1
|
Kwakye A, Reid K, Wund MA, Heins DC, Bell MA, Veeramah KR. Rare "Jackpot" Individuals Drive Rapid Adaptation in Threespine Stickleback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.642177. [PMID: 40196559 PMCID: PMC11974937 DOI: 10.1101/2025.03.25.642177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Recombination has long been considered the primary mechanism to bring beneficial alleles together, which can increase the speed of adaptation from standing genetic variation. Recombination is fundamental to the transporter hypothesis proposed to explain precise parallel adaptation in Threespine Stickleback. We studied an instance of freshwater adaptation in the Threespine Stickleback system using whole genomic data from an evolutionary time series to observe the genomic dynamics underlying rapid parallel adaptation. Our experiment showed that rapid adaptation to a freshwater environment depended on a few individuals with large haploblocks of freshwater-adaptive alleles (jackpot carriers) present among the anadromous (i.e., sea-run) founders at low frequencies. Biological kinship analyses indicate that mating among jackpot carriers and between jackpot carriers and non-jackpot individuals led to a rapid increase in freshwater-adaptive alleles within the first few generations. This process allowed the population to overcome a substantial bottleneck likely caused by the low fitness of first-generation stickleback with a few freshwater-adaptive alleles born in the lake. Additionally, we found evidence that the genetic load that emerged from population growth after the bottleneck may have been reduced through an increase in homozygosity by inbreeding, ultimately purging deleterious alleles. Recombination likely played a limited role in this case of very rapid adaptation.
Collapse
Affiliation(s)
- Alexander Kwakye
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kerry Reid
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Matthew A. Wund
- Department of Biology, The College of New Jersey, Ewing, NJ 08628, USA
| | - David C. Heins
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael A. Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Sakamoto T, Whiting JR, Yeaman S. Mutation potentiates migration swamping in polygenic local adaptation. Genetics 2024; 228:iyae165. [PMID: 39395190 PMCID: PMC11631501 DOI: 10.1093/genetics/iyae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Locally adapted traits can exhibit a wide range of genetic architectures, from pronounced divergence at a few loci to small frequency divergence at many loci. The type of architecture that evolves depends strongly on the migration rate, as weakly selected loci experience swamping and do not make lasting contributions to divergence. Simulations from previous studies showed that even when mutations are strongly selected and should resist migration swamping, the architecture of adaptation can collapse and become transient at high mutation rates. Here, we use an analytical two-population model to study how this transition in genetic architecture depends upon population size, strength of selection, and parameters describing the mutation process. To do this, we develop a mathematical theory based on the diffusion approximation to predict the threshold mutation rate above which the transition occurs. We find that this performs well across a wide range of parameter space, based on comparisons with individual-based simulations. The threshold mutation rate depends most strongly on the average effect size of mutations, weakly on the strength of selection, and marginally on the population size. Across a wide range of the parameter space, we observe that the transition to a transient architecture occurs when the trait-wide mutation rate is 10-3-10-2, suggesting that this phenomenon is potentially relevant to complex traits with a large mutational target. On the other hand, based on the apparent stability of genetic architecture in many classic examples of local adaptation, our theory suggests that per-trait mutation rates are often relatively low.
Collapse
Affiliation(s)
- Takahiro Sakamoto
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
- National Institute of Genetics 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
3
|
Ryan K, Greenway R, Landers J, Arias-Rodriguez L, Tobler M, Kelley JL. Selection on standing genetic variation mediates convergent evolution in extremophile fish. Mol Ecol 2023; 32:5042-5054. [PMID: 37548336 DOI: 10.1111/mec.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in the Poecilia mexicana species complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.
Collapse
Affiliation(s)
- Kara Ryan
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Ryan Greenway
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Constance, Germany
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Jake Landers
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Mexico
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Schroeder L, Ackermann RR. Moving beyond the adaptationist paradigm for human evolution, and why it matters. J Hum Evol 2023; 174:103296. [PMID: 36527977 DOI: 10.1016/j.jhevol.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Rebecca Rogers Ackermann
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
5
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
6
|
Xuereb A, Rougemont Q, Tiffin P, Xue H, Phifer-Rixey M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc Biol Sci 2021; 288:20212006. [PMID: 34753353 PMCID: PMC8580472 DOI: 10.1098/rspb.2021.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 01/09/2023] Open
Abstract
As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.
