1
|
Wilcox XE, Zhang H, Mah JL, Cazet JF, Mozumder S, Venkatesh S, Juliano CE, Beal PA, Fisher AJ. Phylogenetic and structural analysis of Hydra ADAR. Arch Biochem Biophys 2025; 767:110353. [PMID: 39986343 DOI: 10.1016/j.abb.2025.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Adenosine deaminases acting on RNAs (ADARs) perform adenosine-to-inosine (A-to-I) RNA editing for essential biological functions. While studies of editing sites in diverse animals have revealed unique biological roles of ADAR editing including temperature adaptation and reproductive maturation, rigorous biochemical and structural studies of these ADARs are lacking. Here, we present a phylogenetic sequence analysis and AlphaFold computational structure prediction to reveal that medusozoan ADAR2s contain five dsRNA binding domains (dsRBDs) with several RNA binding residues in the dsRBDs and deaminase domain conserved. Additionally, we identified evolutionary divergence between the medusozoan (e.g. Hydra) and anthozoan cnidarian subphyla. The anthozoan ADAR deaminase domains more closely resemble human ADARs with longer 5' RNA binding loops, glutamate base-flipping residues, and a conserved TWDG dimerization motif. Conversely, medusozoan ADAR deaminase domains have short 5' binding loops, glutamine flipping residues, and non-conserved helix dimerization motif. We also report the direct detection of A-to-I RNA editing by an ADAR ortholog from the freshwater cnidarian Hydra vulgaris (hyADAR). We solved the crystal structure of the monomeric deaminase domain of hyADAR (hyADARd) to 2.0 Å resolution, showing conserved active site architecture and the presence of a buried inositol hexakisphosphate known to be required for ADAR activity. In addition, these data demonstrate that medusozoans have evolved novel ADAR structural features, however the physiological consequence of this remains unknown. In addition, these results provide a framework for biochemically and structurally characterizing ADARs from evolutionarily distant organisms to understand the diverse roles of ADAR editing amongst metazoans.
Collapse
Affiliation(s)
- Xander E Wilcox
- Department of Chemistry, University of California, Davis, CA, USA
| | - Howard Zhang
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Jasmine L Mah
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Sukanya Mozumder
- Department of Chemistry, University of California, Davis, CA, USA
| | - Srinidhi Venkatesh
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Kon T, Kon-Nanjo K, Simakov O. Subtelomeric repeat expansion in Hydractinia symbiolongicarpus chromosomes. Mob DNA 2025; 16:14. [PMID: 40134021 PMCID: PMC11934779 DOI: 10.1186/s13100-025-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Despite the striking conservation of animal chromosomes, their repetitive element complements are vastly diverse. Only recently, high quality chromosome-level genome assemblies enabled identification of repeat compositions along a broad range of animal chromosomes. Here, utilizing the chromosome-level genome assembly of Hydractinia symbiolongicarpus, a colonial hydrozoan cnidarian, we describe an accumulation of a single 372 bp repeat unit in the subtelomeric regions. Based on the sequence divergence, its partial affinity with the Helitron group can be detected. This sequence is associated with a repeated minisatellite unit of about 150 bp. Together, they account for 26.1% of the genome (126 Mb of the 483 Mb). This could explain the genome size increase observed in H. symbiolongicarpus compared with other cnidarians, yet distinguishes this expansion from other large cnidarian genomes, such as Hydra vulgaris, where such localized propagation is absent. Additionally, we identify a derivative of an IS3EU-like DNA element accumulated at the putative centromeric regions. Our analysis further reveals that Helitrons generally comprise a large proportion of H. symbiolongicarpus (11.8%). We investigated Helitron presence and distributions across several cnidarian genomes. We find that in Nematostella vectensis, an anthozoan cnidarian, Helitron-like sequences were similarly accumulated at the subtelomeric regions. All these findings suggest that Helitron derivatives are prone to forming chromosomal extensions in cnidarians through local amplification in subtelomeric regions, driving variable genome expansions within the clade.
Collapse
Affiliation(s)
- Tetsuo Kon
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria.
