)
- Manon Boulet
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - François Lapraz
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Billel Benmimoun
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Laurence Vandel
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Lucas Waltzer
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France.,Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
26
|
Winkler B, Funke D, Benmimoun B, Spéder P, Rey S, Logan MA, Klämbt C. Brain inflammation triggers macrophage invasion across the blood-brain barrier in Drosophila during pupal stages. SCIENCE ADVANCES 2021; 7:eabh0050. [PMID: 34705495 PMCID: PMC8550232 DOI: 10.1126/sciadv.abh0050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The nervous system is shielded from circulating immune cells by the blood-brain barrier (BBB). During infections and autoimmune diseases, macrophages can enter the brain where they participate in pathogen elimination but can also cause tissue damage. Here, we establish a Drosophila model to study macrophage invasion into the inflamed brain. We show that the immune deficiency (Imd) pathway, but not the Toll pathway, is responsible for attraction and invasion of hemolymph-borne macrophages across the BBB during pupal stages. Macrophage recruitment is mediated by glial, but not neuronal, induction of the Imd pathway through expression of Pvf2. Within the brain, macrophages can phagocytose synaptic material and reduce locomotor abilities and longevity. Similarly, we show that central nervous system infection by group B Streptococcus elicits macrophage recruitment in an Imd-dependent manner. This suggests that evolutionarily conserved inflammatory responses require a delicate balance between beneficial and detrimental activities.
Collapse
Affiliation(s)
- Bente Winkler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Dominik Funke
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Billel Benmimoun
- Brain Plasticity in response to the Environment, Institut Pasteur, UMR3738 CNRS, 75015 Paris, France
| | - Pauline Spéder
- Brain Plasticity in response to the Environment, Institut Pasteur, UMR3738 CNRS, 75015 Paris, France
| | - Simone Rey
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Mary A. Logan
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
- Corresponding author.
| |
Collapse
|
27
|
Cox N, Crozet L, Holtman IR, Loyher PL, Lazarov T, White JB, Mass E, Stanley ER, Elemento O, Glass CK, Geissmann F. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 2021; 373:373/6550/eabe9383. [PMID: 34210853 DOI: 10.1126/science.abe9383] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of Drosophila larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner. PDGFcc production is regulated by diet and acts in a paracrine manner to control lipid storage in adipose tissues of newborn and adult mice. At the organismal level upon PDGFcc blockade, excess lipids are redirected toward thermogenesis in brown fat. These data identify a macrophage-dependent mechanism, conducive to the design of pharmacological interventions, that controls energy storage in metazoans.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucile Crozet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Inge R Holtman
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Jessica B White
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Elvira Mass
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Developmental Biology of the Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
28
|
Coates JA, Brooks E, Brittle AL, Armitage EL, Zeidler MP, Evans IR. Identification of functionally distinct macrophage subpopulations in Drosophila. eLife 2021; 10:e58686. [PMID: 33885361 PMCID: PMC8062135 DOI: 10.7554/elife.58686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Vertebrate macrophages are a highly heterogeneous cell population, but while Drosophila blood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by the Calnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity in Drosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use of Drosophila to study macrophage heterogeneity in vivo.
Collapse
Affiliation(s)
- Jonathon Alexis Coates
- Department of Biomedical Science and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Elliot Brooks
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Amy Louise Brittle
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Emma Louise Armitage
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Martin Peter Zeidler
- Department of Biomedical Science and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Iwan Robert Evans
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
29
|
Tardy OR, Armitage EL, Prince LR, Evans IR. The Epidermal Growth Factor Ligand Spitz Modulates Macrophage Efferocytosis, Wound Responses and Migration Dynamics During Drosophila Embryogenesis. Front Cell Dev Biol 2021; 9:636024. [PMID: 33898424 PMCID: PMC8060507 DOI: 10.3389/fcell.2021.636024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
How multifunctional cells such as macrophages interpret the different cues within their environment and undertake an appropriate response is a key question in developmental biology. Understanding how cues are prioritized is critical to answering this - both the clearance of apoptotic cells (efferocytosis) and the migration toward damaged tissue is dependent on macrophages being able to interpret and prioritize multiple chemoattractants, polarize, and then undertake an appropriate migratory response. Here, we investigate the role of Spitz, the cardinal Drosophila epidermal growth factor (EGF) ligand, in regulation of macrophage behavior in the developing fly embryo, using activated variants with differential diffusion properties. Our results show that misexpression of activated Spitz can impact macrophage polarity and lead to clustering of cells in a variant-specific manner, when expressed either in macrophages or the developing fly heart. Spitz can also alter macrophage distribution and perturb apoptotic cell clearance undertaken by these phagocytic cells without affecting the overall levels of apoptosis within the embryo. Expression of active Spitz, but not a membrane-bound variant, can also increase macrophage migration speeds and impair their inflammatory responses to injury. The fact that the presence of Spitz specifically undermines the recruitment of more distal cells to wound sites suggests that Spitz desensitizes macrophages to wounds or is able to compete for their attention where wound signals are weaker. Taken together these results suggest this molecule regulates macrophage migration and their ability to dispose of apoptotic cells. This work identifies a novel regulator of Drosophila macrophage function and provides insights into signal prioritization and integration in vivo. Given the importance of apoptotic cell clearance and inflammation in human disease, this work may help us to understand the role EGF ligands play in immune cell recruitment during development and at sites of disease pathology.
