1
|
Johnson HM, Riddle NC. Early life exercise impacts physiology and lifespan in a sex- and genotype-dependent manner in a Drosophila melanogaster exercise model. Exp Gerontol 2024; 198:112630. [PMID: 39551399 DOI: 10.1016/j.exger.2024.112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Exercise is a common strategy for disease prevention or management, including for diabetes and cardiac dysfunction. However, exercise response varies immensely between individuals, and in humans, the same exercise treatment can lead both to positive and negative responses. Drosophila melanogaster is an established model for exercise research that can be leveraged to understand this variation in exercise response. Here, we investigated how two early life exercise treatments differing in duration (5 and 20 days) impact the animals' health- and lifespan in four genotypes. Specifically, we measured lifespan, activity level, body condition, physical ability, and reproductive output in this exploratory study to gain insights into potential trade-offs. For most measures, we found both immediate and long-term effects, with some effects persisting weeks past the cessation of exercise. The effect of the exercise treatment was context-dependent, with treatment, sex, and genotype interactions determining phenotypes. For example, the 20-day treatment did not exhibit a consistently larger effect than the 5-day treatment. Similarly, neither the 5-day nor the 20-day treatment impacted lifespan, but two specific genotype/sex combinations showed altered lifespan after exercise. The 20-day treatment decreased climbing performance compared to controls up to several weeks after treatment ended in some genotypes. Together, our results highlight the complex, interacting factors controlling exercise response and demonstrate that early life exercise can have long-lasting effects in the Drosophila exercise model even though most individual groups show no response.
Collapse
Affiliation(s)
- Heidi M Johnson
- University of Alabama at Birmingham, Department of Biology, 1720 2nd Ave South, Birmingham, AL 35294-1170, USA
| | - Nicole C Riddle
- University of Alabama at Birmingham, Department of Biology, 1720 2nd Ave South, Birmingham, AL 35294-1170, USA.
| |
Collapse
|
2
|
Richardson K, Wessells R. A novel panel of Drosophila TAFAZZIN mutants in distinct genetic backgrounds as a resource for therapeutic testing. PLoS One 2023; 18:e0286380. [PMID: 37756350 PMCID: PMC10529581 DOI: 10.1371/journal.pone.0286380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 09/29/2023] Open
Abstract
Barth Syndrome is a rare, X-linked disorder caused by mutation of the gene TAFAZZIN (TAZ). The corresponding Tafazzin protein is involved in the remodeling of cardiolipin, a phospholipid with critical roles in mitochondrial function. While recent clinical trials have been promising, there is still no cure for Barth Syndrome. Because TAZ is highly conserved, multiple animal and cell culture models exist for pre-clinical testing of therapeutics. However, since the same mutation in different patients can lead to different symptoms and responses to treatment, isogenized experimental models can't fully account for human disease conditions. On the other hand, isogenized animal models allow for sufficient numbers to thoroughly establish efficacy for a given genetic background. Therefore, a combined method for testing treatments in a panel of isogenized cohorts that are genetically distinct from each other would be transformative for testing emerging pre-clinical therapies. To aid in this effort, we've created a novel panel of 10 Drosophila lines, each with the same TAZ mutation in highly diverse genetic backgrounds, to serve as a helpful resource to represent natural variation in background genetics in pre-clinical studies. As a proof of principle, we test our panel here using nicotinamide riboside (NR), a treatment with established therapeutic value, to evaluate how robust this therapy is across the 10 genetic backgrounds in this novel reference panel. We find substantial variation in the response to NR across backgrounds. We expect this resource will be valuable in pre-clinical testing of emerging therapies for Barth Syndrome.
Collapse
Affiliation(s)
- Kristin Richardson
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
3
|
Candia N, Ibacache A, Medina-Yáñez I, Olivares GH, Ramírez M, Vega-Macaya F, Couve A, Sierralta J, Olguín P. Identification of atlastin genetic modifiers in a model of hereditary spastic paraplegia in Drosophila. Hum Genet 2023; 142:1303-1315. [PMID: 37368047 DOI: 10.1007/s00439-023-02577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative disorders characterized by progressive dysfunction of corticospinal motor neurons. Mutations in Atlastin1/Spg3, a small GTPase required for membrane fusion in the endoplasmic reticulum, are responsible for 10% of HSPs. Patients with the same Atlastin1/Spg3 mutation present high variability in age at onset and severity, suggesting a fundamental role of the environment and genetic background. Here, we used a Drosophila model of HSPs to identify genetic modifiers of decreased locomotion associated with atlastin knockdown in motor neurons. First, we screened for genomic regions that modify the climbing performance or viability of flies expressing atl RNAi in motor neurons. We tested 364 deficiencies spanning chromosomes two and three and found 35 enhancer and four suppressor regions of the climbing phenotype. We found that candidate genomic regions can also rescue atlastin effects at synapse morphology, suggesting a role in developing or maintaining the neuromuscular junction. Motor neuron-specific knockdown of 84 genes spanning candidate regions of the second chromosome identified 48 genes required for climbing behavior in motor neurons and 7 for viability, mapping to 11 modifier regions. We found that atl interacts genetically with Su(z)2, a component of the Polycomb repressive complex 1, suggesting that epigenetic regulation plays a role in the variability of HSP-like phenotypes caused by atl alleles. Our results identify new candidate genes and epigenetic regulation as a mechanism modifying neuronal atl pathogenic phenotypes, providing new targets for clinical studies.