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria
| |
Collapse
|
3
|
Zuccarotto A, Sollitto M, Leclère L, Panzella L, Gerdol M, Leone S, Castellano I. Molecular evolution of ovothiol biosynthesis in animal life reveals diversity of the natural antioxidant ovothiols in Cnidaria. Free Radic Biol Med 2025; 227:117-128. [PMID: 39617215 DOI: 10.1016/j.freeradbiomed.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024]
Abstract
Sulfoxide synthase OvoA is the key enzyme involved in the biosynthesis of ovothiols (OSHs), secondary metabolites endowed with unique antioxidant properties. Understanding the evolution of such enzymes and the diversity of their metabolites should reveal fundamental mechanisms governing redox signaling and environmental adaptation. "Early-branching" animals such as Cnidaria display unique molecular diversity and symbiotic relationships responsible for the biosynthesis of natural products, however, they have been neglected in previous research on antioxidants and OSHs. In this work, we have integrated genome and transcriptome mining with biochemical analyses to study the evolution and diversification of OSHs biosynthesis in cnidarians. By tracing the history of the ovoA gene, we inferred its loss in the latest common ancestor of Medusozoa, followed by the acquisition of a unique ovoB/ovoA chimaeric gene in Hydrozoa, likely through a horizontal gene transfer from dinoflagellate donors. While Anthozoa (corals and anemones), bearing canonical ovoA genes, produced a striking variety of OSHs (A, B, and C), the multifunctional enzyme in Hydrozoa was related to OSH B biosynthesis, as shown in Clytia hemisphaerica. Surprisingly, the ovoA-lacking jellyfish Aurelia aurita and Pelagia noctiluca also displayed OSHs, and we provided evidence of their incorporation from external sources. Finally, transcriptome mining revealed ovoA conserved expression pattern during larval development from Cnidaria to more evolved organisms and its regulation by external stimuli, such as UV exposure. The results of our study shed light on the origin and diversification of OSH biosynthesis in basal animals and highlight the importance of redox-active molecules from ancient metazoans as cnidarians to vertebrates.
Collapse
Affiliation(s)
- Annalisa Zuccarotto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy; Department of Biology, University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Lucas Leclère
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
4
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
5
|
Hu M, Bai Y, Zheng X, Zheng Y. Coral-algal endosymbiosis characterized using RNAi and single-cell RNA-seq. Nat Microbiol 2023:10.1038/s41564-023-01397-9. [PMID: 37217718 DOI: 10.1038/s41564-023-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Corals form an endosymbiotic relationship with the dinoflagellate algae Symbiodiniaceae, but ocean warming can trigger algal loss, coral bleaching and death, and the degradation of ecosystems. Mitigation of coral death requires a mechanistic understanding of coral-algal endosymbiosis. Here we report an RNA interference (RNAi) method and its application to study genes involved in early steps of endosymbiosis in the soft coral Xenia sp. We show that a host endosymbiotic cell marker called LePin (lectin and kazal protease inhibitor domains) is a secreted Xenia lectin that binds to algae to initiate phagocytosis of the algae and coral immune response modulation. The evolutionary conservation of domains in LePin among marine anthozoans performing endosymbiosis suggests a general role in coral-algal recognition. Our work sheds light on the phagocytic machinery and posits a mechanism for symbiosome formation, helping in efforts to understand and preserve coral-algal relationships in the face of climate change.
Collapse
Affiliation(s)
- Minjie Hu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA.
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Yun Bai
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA.
| |
Collapse
|
6
|
Cazet JF, Siebert S, Little HM, Bertemes P, Primack AS, Ladurner P, Achrainer M, Fredriksen MT, Moreland RT, Singh S, Zhang S, Wolfsberg TG, Schnitzler CE, Baxevanis AD, Simakov O, Hobmayer B, Juliano CE. A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res 2023; 33:283-298. [PMID: 36639202 PMCID: PMC10069465 DOI: 10.1101/gr.277040.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
- Lyell Immunopharma, South San Francisco, California 94080, USA
| | - Hannah Morris Little
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Philip Bertemes
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Peter Ladurner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Matthias Achrainer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mark T Fredriksen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Travis Moreland
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sumeeta Singh
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1010 Vienna, Austria
| | - Bert Hobmayer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA;
| |
Collapse
|
7
|
Miyokawa R, Hanada M, Togawa Y, Itoh TQ, Kobayakawa Y, Kusumi J. Symbiont specificity differs among green hydra strains. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220789. [PMID: 36312570 PMCID: PMC9554523 DOI: 10.1098/rsos.220789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The symbiotic hydra Hydra viridissima has a stable symbiotic relationship with the green alga Chlorella. This hydra appears to cospeciate with the symbiotic alga, and some strains are known to have strain-specific host/symbiont combinations. To investigate the mechanism of the specificity between host and symbiont, we explored the effect of the removal or exchange of symbionts in two distantly related H. viridissima strains (K10 and M9). In the K10 strain, severe morphological and behavioural changes were found in symbiont-removed and symbiont-exchanged polyps. Interestingly, both polyps showed a similar gene expression pattern. The gene ontology (GO) enrichment analysis revealed that the removal or exchange of symbionts caused the downregulation of genes involved in the electron transport chain and the upregulation of genes involved in translation in the K10 strain. On the other hand, symbiont-removed and symbiont-exchanged M9 polyps showed modest changes in their morphology and behaviour compared with the K10 strain. Furthermore, the patterns of the gene expression changes in the M9 strain were quite different between the symbiont-removed and symbiont-exchanged polyps. Our results suggested that the regulation of energy balance is one of the crucial mechanisms for maintaining symbiotic relationships in green hydra, and this mechanism differs between the strains.
