1
|
Nyine M, Davidson D, Adhikari E, Clinesmith M, Wang H, Akhunova A, Fritz A, Akhunov E. Genomic signals of ecogeographic adaptation in a wild relative are associated with improved wheat performance under drought stress. Genome Biol 2025; 26:35. [PMID: 39985084 PMCID: PMC11844086 DOI: 10.1186/s13059-025-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Prioritizing wild relative diversity for improving crop adaptation to emerging drought-prone environments is challenging. Here, we combine the genome-wide environmental scans (GWES) in wheat diploid ancestor Aegilops tauschii (Ae. tauschii) with allele testing in the genetic backgrounds of adapted cultivars to identify diversity for improving wheat adaptation to water-limiting conditions. RESULTS We evaluate the adaptive allele effects in Ae. tauschii-wheat introgression lines phenotyped for multiple traits under irrigated and water-limiting conditions using both unmanned aerial system-based imaging and conventional approaches. The GWES show that climatic gradients alone explain more than half of genomic variation in Ae. tauschii, with many alleles associated with climatic factors in Ae. tauschii being linked with improved performance of introgression lines under water-limiting conditions. We find that the most significant GWES signals associated with temperature annual range in the wild relative are linked with reduced canopy temperature in introgression lines and increased yield. CONCLUSIONS Our results suggest that introgression of climate-adaptive alleles from Ae. tauschii has the potential to improve wheat performance under water-limiting conditions, and that variants controlling physiological processes responsible for maintaining leaf temperature are likely among the targets of adaptive selection in a wild relative. Adaptive variation uncovered by GWES in wild relatives has the potential to improve climate resilience of crop varieties.
Collapse
Affiliation(s)
- Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA
- Plantain Breeding Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dwight Davidson
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA
| | - Elina Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- , Bayer, Chesterfield, USA
| | - Marshall Clinesmith
- Department of Agronomy, Kansas State University, Manhattan, USA
- , Syngenta, Junction City, USA
| | - Huan Wang
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Broad Institute, Cambridge, Boston, USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Integrated Genomics Facility, Kansas State University, Manhattan, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, USA.
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA.
| |
Collapse
|
2
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wong ELY, Filatov DA. The role of recombination landscape in species hybridisation and speciation. FRONTIERS IN PLANT SCIENCE 2023; 14:1223148. [PMID: 37484464 PMCID: PMC10361763 DOI: 10.3389/fpls.2023.1223148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | |
Collapse
|
4
|
Devos KM, Qi P, Bahri BA, Gimode DM, Jenike K, Manthi SJ, Lule D, Lux T, Martinez-Bello L, Pendergast TH, Plott C, Saha D, Sidhu GS, Sreedasyam A, Wang X, Wang H, Wright H, Zhao J, Deshpande S, de Villiers S, Dida MM, Grimwood J, Jenkins J, Lovell J, Mayer KFX, Mneney EE, Ojulong HF, Schatz MC, Schmutz J, Song B, Tesfaye K, Odeny DA. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nat Commun 2023; 14:3694. [PMID: 37344528 DOI: 10.1038/s41467-023-38915-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.