Collapse
Affiliation(s)
- Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, 3050 Avenue de la Médecine, Québec, Quebec, Canada G1 V 0A6
| | - Quentin Rougemont
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Huijie Xue
- School of Marine Sciences, University of Maine, 5706 Aubert Hall, Orono, ME 04469-5706, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, 400 Cedar Avenue, West Long Branch, NJ, USA
| |
Collapse
|
7
|
Haenel Q, Guerard L, MacColl ADC, Berner D. The maintenance of standing genetic variation: Gene flow vs. selective neutrality in Atlantic stickleback fish. Mol Ecol 2021; 31:811-821. [PMID: 34753205 PMCID: PMC9299253 DOI: 10.1111/mec.16269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
Adaptation to derived habitats often occurs from standing genetic variation. The maintenance within ancestral populations of genetic variants favourable in derived habitats is commonly ascribed to long‐term antagonism between purifying selection and gene flow resulting from hybridization across habitats. A largely unexplored alternative idea based on quantitative genetic models of polygenic adaptation is that variants favoured in derived habitats are neutral in ancestral populations when their frequency is relatively low. To explore the latter, we first identify genetic variants important to the adaptation of threespine stickleback fish (Gasterosteus aculeatus) to a rare derived habitat—nutrient‐depleted acidic lakes—based on whole‐genome sequence data. Sequencing marine stickleback from six locations across the Atlantic Ocean then allows us to infer that the frequency of these derived variants in the ancestral habitat is unrelated to the likely opportunity for gene flow of these variants from acidic‐adapted populations. This result is consistent with the selective neutrality of derived variants within the ancestor. Our study thus supports an underappreciated explanation for the maintenance of standing genetic variation, and calls for a better understanding of the fitness consequences of adaptive variation across habitats and genomic backgrounds.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Laurent Guerard
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Berner
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Abstract
The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.
Collapse
Affiliation(s)
- Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, California 94720, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
9
|
Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat Commun 2021; 12:4306. [PMID: 34262034 PMCID: PMC8280168 DOI: 10.1038/s41467-021-24581-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
We lack a thorough understanding of the origin and maintenance of standing genetic variation that enables rapid evolutionary responses of natural populations. Whole genome sequencing of a resurrected Daphnia population shows that standing genetic variation in over 500 genes follows an evolutionary trajectory that parallels the pronounced and rapid adaptive evolution of multiple traits in response to predator-driven natural selection and its subsequent relaxation. Genetic variation carried by only five founding individuals from the regional genotype pool is shown to suffice at enabling the observed evolution. Our results provide insight on how natural populations can acquire the genomic variation, through colonization by a few regional genotypes, that fuels rapid evolution in response to strong selection pressures. While these evolutionary responses in our study population involved hundreds of genes, we observed no evidence of genetic erosion.
Collapse
|
10
|
Roberts Kingman GA, Vyas DN, Jones FC, Brady SD, Chen HI, Reid K, Milhaven M, Bertino TS, Aguirre WE, Heins DC, von Hippel FA, Park PJ, Kirch M, Absher DM, Myers RM, Di Palma F, Bell MA, Kingsley DM, Veeramah KR. Predicting future from past: The genomic basis of recurrent and rapid stickleback evolution. SCIENCE ADVANCES 2021; 7:7/25/eabg5285. [PMID: 34144992 PMCID: PMC8213234 DOI: 10.1126/sciadv.abg5285] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 05/30/2023]
Abstract
Similar forms often evolve repeatedly in nature, raising long-standing questions about the underlying mechanisms. Here, we use repeated evolution in stickleback to identify a large set of genomic loci that change recurrently during colonization of freshwater habitats by marine fish. The same loci used repeatedly in extant populations also show rapid allele frequency changes when new freshwater populations are experimentally established from marine ancestors. Marked genotypic and phenotypic changes arise within 5 years, facilitated by standing genetic variation and linkage between adaptive regions. Both the speed and location of changes can be predicted using empirical observations of recurrence in natural populations or fundamental genomic features like allelic age, recombination rates, density of divergent loci, and overlap with mapped traits. A composite model trained on these stickleback features can also predict the location of key evolutionary loci in Darwin's finches, suggesting that similar features are important for evolution across diverse taxa.