Collapse
Affiliation(s)
- Ryo Miyokawa
- Graduate School of Integrated Science for Global Society, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maki Hanada
- Graduate School of Systems Life Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Togawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Taichi Q. Itoh
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kobayakawa
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junko Kusumi
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Santander MD, Maronna MM, Ryan JF, Andrade SCS. The state of Medusozoa genomics: current evidence and future challenges. Gigascience 2022; 11:6586816. [PMID: 35579552 PMCID: PMC9112765 DOI: 10.1093/gigascience/giac036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Medusozoa is a widely distributed ancient lineage that harbors one-third of Cnidaria diversity divided into 4 classes. This clade is characterized by the succession of stages and modes of reproduction during metagenic lifecycles, and includes some of the most plastic body plans and life cycles among animals. The characterization of traditional genomic features, such as chromosome numbers and genome sizes, was rather overlooked in Medusozoa and many evolutionary questions still remain unanswered. Modern genomic DNA sequencing in this group started in 2010 with the publication of the Hydra vulgaris genome and has experienced an exponential increase in the past 3 years. Therefore, an update of the state of Medusozoa genomics is warranted. We reviewed different sources of evidence, including cytogenetic records and high-throughput sequencing projects. We focused on 4 main topics that would be relevant for the broad Cnidaria research community: (i) taxonomic coverage of genomic information; (ii) continuity, quality, and completeness of high-throughput sequencing datasets; (iii) overview of the Medusozoa specific research questions approached with genomics; and (iv) the accessibility of data and metadata. We highlight a lack of standardization in genomic projects and their reports, and reinforce a series of recommendations to enhance future collaborative research.
Collapse
Affiliation(s)
- Mylena D Santander
- Correspondence address. Mylena D. Santander, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, 277 Rua do Matão, Cidade Universitária, São Paulo 05508-090, Brazil. E-mail:
| | - Maximiliano M Maronna
- Correspondence address. Maximiliano M. Maronna, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 101 Rua do Matão Cidade Universitária, São Paulo 05508-090, Brazil. E-mail:
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080, USA,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, 277 Rua do Matão, Cidade Universitária, São Paulo 05508-090, Brazil
| |
Collapse
|
9
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
10
|
Simakov O, Bredeson J, Berkoff K, Marletaz F, Mitros T, Schultz DT, O’Connell BL, Dear P, Martinez DE, Steele RE, Green RE, David CN, Rokhsar DS. Deeply conserved synteny and the evolution of metazoan chromosomes. SCIENCE ADVANCES 2022; 8:eabi5884. [PMID: 35108053 PMCID: PMC8809688 DOI: 10.1126/sciadv.abi5884] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Animal genomes show networks of deeply conserved gene linkages whose phylogenetic scope and chromosomal context remain unclear. Here, we report chromosome-scale conservation of synteny among bilaterians, cnidarians, and sponges and use comparative analysis to reconstruct ancestral chromosomes across major animal groups. Comparisons among diverse metazoans reveal the processes of chromosome evolution that produced contemporary karyotypes from their Precambrian progenitors. On the basis of these findings, we introduce a simple algebraic representation of chromosomal change and use it to establish a unified systematic framework for metazoan chromosome evolution. We find that fusion-with-mixing, a previously unappreciated mode of chromosome change, has played a central role. We find that relicts of several metazoan chromosomal units are preserved in unicellular eukaryotes. These conserved pre-metazoan linkages include the chromosomal unit that encodes the most diverse set of metazoan homeobox genes, suggesting a candidate genomic context for the early diversification of this key gene family.