Collapse
Affiliation(s)
- Olivier R. Tardy
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Emma L. Armitage
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Iwan R. Evans
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Cattenoz PB, Monticelli S, Pavlidaki A, Giangrande A. Toward a Consensus in the Repertoire of Hemocytes Identified in Drosophila. Front Cell Dev Biol 2021; 9:643712. [PMID: 33748138 PMCID: PMC7969988 DOI: 10.3389/fcell.2021.643712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 01/16/2023] Open
Abstract
The catalog of the Drosophila immune cells was until recently limited to three major cell types, based on morphology, function and few molecular markers. Three recent single cell studies highlight the presence of several subgroups, revealing a large diversity in the molecular signature of the larval immune cells. Since these studies rely on somewhat different experimental and analytical approaches, we here compare the datasets and identify eight common, robust subgroups associated to distinct functions such as proliferation, immune response, phagocytosis or secretion. Similar comparative analyses with datasets from different stages and tissues disclose the presence of larval immune cells resembling embryonic hemocyte progenitors and the expression of specific properties in larval immune cells associated with peripheral tissues.
Collapse
Affiliation(s)
- Pierre B. Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Sara Monticelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
31
|
Ramesh Kumar J, Smith JP, Kwon H, Smith RC. Use of Clodronate Liposomes to Deplete Phagocytic Immune Cells in Drosophila melanogaster and Aedes aegypti. Front Cell Dev Biol 2021; 9:627976. [PMID: 33604338 PMCID: PMC7884637 DOI: 10.3389/fcell.2021.627976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The innate immune system is the primary defense response to limit invading pathogens for all invertebrate species. In insects, immune cells are central to both cellular and humoral immune responses, however few genetic resources exist beyond Drosophila to study immune cell function. Therefore, the development of innovative tools that can be widely applied to a variety of insect systems is of importance to advance the study of insect immunity. Here, we have adapted the use of clodronate liposomes (CLD) to deplete phagocytic immune cells in the vinegar fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. Through microscopy and molecular techniques, we validate the depletion of phagocytic cell populations in both insect species and demonstrate the integral role of phagocytes in combating bacterial pathogens. Together, these data demonstrate the wide utility of CLD in insect systems to advance the study of phagocyte function in insect innate immunity.
Collapse
Affiliation(s)
- Jyothsna Ramesh Kumar
- Interdepartmental Graduate Program in Immunobiology, Iowa State University, Ames, IA, United States.,Department of Entomology, Iowa State University, Ames, IA, United States
| | - Jessica P Smith
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, United States
| |
Collapse
|
32
|
Rapid Homeostatic Turnover of Embryonic ECM during Tissue Morphogenesis. Dev Cell 2020; 54:33-42.e9. [PMID: 32585131 PMCID: PMC7332994 DOI: 10.1016/j.devcel.2020.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) is a polymer network hypothesized to form a stable cellular scaffold. While the ECM can undergo acute remodeling during embryogenesis, it is experimentally difficult to determine whether basal turnover is also important. Most studies of homeostatic turnover assume an initial steady-state balance of production and degradation and measure half-life by quantifying the rate of decay after experimental intervention (e.g., pulse labeling). Here, we present an intervention-free approach to mathematically model basal ECM turnover during embryogenesis by exploiting our ability to live image de novo ECM development in Drosophila to quantify production from initiation to homeostasis. This reveals rapid turnover (half-life ∼7–10 h), which we confirmed by in vivo pulse-chase experiments. Moreover, ECM turnover is partially dependent on proteolysis and network interactions, and slowing turnover affects tissue morphogenesis. These data demonstrate that embryonic ECM undergoes constant replacement, which is likely necessary to maintain network plasticity to accommodate growth and morphogenesis. Labeled ECM in fly embryos can be examined from initiation to homeostasis Quantifying ECM levels to homeostasis allows for modeling of basal turnover rate Embryonic ECM has a half-life of ∼10 h, which was confirmed by pulse-chase analysis Inhibiting MMPs or ECM interactions alters the basal turnover rate
Collapse
|
33
|
Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, Hariharan N, Mukherjee T, Giangrande A. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J 2020; 39:e104486. [PMID: 32162708 PMCID: PMC7298292 DOI: 10.15252/embj.2020104486] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Andrea Riba
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nivedita Hariharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- The University of Trans‐disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
34
|
Kierdorf K, Hersperger F, Sharrock J, Vincent CM, Ustaoglu P, Dou J, Gyoergy A, Groß O, Siekhaus DE, Dionne MS. Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. eLife 2020; 9:e51595. [PMID: 31944178 PMCID: PMC6996930 DOI: 10.7554/elife.51595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.