Collapse
Affiliation(s)
- Garrett A Roberts Kingman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring, Tübingen, Germany
| | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Mark Milhaven
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Thomas S Bertino
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL 60614-3207, USA
| | - David C Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
| | - Peter J Park
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021, USA
| | - Melanie Kirch
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring, Tübingen, Germany
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Federica Di Palma
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA.
| |
Collapse
|
11
|
Kirch M, Romundset A, Gilbert MTP, Jones FC, Foote AD. Ancient and modern stickleback genomes reveal the demographic constraints on adaptation. Curr Biol 2021; 31:2027-2036.e8. [PMID: 33705715 DOI: 10.1016/j.cub.2021.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
Adaptation is typically studied by comparing modern populations with contrasting environments. Individuals persisting in the ancestral habitat are typically used to represent the ancestral founding population; however, it has been questioned whether these individuals are good proxies for the actual ancestors.1 To address this, we applied a paleogenomics approach2 to directly access the ancestral genepool: partially sequencing the genomes of two 11- to 13,000-year-old stickleback recovered from the transitionary layer between marine and freshwater sediments of two Norwegian isolation lakes3 and comparing them with 30 modern stickleback genomes from the same lakes and adjacent marine fjord, in addition to a global dataset of 20 genomes.4 The ancient stickleback shared genome-wide ancestry with the modern fjord population, whereas modern lake populations have lost substantial ancestral variation following founder effects, and subsequent drift and selection. Freshwater-adaptive alleles found in one ancient stickleback genome have not risen to high frequency in the present-day population from the same lake. Comparison to the global dataset suggested incomplete adaptation to freshwater in our modern lake populations. Our findings reveal the impact of population bottlenecks in constraining adaptation due to reduced efficacy of selection on standing variation present in founder populations.
Collapse
Affiliation(s)
- Melanie Kirch
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | | | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, DK-1353 Copenhagen, Denmark; Department of Natural History, Norwegian University of Science and Technology (NTNU), University Museum, 7491 Trondheim, Norway
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Andrew D Foote
- Department of Natural History, Norwegian University of Science and Technology (NTNU), University Museum, 7491 Trondheim, Norway; Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, UK.
| |
Collapse
|
12
|
Fang B, Kemppainen P, Momigliano P, Merilä J. Population structure limits parallel evolution in sticklebacks. Mol Biol Evol 2021; 38:4205-4221. [PMID: 33956140 PMCID: PMC8476136 DOI: 10.1093/molbev/msab144] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Population genetic theory predicts that small effective population sizes (Ne) and restricted gene flow limit the potential for local adaptation. In particular, the probability of evolving similar phenotypes based on shared genetic mechanisms (i.e., parallel evolution), is expected to be reduced. We tested these predictions in a comparative genomic study of two ecologically similar and geographically codistributed stickleback species (viz. Gasterosteus aculeatus and Pungitius pungitius). We found that P. pungitius harbors less genetic diversity and exhibits higher levels of genetic differentiation and isolation-by-distance than G. aculeatus. Conversely, G. aculeatus exhibits a stronger degree of genetic parallelism across freshwater populations than P. pungitius: 2,996 versus 379 single nucleotide polymorphisms located within 26 versus 9 genomic regions show evidence of selection in multiple freshwater populations of G. aculeatus and P. pungitius, respectively. Most regions involved in parallel evolution in G. aculeatus showed increased levels of divergence, suggestive of selection on ancient haplotypes. In contrast, haplotypes involved in freshwater adaptation in P. pungitius were younger. In accordance with theory, the results suggest that connectivity and genetic drift play crucial roles in determining the levels and geographic distribution of standing genetic variation, providing evidence that population subdivision limits local adaptation and therefore also the likelihood of parallel evolution.