Collapse
Affiliation(s)
- Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Bochra A Bahri
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Pathology, University of Georgia, Griffin, GA, 30223, USA
| | - Davis M Gimode
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
| | - Katharine Jenike
- Departments of Computer Science, Biology and Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Samuel J Manthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Dagnachew Lule
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
- Ethiopian Agricultural Transformation Agency, Addis Ababa, Bole, Ethiopia
| | - Thomas Lux
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Liliam Martinez-Bello
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- UR Ventures, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas H Pendergast
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Dipnarayan Saha
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- ICAR-Central Research Institute for Jute and Allied Fibers, Kolkata, West Bengal, 700120, India
| | - Gurjot S Sidhu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hao Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hallie Wright
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Jianxin Zhao
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Santosh Deshpande
- ICRISAT, Patancheru, 502 324, T.S., India
- Hytech Seed India Pvt. Ltd., Ravalkol Village, Medcahl-Malkajgiri Dist-, 501 401, Hubballi, T.S, India
| | - Santie de Villiers
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, 80108, Kenya
- Pwani University Biosciences Research Center (PUBReC), Kilifi, 80108, Kenya
| | - Mathews M Dida
- Department of Crop and Soil Science, Maseno University, P.O. 333, Maseno, Kenya
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - John Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Emmarold E Mneney
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar Es Salaam, Tanzania
- Biotechnology Society of Tanzania, P.O. Box 10257, Dar es Salaam, Tanzania
| | - Henry F Ojulong
- ICRISAT, Matopos Research Station, P.O. Box 776, Bulawayo, Zimbabwe
| | - Michael C Schatz
- Departments of Computer Science, Biology and Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bo Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
| |
Collapse
|
5
|
Zhao X, Guo Y, Kang L, Yin C, Bi A, Xu D, Zhang Z, Zhang J, Yang X, Xu J, Xu S, Song X, Zhang M, Li Y, Kear P, Wang J, Liu Z, Fu X, Lu F. Population genomics unravels the Holocene history of bread wheat and its relatives. NATURE PLANTS 2023; 9:403-419. [PMID: 36928772 DOI: 10.1038/s41477-023-01367-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Deep knowledge of crop biodiversity is essential to improving global food security. Despite bread wheat serving as a keystone crop worldwide, the population history of bread wheat and its relatives, both cultivated and wild, remains elusive. By analysing whole-genome sequences of 795 wheat accessions, we found that bread wheat originated from the southwest coast of the Caspian Sea and underwent a slow speciation process, lasting ~3,300 yr owing to persistent gene flow from its relatives. Soon after, bread wheat spread across Eurasia and reached Europe, South Asia and East Asia ~7,000 to ~5,000 yr ago, shaping a diversified but occasionally convergent adaptive landscape in novel environments. By contrast, the cultivated relatives of bread wheat experienced a population decline by ~82% over the past ~2,000 yr due to the food choice shift of humans. Further biogeographical modelling predicted a continued population shrinking of many bread wheat relatives in the coming decades because of their vulnerability to the changing climate. These findings will guide future efforts in protecting and utilizing wheat biodiversity to enhance global wheat production.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohan Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyue Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Ming Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Philip Kear
- International Potato Center-China Center for Asia and the Pacific, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Coombes B, Fellers JP, Grewal S, Rusholme‐Pilcher R, Hubbart‐Edwards S, Yang C, Joynson R, King IP, King J, Hall A. Whole-genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:482-496. [PMID: 35598169 PMCID: PMC9946142 DOI: 10.1111/pbi.13859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/28/2022] [Accepted: 05/15/2022] [Indexed: 05/29/2023]
Abstract
Wheat is a globally vital crop, but its limited genetic variation creates a challenge for breeders aiming to maintain or accelerate agricultural improvements over time. Introducing novel genes and alleles from wheat's wild relatives into the wheat breeding pool via introgression lines is an important component of overcoming this low variation but is constrained by poor genomic resolution and limited understanding of the genomic impact of introgression breeding programmes. By sequencing 17 hexaploid wheat/Ambylopyrum muticum introgression lines and the parent lines, we have precisely pinpointed the borders of introgressed segments, most of which occur within genes. We report a genome assembly and annotation of Am. muticum that has facilitated the identification of Am. muticum resistance genes commonly introgressed in lines resistant to stripe rust. Our analysis has identified an abundance of structural disruption and homoeologous pairing across the introgression lines, likely caused by the suppressed Ph1 locus. mRNAseq analysis of six of these introgression lines revealed that novel introgressed genes are rarely expressed and those that directly replace a wheat orthologue have a tendency towards downregulation, with no discernible compensation in the expression of homoeologous copies. This study explores the genomic impact of introgression breeding and provides a schematic that can be followed to characterize introgression lines and identify segments and candidate genes underlying the phenotype. This will facilitate more effective utilization of introgression pre-breeding material in wheat breeding programmes.