Collapse
Affiliation(s)
- Noemi Candia
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Andrés Ibacache
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Ignacio Medina-Yáñez
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Gonzalo H Olivares
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Santiago, Chile
| | - Mauricio Ramírez
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Franco Vega-Macaya
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Andrés Couve
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Jimena Sierralta
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Patricio Olguín
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile.
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile.
| |
Collapse
|
4
|
Watanabe LP, Riddle NC. Exercise-induced changes in climbing performance. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211275. [PMID: 34804578 PMCID: PMC8580468 DOI: 10.1098/rsos.211275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 05/13/2023]
Abstract
Exercise is recommended to promote health and prevent a range of diseases. However, how exercise precipitates these benefits is unclear, nor do we understand why exercise responses differ so widely between individuals. We investigate how climbing ability in Drosophila melanogaster changes in response to an exercise treatment. We find extensive variation in baseline climbing ability and exercise-induced changes ranging from -13% to +20% in climbing ability. Climbing ability, and its exercise-induced change, is sex- and genotype-dependent. GWASs implicate 'cell-cell signalling' genes in the control of climbing ability. We also find that animal activity does not predict climbing ability and that the exercise-induced climbing ability change cannot be predicted from the activity level induced by the exercise treatment. These results provide promising new avenues for further research into the molecular pathways controlling climbing activity and illustrate the complexities involved in trying to predict individual responses to exercise.
Collapse
Affiliation(s)
- Louis P. Watanabe
- Department of Biology, The University of Alabama at Birmingham, CH464, 1720 2nd Ave South, Birmingham, AL 35294, US
| | - Nicole C. Riddle
- Department of Biology, The University of Alabama at Birmingham, CH464, 1720 2nd Ave South, Birmingham, AL 35294, US
| |
Collapse
|
5
|
Ueno T, Takahashi Y. Mitochondrial polymorphism shapes intrapopulation behavioural variation in wild Drosophila. Biol Lett 2021; 17:20210194. [PMID: 34314641 PMCID: PMC8315832 DOI: 10.1098/rsbl.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Intrapopulation variation in behaviour, including activity, boldness and aggressiveness, is becoming more widely recognized and is hypothesized to substantially affect ecological and evolutionary dynamics. Although previous studies used candidate-gene approaches and genome-wide association analyses to identify genes correlated with variations in activity and aggressiveness, behavioural variation may not be fully captured in the nuclear genome, as it does not account for mitochondrial genomes. Mitochondrial genes encode products that are key regulators of the cellular energy-producing pathways in metabolic processes and are thought to play a significant role in life-history and reproductive traits. In this study, we considered many isofemale lines of Drosophila immigrans established from two wild populations to investigate whether intrapopulation variation in the mitochondrial genome affected activity level within this species. We identified two major haplogroups in these populations, and activity levels in both larvae and adults differed significantly between the two haplogroups. This result indicated that intrapopulation variation in activity level may be partially controlled by mitochondrial genes, along with the interaction between nuclear and mitochondrial genes and the age of individual organisms.
Collapse
Affiliation(s)
- Takahisa Ueno
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
GWAS reveal a role for the central nervous system in regulating weight and weight change in response to exercise. Sci Rep 2021; 11:5144. [PMID: 33664357 PMCID: PMC7933348 DOI: 10.1038/s41598-021-84534-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Abstract
Body size and weight show considerable variation both within and between species. This variation is controlled in part by genetics, but also strongly influenced by environmental factors including diet and the level of activity experienced by the individual. Due to the increasing obesity epidemic in much of the world, there is considerable interest in the genetic factors that control body weight and how weight changes in response to exercise treatments. Here, we address this question in the Drosophila model system, utilizing 38 strains of the Drosophila Genetics Reference Panel. We use GWAS to identify the molecular pathways that control weight and weight changes in response to exercise. We find that there is a complex set of molecular pathways controlling weight, with many genes linked to the central nervous system (CNS). The CNS also plays a role in the weight change with exercise, in particular, signaling from the CNS. Additional analyses revealed that weight in Drosophila is driven by two factors, animal size, and body composition, as the amount of fat mass versus lean mass impacts the density. Thus, while the CNS appears to be important for weight and exercise-induced weight change, signaling pathways are particularly important for determining how exercise impacts weight.