Collapse
Affiliation(s)
- Bohao Fang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland.,Research Division of Ecology and Biodiversity, Faculty of Science, Kadoorie Building, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
13
|
Kemppainen P, Li Z, Rastas P, Löytynoja A, Fang B, Yang J, Guo B, Shikano T, Merilä J. Genetic population structure constrains local adaptation in sticklebacks. Mol Ecol 2021; 30:1946-1961. [PMID: 33464655 DOI: 10.1111/mec.15808] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Repeated and independent adaptation to specific environmental conditions from standing genetic variation is common. However, if genetic variation is limited, the evolution of similar locally adapted traits may be restricted to genetically different and potentially less optimal solutions or prevented from happening altogether. Using a quantitative trait locus (QTL) mapping approach, we identified the genomic regions responsible for the repeated pelvic reduction (PR) in three crosses between nine-spined stickleback populations expressing full and reduced pelvic structures. In one cross, PR mapped to linkage group 7 (LG7) containing the gene Pitx1, known to control pelvic reduction also in the three-spined stickleback. In the two other crosses, PR was polygenic and attributed to 10 novel QTL, of which 90% were unique to specific crosses. When screening the genomes from 27 different populations for deletions in the Pitx1 regulatory element, these were only found in the population in which PR mapped to LG7, even though the morphological data indicated large-effect QTL for PR in several other populations as well. Consistent with the available theory and simulations parameterized on empirical data, we hypothesize that the observed variability in genetic architecture of PR is due to heterogeneity in the spatial distribution of standing genetic variation caused by >2× stronger population structuring among freshwater populations and >10× stronger genetic isolation by distance in the sea in nine-spined sticklebacks as compared to three-spined sticklebacks.
Collapse
Affiliation(s)
- Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Pasi Rastas
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bohao Fang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jing Yang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Chinese Sturgeon Research Institute, Three Gorges Corporation, Yichang, China
| | - Baocheng Guo
- The Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Takahito Shikano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Division of Ecology and Biodiversity, The University of Hong Kong, Pokfulam, Hong Kong, SAR
| |
Collapse
|
14
|
Ralph P, Thornton K, Kelleher J. Efficiently Summarizing Relationships in Large Samples: A General Duality Between Statistics of Genealogies and Genomes. Genetics 2020; 215:779-797. [PMID: 32357960 PMCID: PMC7337078 DOI: 10.1534/genetics.120.303253] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
As a genetic mutation is passed down across generations, it distinguishes those genomes that have inherited it from those that have not, providing a glimpse of the genealogical tree relating the genomes to each other at that site. Statistical summaries of genetic variation therefore also describe the underlying genealogies. We use this correspondence to define a general framework that efficiently computes single-site population genetic statistics using the succinct tree sequence encoding of genealogies and genome sequence. The general approach accumulates sample weights within the genealogical tree at each position on the genome, which are then combined using a summary function; different statistics result from different choices of weight and function. Results can be reported in three ways: by site, which corresponds to statistics calculated as usual from genome sequence; by branch, which gives the expected value of the dual site statistic under the infinite sites model of mutation, and by node, which summarizes the contribution of each ancestor to these statistics. We use the framework to implement many currently defined statistics of genome sequence (making the statistics' relationship to the underlying genealogical trees concrete and explicit), as well as the corresponding branch statistics of tree shape. We evaluate computational performance using simulated data, and show that calculating statistics from tree sequences using this general framework is several orders of magnitude more efficient than optimized matrix-based methods in terms of both run time and memory requirements. We also explore how well the duality between site and branch statistics holds in practice on trees inferred from the 1000 Genomes Project data set, and discuss ways in which deviations may encode interesting biological signals.
Collapse
Affiliation(s)
- Peter Ralph
- Institute of Evolution and Ecology, Departments of Mathematics and Biology, University of Oregon, Eugene, Oregon 97405
| | - Kevin Thornton
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom OX3 7LF
| |
Collapse
|