Collapse
Affiliation(s)
| | - John P. Fellers
- USDA–ARS Hard Winter Wheat Genetics Research UnitManhattanKansas66506USA
| | - Surbhi Grewal
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | | | - Stella Hubbart‐Edwards
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Cai‐yun Yang
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | | | - Ian P. King
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Julie King
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | | |
Collapse
|
7
|
Wang Z, Wang W, Xie X, Wang Y, Yang Z, Peng H, Xin M, Yao Y, Hu Z, Liu J, Su Z, Xie C, Li B, Ni Z, Sun Q, Guo W. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat Commun 2022; 13:3891. [PMID: 35794156 PMCID: PMC9259585 DOI: 10.1038/s41467-022-31581-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Major crops are all survivors of domestication bottlenecks. Studies have focused on the genetic loci related to the domestication syndrome, while the contribution of ancient haplotypes remains largely unknown. Here, an ancestral genomic haploblock dissection method is developed and applied to a resequencing dataset of 386 tetraploid/hexaploid wheat accessions, generating a pan-ancestry haploblock map. Together with cytoplastic evidences, we reveal that domesticated polyploid wheat emerged from the admixture of six founder wild emmer lineages, which contributed the foundation of ancestral mosaics. The key domestication-related loci, originated over a wide geographical range, were gradually pyramided through a protracted process. Diverse stable-inheritance ancestral haplotype groups of the chromosome central zone are identified, revealing the expanding routes of wheat and the trends of modern wheat breeding. Finally, an evolution model of polyploid wheat is proposed, highlighting the key role of wild-to-crop and interploidy introgression, that increased genomic diversity following bottlenecks introduced by domestication and polyploidization.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxi Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongfa Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
9
|
Joynson R, Molero G, Coombes B, Gardiner L, Rivera‐Amado C, Piñera‐Chávez FJ, Evans JR, Furbank RT, Reynolds MP, Hall A. Uncovering candidate genes involved in photosynthetic capacity using unexplored genetic variation in Spring Wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1537-1552. [PMID: 33638599 PMCID: PMC8384606 DOI: 10.1111/pbi.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/26/2021] [Indexed: 05/10/2023]
Abstract
To feed an ever-increasing population we must leverage advances in genomics and phenotyping to harness the variation in wheat breeding populations for traits like photosynthetic capacity which remains unoptimized. Here we survey a diverse set of wheat germplasm containing elite, introgression and synthetic derivative lines uncovering previously uncharacterized variation. We demonstrate how strategic integration of exotic material alleviates the D genome genetic bottleneck in wheat, increasing SNP rate by 62% largely due to Ae. tauschii synthetic wheat donors. Across the panel, 67% of the Ae. tauschii donor genome is represented as introgressions in elite backgrounds. We show how observed genetic variation together with hyperspectral reflectance data can be used to identify candidate genes for traits relating to photosynthetic capacity using association analysis. This demonstrates the value of genomic methods in uncovering hidden variation in wheat and how that variation can assist breeding efforts and increase our understanding of complex traits.