Collapse
Affiliation(s)
- Katrin Kierdorf
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Fabian Hersperger
- Institute of Neuropathology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jessica Sharrock
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Crystal M Vincent
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Pinar Ustaoglu
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Jiawen Dou
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
| | - Attila Gyoergy
- Institute of Science and TechnologyKlosterneuburgAustria
| | - Olaf Groß
- Institute of Neuropathology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Centre for Integrative Biological Signalling Studies (CIBSS)University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
| |
Collapse
|
35
|
Simu-dependent clearance of dying cells regulates macrophage function and inflammation resolution. PLoS Biol 2019; 17:e2006741. [PMID: 31086359 PMCID: PMC6516643 DOI: 10.1371/journal.pbio.2006741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
Macrophages encounter and clear apoptotic cells during normal development and homeostasis, including at numerous sites of pathology. Clearance of apoptotic cells has been intensively studied, but the effects of macrophage-apoptotic cell interactions on macrophage behaviour are poorly understood. Using Drosophila embryos, we have exploited the ease of manipulating cell death and apoptotic cell clearance in this model to identify that the loss of the apoptotic cell clearance receptor Six-microns-under (Simu) leads to perturbation of macrophage migration and inflammatory responses via pathological levels of apoptotic cells. Removal of apoptosis ameliorates these phenotypes, while acute induction of apoptosis phenocopies these defects and reveals that phagocytosis of apoptotic cells is not necessary for their anti-inflammatory action. Furthermore, Simu is necessary for clearance of necrotic debris and retention of macrophages at wounds. Thus, Simu is a general detector of damaged self and represents a novel molecular player regulating macrophages during resolution of inflammation.
Collapse
|
36
|
Valoskova K, Biebl J, Roblek M, Emtenani S, Gyoergy A, Misova M, Ratheesh A, Reis-Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife 2019; 8:e41801. [PMID: 30910009 PMCID: PMC6435326 DOI: 10.7554/elife.41801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva's vertebrate ortholog, MFSD1, rescues the minerva mutant's migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.
Collapse
Affiliation(s)
| | - Julia Biebl
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marko Roblek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Shamsi Emtenani
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Attila Gyoergy
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michaela Misova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Aparna Ratheesh
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUnited Kingdom
| | | | | | - Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daria E Siekhaus
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
37
|
The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate. J Neurosci 2018; 39:238-255. [PMID: 30504274 DOI: 10.1523/jneurosci.1059-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside (hemocytes) the nervous system require the same transcription factor glial cells deficient/glial cells missing (Glide/Gcm) for their development. This raises the issue of how do glia specifically differentiate in the nervous system, and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and panglial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us to understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENT Distinct cell types often require the same pioneer transcription factor, raising the issue of how one factor triggers different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the glial cells deficient/glial cells missing (Glide/Gcm) transcription factor, glia originate from the ectoderm, and hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification.
Collapse
|
38
|
Ratheesh A, Biebl J, Vesela J, Smutny M, Papusheva E, Krens SG, Kaufmann W, Gyoergy A, Casano AM, Siekhaus DE. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Dev Cell 2018; 45:331-346.e7. [DOI: 10.1016/j.devcel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
|
39
|
Franz A, Wood W, Martin P. Fat Body Cells Are Motile and Actively Migrate to Wounds to Drive Repair and Prevent Infection. Dev Cell 2018; 44:460-470.e3. [PMID: 29486196 PMCID: PMC6113741 DOI: 10.1016/j.devcel.2018.01.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/04/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
Adipocytes have many functions in various tissues beyond energy storage, including regulating metabolism, growth, and immunity. However, little is known about their role in wound healing. Here we use live imaging of fat body cells, the equivalent of vertebrate adipocytes in Drosophila, to investigate their potential behaviors and functions following skin wounding. We find that pupal fat body cells are not immotile, as previously presumed, but actively migrate to wounds using an unusual adhesion-independent, actomyosin-driven, peristaltic mode of motility. Once at the wound, fat body cells collaborate with hemocytes, Drosophila macrophages, to clear the wound of cell debris; they also tightly seal the epithelial wound gap and locally release antimicrobial peptides to fight wound infection. Thus, fat body cells are motile cells, enabling them to migrate to wounds to undertake several local functions needed to drive wound repair and prevent infections.
Collapse
Affiliation(s)
- Anna Franz
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Will Wood
- School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|