1
|
Uchino K, Waizumi R, Sumitani M, Sakai H, Yamada N, Kojima K, Yonemura N, Tatematsu KI, Iizuka T, Sezutsu H, Tamura T. Egg Cooling After Oviposition Extends the Permissive Period for Microinjection-Mediated Genome Modification in Bombyx mori. Int J Mol Sci 2024; 25:12642. [PMID: 39684354 DOI: 10.3390/ijms252312642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
In general, transgenesis efficiency is largely dependent on the developmental status of eggs for microinjection. We investigated whether the relationship between transgenesis efficiency and cooling eggs in silkworms, Bombyx mori, affects the transgenesis frequencies. First, we performed a microinjection using eggs of different developmental statuses at 25 °C. As a result, the use of eggs at 4 h after egg-laying (hAEL) demonstrated nearly five times greater efficiency in frequency compared to 8 hAEL but no transgenesis was found at 12 hAEL. Second, we examined the use of eggs stored for 5 or 24 h at 10 °C. We found that transgenic silkworms were produced not only 5 hAEL but also 24 hAEL. Finally, in the BmBLOS2 gene knock-out experiment, eggs stored at 10 °C demonstrated knock-out phenotypes even 48 hAEL at the time of injection (G0). These results demonstrate that an egg cooling treatment enables drastically enhanced rates of efficiency for insect genome modification. Our results could be useful in other insects, especially species with an extremely short syncytial preblastodermal stage.
Collapse
Affiliation(s)
- Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Ryusei Waizumi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Megumi Sumitani
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Nobuto Yamada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Katsura Kojima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Ken-Ichiro Tatematsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Toshiki Tamura
- Independent Researcher, Tsukuba 300-1207, Ibaraki, Japan
| |
Collapse
|
2
|
Gonzalez-Sqalli E, Caron M, Loppin B. The white gene as a transgenesis marker for the cricket Gryllus bimaculatus. G3 (BETHESDA, MD.) 2024; 14:jkae235. [PMID: 39405185 PMCID: PMC11631507 DOI: 10.1093/g3journal/jkae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 12/12/2024]
Abstract
The cricket Gryllus bimaculatus is an emerging model insect of the order Orthoptera that is used in a wide variety of biological research themes. This hemimetabolous species appears highly complementary to Drosophila and other well-established holometabolous models. To improve transgenesis applications in G. bimaculatus, we have designed a transformation marker gene inspired from the widespread Drosophila mini-white+. Using CRISPR/Cas9, we first generated a loss-of-function mutant allele of the Gb-white gene (Gb-w), which exhibits a white eye coloration at all developmental stages. We then demonstrate that transgenic insertions of a piggyBac vector containing a 3xP3-Gb-w+ cassette rescue eye pigmentation. As an application, we used this vector to generate G. bimaculatus lines expressing a centromeric histone H3 variant (CenH3.1) fused to EGFP and validated EGFP-CenH3.1 detection at cricket centromeres. Finally, we demonstrate that Minos-based germline transformation and site-specific plasmid insertion with the ΦC31 integrase system function in G. bimaculatus.
Collapse
Affiliation(s)
- Emmanuel Gonzalez-Sqalli
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| | - Matthieu Caron
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| |
Collapse
|
3
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
4
|
Strobl F, Ratke J, Krämer F, Utta A, Becker S, Stelzer EHK. Next generation marker-based vector concepts for rapid and unambiguous identification of single and double homozygous transgenic organisms. Biol Open 2023; 12:bio060015. [PMID: 37855381 PMCID: PMC10602009 DOI: 10.1242/bio.060015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023] Open
Abstract
For diploid model organisms, the actual transgenesis processes require subsequent periods of transgene management, which are challenging in emerging model organisms due to the lack of suitable methodology. We used the red flour beetle Tribolium castaneum, a stored-grain pest, to perform a comprehensive functional evaluation of our AClashOfStrings (ACOS) and the combined AGameOfClones/AClashOfStrings (AGOC/ACOS) vector concepts, which use four clearly distinguishable markers to provide full visual control over up to two independent transgenes. We achieved comprehensive statistical validation of our approach by systematically creating seventeen novel single and double homozygous sublines intended for fluorescence live imaging, including several sublines in which the microtubule cytoskeleton is labeled. During the mating procedures, we genotyped more than 20,000 individuals in less than 80 working hours, which corresponds to about 10 to 15 s per individual. We also confirm the functionality of our combined concept in two double transgene special cases, i.e. integration of both transgenes in close proximity on the same chromosome and integration of one transgene on the X allosome. Finally, we discuss our vector concepts regarding performance, genotyping accuracy, throughput, resource saving potential, fluorescent protein choice, modularity, adaptation to other diploid model organisms and expansion capability.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Julia Ratke
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Franziska Krämer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ana Utta
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Sigrun Becker
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Singh S, Rahangdale S, Pandita S, Saxena G, Upadhyay SK, Mishra G, Verma PC. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. AGRICULTURE 2022; 12:1896. [DOI: 10.3390/agriculture12111896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insect pests impose a serious threat to agricultural productivity. Initially, for pest management, several breeding approaches were applied which have now been gradually replaced by genome editing (GE) strategies as they are more efficient and less laborious. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated system) was discovered as an adaptive immune system of bacteria and with the scientific advancements, it has been improvised into a revolutionary genome editing technique. Due to its specificity and easy handling, CRISPR/Cas9-based genome editing has been applied to a wide range of organisms for various research purposes. For pest control, diverse approaches have been applied utilizing CRISPR/Cas9-like systems, thereby making the pests susceptible to various insecticides, compromising the reproductive fitness of the pest, hindering the metamorphosis of the pest, and there have been many other benefits. This article reviews the efficiency of CRISPR/Cas9 and proposes potential research ideas for CRISPR/Cas9-based integrated pest management. CRISPR/Cas9 technology has been successfully applied to several insect pest species. However, there is no review available which thoroughly summarizes the application of the technique in insect genome editing for pest control. Further, authors have highlighted the advancements in CRISPR/Cas9 research and have discussed its future possibilities in pest management.