Collapse
Affiliation(s)
| | - Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT)TexcocoMexico
| | | | | | - Carolina Rivera‐Amado
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT)TexcocoMexico
| | | | - John R. Evans
- ARC Centre of Excellence for Translational PhotosynthesisAustralian National UniversityCanberraAustralia
| | - Robert T. Furbank
- ARC Centre of Excellence for Translational PhotosynthesisAustralian National UniversityCanberraAustralia
| | - Matthew P. Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT)TexcocoMexico
| | | |
Collapse
|
10
|
Nyine M, Adhikari E, Clinesmith M, Aiken R, Betzen B, Wang W, Davidson D, Yu Z, Guo Y, He F, Akhunova A, Jordan KW, Fritz AK, Akhunov E. The Haplotype-Based Analysis of Aegilops tauschii Introgression Into Hard Red Winter Wheat and Its Impact on Productivity Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:716955. [PMID: 34484280 PMCID: PMC8416154 DOI: 10.3389/fpls.2021.716955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
The introgression from wild relatives have a great potential to broaden the availability of beneficial allelic diversity for crop improvement in breeding programs. Here, we assessed the impact of the introgression from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into 6 hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D genome SNPs identified by the whole-genome sequencing of parental lines and the sequence-based genotyping of introgression population, including 351 BC1F3:5 lines. Phenotyping data collected from the irrigated and non-irrigated field trials revealed that up to 23% of the introgression lines (ILs) produce more grain than the parents and check cultivars. Based on 16 yield stability statistics, the yield of 12 ILs (3.4%) was stable across treatments, years, and locations; 5 of these lines were also high yielding lines, producing 9.8% more grain than the average yield of check cultivars. The most significant SNP- and haplotype-trait associations were identified on chromosome arms 2DS and 6DL for the spikelet number per spike (SNS), on chromosome arms 2DS, 3DS, 5DS, and 7DS for grain length (GL) and on chromosome arms 1DL, 2DS, 6DL, and 7DS for grain width (GW). The introgression of haplotypes from A. tauschii parents was associated with an increase in SNS, which was positively correlated with a heading date (HD), whereas the haplotypes from hexaploid wheat parents were associated with an increase in GW. We show that the haplotypes on 2DS associated with an increase in the spikelet number and HD are linked with multiple introgressed alleles of Ppd-D1 identified by the whole-genome sequencing of A. tauschii parents. Meanwhile, some introgressed haplotypes exhibited significant pleiotropic effects with the direction of effects on the yield component traits being largely consistent with the previously reported trade-offs, there were haplotype combinations associated with the positive trends in yield. The characterized repertoire of the introgressed haplotypes derived from A. tauschii accessions with the combined positive effects on yield and yield component traits in elite germplasm provides a valuable source of alleles for improving the productivity of winter wheat by optimizing the contribution of component traits to yield.
Collapse
Affiliation(s)
- Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Elina Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Marshall Clinesmith
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Robert Aiken
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Bliss Betzen
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Dwight Davidson
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Zitong Yu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Yuanwen Guo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Alina Akhunova
- Integrated Genomics Facility, Kansas State University, Manhattan, KS, United States
| | - Katherine W. Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
- United States Department of Agriculture, Agricultural Research Service Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Allan K. Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Eduard Akhunov
| |
Collapse
|
11
|
Bazhenov MS, Chernook AG, Goncharov NP, Chikida NN, Belousova MK, Karlov GI, Divashuk MG. The Allelic Diversity of the Gibberellin Signaling Pathway Genes in Aegilops tauschii Coss. PLANTS 2020; 9:plants9121696. [PMID: 33276632 PMCID: PMC7761575 DOI: 10.3390/plants9121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing climate. The diversity of the gibberellin signaling pathway genes involved in plant height control- Reduced height 1 (Rht-D1), Gibberellin-insensitive dwarf 1 (Gid1‑D) and Gibberellin-insensitive dwarf 2 (Gid2-D)-was studied in the diploid wild goatgrass Aegilops tauschii Coss., one of the ancestral species of the bread wheat (Triticum aestivum L.) and the donor of its D subgenome, using high-throughput sequencing. The examination of 24 Ae. tauschii accessions of different geographical origins revealed a large number of new alleles (haplotypes) not found in bread wheat varieties. Some of the detected polymorphisms lead to changes in the amino acid sequence of proteins. Four isoforms (amino acid sequence variants) were found for the RHT-D1 protein, and two isoforms-for the GID1 and GID2 proteins, each. An analysis of the co-occurrence frequencies of various isoforms of the three proteins showed that their combinations were not random in Ae. tauschii, which may indicate the functional significance of their differences. New alleles of the Rht-D1, Gid1-D, and Gid2-D genes are promising for introgression into bread wheat and studying their effect on plant height and adaptability.
Collapse
Affiliation(s)
- Mikhail S. Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
- Correspondence:
| | - Anastasiya G. Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
| | - Nikolay P. Goncharov
- Wheat Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia;
| | - Nadezhda N. Chikida
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Kh. Belousova
- Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Dagestan, Russia;
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
| | - Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
- Kurchatov Genomics Center–ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| |
Collapse
|