Collapse
Affiliation(s)
- Oleg Simakov
- Department for Neurosciences and Developmental
Biology, University of Vienna, Vienna 1010, Austria
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Kodiak Berkoff
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdinand Marletaz
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Division of Biosciences, University College London,
Gower St., London WC1E 6BT, UK
| | - Therese Mitros
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Darrin T. Schultz
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss
Landing, CA 95039, USA
| | - Brendan L. O’Connell
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Paul Dear
- Mote Research Ltd, Babraham Hall, Babraham, Cambridge
CB2 4AT, UK
| | | | - Robert E. Steele
- Department of Biological Chemistry, University of
California, Irvine, Irvine, CA 92697-1700, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charles N. David
- Faculty of Biology, Ludwig Maximilian University of
Munich, Munich 80539, Germany
| | - Daniel S. Rokhsar
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Chan Zuckerberg Biohub, 499 Illinois St., San
Francisco, CA 94158, USA
- U.S. Department of Energy Joint Genome Institute,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720,
USA
| |
Collapse
|
11
|
Gann ER, Truchon AR, Papoulis SE, Dyhrman ST, Gobler CJ, Wilhelm SW. Aureococcus anophagefferens (Pelagophyceae) genomes improve evaluation of nutrient acquisition strategies involved in brown tide dynamics. JOURNAL OF PHYCOLOGY 2022; 58:146-160. [PMID: 34773248 DOI: 10.1111/jpy.13221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The pelagophyte Aureococcus anophagefferens causes harmful brown tide blooms in marine embayments on three continents. Aureococcus anophagefferens was the first harmful algal bloom species to have its genome sequenced, an advance that evidenced genes important for adaptation to environmental conditions that prevail during brown tides. To expand the genomic tools available for this species, genomes for four strains were assembled, including three newly sequenced strains and one assembled from publicly available data. These genomes ranged from 57.11 to 73.62 Mb, encoding 13,191-17,404 potential proteins. All strains shared ~90% of their encoded proteins as determined by homology searches and shared most functional orthologs as determined by KEGG, although each strain also possessed coding sequences with unique functions. Like the original reference genome, the genomes assembled in this study possessed genes hypothesized to be important in bloom proliferation, including genes involved in organic compound metabolism and growth at low light. Cross-strain informatics and culture experiments suggest that the utilization of purines is a potentially important source of organic nitrogen for brown tides. Analyses of metatranscriptomes from a brown tide event demonstrated that use of a single genome yielded a lower read mapping percentage (~30% of library reads) as compared to a database generated from all available genomes (~43%), suggesting novel information about bloom ecology can be gained from expanding genomic space. This work demonstrates the continued need to sequence ecologically relevant algae to understand the genomic potential and their ecology in the environment.
Collapse
Affiliation(s)
- Eric R Gann
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Spiridon E Papoulis
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sonya T Dyhrman
- Biology and Paleo Environment Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, 10964, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11790, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
12
|
Ying H, Hayward DC, Klimovich A, Bosch TCG, Baldassarre L, Neeman T, Forêt S, Huttley G, Reitzel AM, Fraune S, Ball EE, Miller DJ. The role of DNA methylation in genome defense in Cnidaria and other invertebrates. Mol Biol Evol 2022; 39:6516040. [PMID: 35084499 PMCID: PMC8857917 DOI: 10.1093/molbev/msac018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Considerable attention has recently been focused on the potential involvement of DNA methylation in regulating gene expression in cnidarians. Much of this work has been centered on corals, in the context of changes in methylation perhaps facilitating adaptation to higher seawater temperatures and other stressful conditions. Although first proposed more than 30 years ago, the possibility that DNA methylation systems function in protecting animal genomes against the harmful effects of transposon activity has largely been ignored since that time. Here, we show that transposons are specifically targeted by the DNA methylation system in cnidarians, and that the youngest transposons (i.e., those most likely to be active) are most highly methylated. Transposons in longer and highly active genes were preferentially methylated and, as transposons aged, methylation levels declined, reducing the potentially harmful side effects of CpG methylation. In Cnidaria and a range of other invertebrates, correlation between the overall extent of methylation and transposon content was strongly supported. Present transposon burden is the dominant factor in determining overall level of genomic methylation in a range of animals that diverged in or before the early Cambrian, suggesting that genome defense represents the ancestral role of CpG methylation.
Collapse
Affiliation(s)
- Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David C Hayward
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University, Kiel, Germany.,Collaborative Research Center for the Origin and Function of Metaorganisms, Christian Albrechts University, Kiel, Germany
| | - Laura Baldassarre
- Department of Zoology and Organismal Interactions, Heinrich-Heine-University Düsseldorf, Germany
| | - Teresa Neeman
- Biological Data Institute, Australian National University, Canberra, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - Gavin Huttley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, USA
| | - Sebastian Fraune
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Eldon E Ball
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology, Japan
| |
Collapse
|
13
|
Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in Hydra. Cold Spring Harb Perspect Biol 2021; 13:a040725. [PMID: 34230037 PMCID: PMC8635000 DOI: 10.1101/cshperspect.a040725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Nenad Slavko Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
14
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|