1
|
Kodra AL, Singh AS, de la Cova C, Ziosi M, Johnston LA. The Drosophila tumor necrosis factor Eiger promotes Myc supercompetition independent of canonical Jun N-terminal kinase signaling. Genetics 2024; 228:iyae107. [PMID: 38985651 PMCID: PMC11373512 DOI: 10.1093/genetics/iyae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.
Collapse
Affiliation(s)
- Albana L Kodra
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Aditi Sharma Singh
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Claire de la Cova
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | | - Laura A Johnston
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Sanusi KO, Ibrahim KG, Abubakar MB, Shinkafi TS, Ishaka A, Imam MU. Intergenerational Impact of Parental Zinc Deficiency on Metabolic and Redox Outcomes in Drosophila melanogaster. BIOLOGY 2024; 13:401. [PMID: 38927281 PMCID: PMC11201253 DOI: 10.3390/biology13060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
Zinc deficiency is a common nutritional disorder with detrimental health consequences. Whether parental zinc deficiency induces intergenerational effects remains largely unknown. We investigated the effects of a combined maternal and paternal zinc deficiency on offspring's metabolic outcomes and gene expression changes in Drosophila melanogaster. The parent flies were raised on zinc-deficient diets throughout development, and their progeny were assessed. Offspring from zinc-deprived parents exhibited a significant (p < 0.05) increase in body weight and whole-body zinc levels. They also displayed disrupted glucose metabolism, altered lipid homeostasis, and diminished activity of antioxidant enzymes. Gene expression analysis revealed significant (p < 0.05) alterations in zinc transport genes, with increases in mRNA levels of dZIP1 and dZnT1 for female and male offspring, respectively. Both sexes exhibited reduced dZnT35C mRNA levels and significant (p < 0.05) increases in the mRNA levels of DILP2 and proinflammatory markers, Eiger and UPD2. Overall, female offspring showed higher sensitivity to parental zinc deficiency. Our findings underscore zinc's crucial role in maintaining health and the gender-specific responses to zinc deficiency. There is the need for further exploration of the underlying mechanisms behind these intergenerational effects.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria
- Department of Human Physiology, Faculty of Health Sciences, Al-Hikmah University, Ilorin P.M.B. 1601, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan;
| | - Murtala Bello Abubakar
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Tijjani Salihu Shinkafi
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Biochemistry, Kampala International University, Western Campus, Bushenyi P.O. Box 71, Uganda
| | - Aminu Ishaka
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Medical Biochemistry, Faculty of Basic Medial Sciences, College of Health Sciences, Nile University of Nigeria, Abuja F.C.T. 900108, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
| |
Collapse
|
3
|
Mirzoyan Z, Valenza A, Zola S, Bonfanti C, Arnaboldi L, Ferrari N, Pollard J, Lupi V, Cassinelli M, Frattaroli M, Sahin M, Pasini ME, Bellosta P. A Drosophila model targets Eiger/TNFα to alleviate obesity-related insulin resistance and macrophage infiltration. Dis Model Mech 2023; 16:dmm050388. [PMID: 37828911 PMCID: PMC10651092 DOI: 10.1242/dmm.050388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Obesity is associated with various metabolic disorders, such as insulin resistance and adipose tissue inflammation (ATM), characterized by macrophage infiltration into adipose cells. This study presents a new Drosophila model to investigate the mechanisms underlying these obesity-related pathologies. We employed genetic manipulation to reduce ecdysone levels to prolong the larval stage. These animals are hyperphagic and exhibit features resembling obesity in mammals, including increased lipid storage, adipocyte hypertrophy and high circulating glucose levels. Moreover, we observed significant infiltration of immune cells (hemocytes) into the fat bodies, accompanied by insulin resistance. We found that attenuation of Eiger/TNFα signaling reduced ATM and improved insulin sensitivity. Furthermore, using metformin and the antioxidants anthocyanins, we ameliorated both phenotypes. Our data highlight evolutionarily conserved mechanisms allowing the development of Drosophila models for discovering therapeutic pathways in adipose tissue immune cell infiltration and insulin resistance. Our model can also provide a platform to perform genetic screens or test the efficacy of therapeutic interventions for diseases such as obesity, type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alice Valenza
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Sheri Zola
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Carola Bonfanti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Nicholas Ferrari
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - John Pollard
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Valeria Lupi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | | | - Mehtap Sahin
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Department of Biology, University of Ankara, 06110 Ankara, Turkey
| | | | - Paola Bellosta
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Department of Medicine, NYU Langone Medical Center, 10016 New York, USA
| |
Collapse
|
4
|
Mirzoyan Z, Valenza A, Zola S, Bonfanti C, Arnaboldi L, Ferrari N, Pollard J, Lupi V, Cassinelli M, Frattaroli M, Sahin M, Pasini ME, Bellosta P. A Novel Drosophila Model to Investigate Adipose Tissue Macrophage Infiltration (ATM) and Obesity highlights the Therapeutic Potential of Attenuating Eiger/TNFα Signaling to Ameliorate Insulin Resistance and ATM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548016. [PMID: 37461586 PMCID: PMC10350075 DOI: 10.1101/2023.07.06.548016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Obesity is a global health concern associated with various metabolic disorders including insulin resistance and adipose tissue inflammation characterized by adipose tissue macrophage (ATM) infiltration. In this study, we present a novel Drosophila model to investigate the mechanisms underlying ATM infiltration and its association with obesity-related pathologies. Furthermore, we demonstrate the therapeutic potential of attenuating Eiger/TNFα signaling to ameliorate insulin resistance and ATM. To study ATM infiltration and its consequences, we established a novel Drosophila model (OBL) that mimics key aspects of human adipose tissue and allows for investigating ATM infiltration and other related metabolic disorders in a controlled experimental system. We employed genetic manipulation to reduce ecdysone levels to prolong the larval stage. These animals are hyperphagic, and exhibit features resembling obesity in mammals, including increased lipid storage, adipocyte hypertrophy, and high levels of circulating glucose. Moreover, we observed a significant infiltration of immune cells (hemocytes) in the fat bodies accompanied by insulin resistance and systemic metabolic dysregulation. Furthermore, we found that attenuation of Eiger/TNFα signaling and using metformin and anti-oxidant bio-products like anthocyanins led to a reduction in ATM infiltration and improved insulin sensitivity. Our data suggest that the key mechanisms that trigger immune cell infiltration into adipose tissue are evolutionarily conserved and may provide the opportunity to develop Drosophila models to better understand pathways critical for immune cell recruitment into adipose tissue, in relation to the development of insulin resistance in metabolic diseases such as obesity and type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We believe that our OBL model can also be a valuable tool and provide a platform either to perform genetic screens or to test the efficacy and safety of novel therapeutic interventions for these diseases.