Collapse
|
7
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021; 11:jkaa014. [PMID: 33561224 PMCID: PMC7849908 DOI: 10.1093/g3journal/jkaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
8
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021. [PMID: 33561224 DOI: 10.1093/g3journal/jkaa014.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.,The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
9
|
Ueno T, Takahashi Y. Intrapopulation genetic variation in the level and rhythm of daily activity in Drosophila immigrans. Ecol Evol 2020; 10:14388-14393. [PMID: 33391722 PMCID: PMC7771174 DOI: 10.1002/ece3.7041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023] Open
Abstract
Genetic diversity within a population, such as polymorphisms and personality, is considered to improve population performance because such intraspecific variations have the potential to alleviate the competition for a limited resource or the risk of predation and sexual harassment at a population level. Variation in the level and rhythm of daily activity in a population could also affect population performance by directly altering ecological, social, and sexual interactions among individuals. However, it remains to be elucidated whether such intra-population variation in the level and rhythms of daily activity exists in a natural population. Here, we investigated the genetic variation in daily activity within a single natural population of Drosophila immigrans. We established 21 isofemale lines from a single natural population and measured larval activity level and the level and daily pattern of adult activity over a 24 hr period. Larval activity level significantly varied among isofemale lines. Likewise, the activity level in the adult stage significantly varied among lines. The significant variation was also found in the daily pattern of adult activity; some lines showed greater activity level in the daytime, and others showed greater activity level in the night. Our results consistently suggest that there is a genetic variation in behavioral activity in a natural population, probably contributing to shaping the population performance.
Collapse
Affiliation(s)
- Takahisa Ueno
- Graduate School of Science and EngineeringChiba UniversityChibaJapan
| | | |
Collapse
|
10
|
Riddle NC. Variation in the response to exercise stimulation in Drosophila: marathon runner versus sprinter genotypes. J Exp Biol 2020; 223:jeb229997. [PMID: 32737212 DOI: 10.1242/jeb.229997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Animals' behaviors vary in response to their environment, both biotic and abiotic. These behavioral responses have significant impacts on animal survival and fitness, and thus, many behavioral responses are at least partially under genetic control. In Drosophila, for example, genes impacting aggression, courtship behavior, circadian rhythms and sleep have been identified. Animal activity also is influenced strongly by genetics. My lab previously has used the Drosophila melanogaster Genetics Reference Panel (DGRP) to investigate activity levels and identified over 100 genes linked to activity. Here, I re-examined these data to determine whether Drosophila strains differ in their response to rotational exercise stimulation, not simply in the amount of activity, but in activity patterns and timing of activity. Specifically, I asked whether there are fly strains exhibiting either a 'marathoner' pattern of activity, i.e. remaining active throughout the 2 h exercise period, or a 'sprinter' pattern, i.e. carrying out most of the activity early in the exercise period. The DGRP strains examined differ significantly in how much activity is carried out at the beginning of the exercise period, and this pattern is influenced by both sex and genotype. Interestingly, there was no clear link between the activity response pattern and lifespan of the animals. Using genome-wide association studies (GWAS), I identified 10 high confidence candidate genes that control the degree to which Drosophila exercise behaviors fit a marathoner or sprinter activity pattern. This finding suggests that, similar to other aspects of locomotor behavior, the timing of activity patterns in response to exercise stimulation is under genetic control.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Damschroder D, Richardson K, Cobb T, Wessells R. The effects of genetic background on exercise performance in Drosophila. Fly (Austin) 2020; 14:80-92. [PMID: 33100141 PMCID: PMC7714460 DOI: 10.1080/19336934.2020.1835329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 10/29/2022] Open
Abstract
The use of the Drosophila model for studying the broad beneficial effects of exercise training has grown over the past decade. As work using Drosophila as an exercise model becomes more widespread, the influence of genetic background on performance should be examined in order to better understand its influence on assessments used to quantitatively measure and compare exercise phenotypes. In this article, we review the various methods of exercise training Drosophila, and the performance of different wild-type Drosophila strains on various physiological assessments of exercise response. We conclude by summarizing the performance trends of commonly used strains.
Collapse
Affiliation(s)
- Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kristin Richardson
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|