Collapse
|
5
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
6
|
Schmidt-Ott U, Kwan CW. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210265. [PMID: 36252222 PMCID: PMC9574642 DOI: 10.1098/rstb.2021.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The conservation of gene networks that specify and differentiate distinct tissues has long been a subject of great interest to evolutionary developmental biologists, but the question of how pre-existing tissue-specific developmental trajectories merge is rarely asked. During the radiation of flies, two extraembryonic epithelia, known as serosa and amnion, evolved into one, called amnioserosa. This unique extraembryonic epithelium is found in fly species of the group Schizophora, including the genetic model organism Drosophila melanogaster, and has been studied in depth. Close relatives of this group develop a serosa and a rudimentary amnion. The scuttle fly Megaselia abdita has emerged as an excellent model organism to study this extraembryonic tissue organization. In this review, development and functions of the extraembryonic tissue complements of Drosophila and Megaselia are compared. It is concluded that the amnioserosa combines cells, genetic pathway components and functions that were previously associated either with serosa development or amnion development. The composite developmental trajectory of the amnioserosa raises the question of whether merging tissue-specific gene networks is a common evolutionary process. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
7
|
de Vreede G, Gerlach SU, Bilder D. Epithelial monitoring through ligand-receptor segregation ensures malignant cell elimination. Science 2022; 376:297-301. [PMID: 35420935 DOI: 10.1126/science.abl4213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Animals have evolved mechanisms, such as cell competition, to remove dangerous or nonfunctional cells from a tissue. Tumor necrosis factor signaling can eliminate clonal malignancies from Drosophila imaginal epithelia, but why this pathway is activated in tumor cells but not normal tissue is unknown. We show that the ligand that drives elimination is present in basolateral circulation but remains latent because it is spatially segregated from its apically localized receptor. Polarity defects associated with malignant transformation cause receptor mislocalization, allowing ligand binding and subsequent apoptotic signaling. This process occurs irrespective of the neighboring cells' genotype and is thus distinct from cell competition. Related phenomena at epithelial wound sites are required for efficient repair. This mechanism of polarized compartmentalization of ligand and receptor can generally monitor epithelial integrity to promote tissue homeostasis.
Collapse
Affiliation(s)
- Geert de Vreede
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephan U Gerlach
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Losada-Pérez M, García-Guillén N, Casas-Tintó S. A novel injury paradigm in the central nervous system of adult Drosophila: molecular, cellular and functional aspects. Dis Model Mech 2021; 14:268374. [PMID: 34061177 PMCID: PMC8214735 DOI: 10.1242/dmm.044669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
The mammalian central nervous system (CNS) exhibits limited regenerative capacity and the mechanisms that mediate its regeneration are not fully understood. Here, we present a novel experimental design to damage the CNS by using a contusion injury paradigm. The design of this protocol allows the study of long-term and short-term cellular responses, including those of the CNS and the immune system, and of any implications regarding functional recovery. We demonstrate for the first time that adult Drosophilamelanogaster glial cells undergo spontaneous functional recovery following crush injury. This crush injury leads to an intermediate level of functional recovery after damage, which is ideal to screen for genes that facilitate or prevent the regeneration process. Here, we validate this model and analyse the immune responses of glial cells as a central regulator of functional regeneration. Additionally, we demonstrate that glial cells and macrophages contribute to functional regeneration through mechanisms involving the Jun N-terminal kinase (JNK) pathway and the Drosophila protein Draper (Drpr), characteristic of other neural injury paradigms. We show that macrophages are recruited to the injury site and are required for functional recovery. Further, we show that the proteins Grindelwald and Drpr in Drosophila glial cells mediate activation of JNK, and that expression of drpr is dependent on JNK activation. Finally, we link neuron-glial communication and the requirement of neuronal vesicular transport to regulation of the JNK pathway and functional recovery. This article has an associated First Person interview with the first author of the paper. Summary: Central nervous system crush injury paradigm in adult Drosophilamelanogaster is a suitable model to study the cellular events, and genetic pathways behind injury responses and functional regeneration. We describe the immune responses of glial cells, neurons and macrophages following injury, and the functional relevance of each response.
Collapse
Affiliation(s)
- María Losada-Pérez
- Instituto Cajal-CSIC, Department of Molecular, Cellular and Developmental Neurobiology, 28002 Madrid, Spain
| | - Nuria García-Guillén
- Instituto Cajal-CSIC, Department of Molecular, Cellular and Developmental Neurobiology, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Instituto Cajal-CSIC, Department of Molecular, Cellular and Developmental Neurobiology, 28002 Madrid, Spain
| |
Collapse
|