Collapse
Affiliation(s)
- Sanchita Singh
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | - Somnath Rahangdale
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Shivali Pandita
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | | | - Geetanjali Mishra
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Praveen C. Verma
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
6
|
Rylee JC, Nin‐Velez A, Mahato S, Helms KJ, Wade MJ, Zentner GE, Zelhof AC. Generating and testing the efficacy of transgenic Cas9 in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2022; 31:543-550. [PMID: 35429082 PMCID: PMC9544626 DOI: 10.1111/imb.12778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
CRISPR/Cas9 genome editing has now expanded to many insect species, including Tribolium castaneum. However, compared to Drosophila melanogaster, the CRISPR toolkit of T. castaneum is limited. A particularly apparent gap is the lack of Cas9 transgenic animals, which generally offer higher editing efficiency. We address this by creating and testing transgenic beetles expressing Cas9. We generated two different constructs bearing basal heat shock promoter-driven Cas9, two distinct 3' UTRs, and one containing Cas9 fused to EGFP by a T2A peptide. Analyses of Cas9 activity in each transgenic line demonstrated that both designs are capable of inducing CRISPR- mediated changes in the genome in the absence of heat induction. Overall, these resources enhance the accessibility of CRISPR/Cas9 genome editing for the Tribolium research community and provide a benchmark against which to compare future transgenic Cas9 lines.
Collapse
Affiliation(s)
| | - Alexandra Nin‐Velez
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Present address:
Lilly and Company Corporate CenterIndianapolisIndianaUSA
| | - Simpla Mahato
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | | | - Michael J. Wade
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | - Gabriel E. Zentner
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Present address:
eGenesis, Inc.CambridgeMassachusettsUSA
| | | |
Collapse
|
7
|
Klingler M, Bucher G. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo 2022; 13:14. [PMID: 35854352 PMCID: PMC9295526 DOI: 10.1186/s13227-022-00201-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The red flour beetle Tribolium castaneum has emerged as an important insect model system for a variety of topics. With respect to studying gene function, it is second only to the vinegar fly D. melanogaster. The RNAi response in T. castaneum is exceptionally strong and systemic, and it appears to target all cell types and processes. Uniquely for emerging model organisms, T. castaneum offers the opportunity of performing time- and cost-efficient large-scale RNAi screening, based on commercially available dsRNAs targeting all genes, which are simply injected into the body cavity. Well established transgenic and genome editing approaches are met by ease of husbandry and a relatively short generation time. Consequently, a number of transgenic tools like UAS/Gal4, Cre/Lox, imaging lines and enhancer trap lines are already available. T. castaneum has been a genetic experimental system for decades and now has become a workhorse for molecular and reverse genetics as well as in vivo imaging. Many aspects of development and general biology are more insect-typical in this beetle compared to D. melanogaster. Thus, studying beetle orthologs of well-described fly genes has allowed macro-evolutionary comparisons in developmental processes such as axis formation, body segmentation, and appendage, head and brain development. Transgenic approaches have opened new ways for in vivo imaging. Moreover, this emerging model system is the first choice for research on processes that are not represented in the fly, or are difficult to study there, e.g. extraembryonic tissues, cryptonephridial organs, stink gland function, or dsRNA-based pesticides.
Collapse
Affiliation(s)
- Martin Klingler
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058, Erlangen, Germany.
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Rösner J, Wellmeyer B, Merzendorfer H. Tribolium castaneum: A Model for Investigating the Mode of Action of Insecticides and Mechanisms of Resistance. Curr Pharm Des 2020; 26:3554-3568. [PMID: 32400327 DOI: 10.2174/1381612826666200513113140] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
The red flour beetle, Tribolium castaneum, is a worldwide insect pest of stored products, particularly food grains, and a powerful model organism for developmental, physiological and applied entomological research on coleopteran species. Among coleopterans, T. castaneum has the most fully sequenced and annotated genome and consequently provides the most advanced genetic model of a coleopteran pest. The beetle is also easy to culture and has a short generation time. Research on this beetle is further assisted by the availability of expressed sequence tags and transcriptomic data. Most importantly, it exhibits a very robust response to systemic RNA interference (RNAi), and a database of RNAi phenotypes (iBeetle) is available. Finally, classical transposonbased techniques together with CRISPR/Cas-mediated gene knockout and genome editing allow the creation of transgenic lines. As T. castaneum develops resistance rapidly to many classes of insecticides including organophosphates, methyl carbamates, pyrethroids, neonicotinoids and insect growth regulators such as chitin synthesis inhibitors, it is further a suitable test system for studying resistance mechanisms. In this review, we will summarize recent advances in research focusing on the mode of action of insecticides and mechanisms of resistance identified using T. castaneum as a pest model.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Benedikt Wellmeyer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| |
Collapse
|
9
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
10
|
Adrianos S, Lorenzen M, Oppert B. Metabolic pathway interruption: CRISPR/Cas9-mediated knockout of tryptophan 2,3-dioxygenase in Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:104-109. [PMID: 29551569 DOI: 10.1016/j.jinsphys.2018.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The Tribolium castaneum vermilion gene encodes tryptophan 2,3-dioxygenase, a pivotal enzyme in the ommochrome pathway that is required for proper pigmentation of the eye. A white-eyed mutant strain of T. castaneum, vermilionwhite (vw), lacks eye pigmentation due to a deletion of unknown size that removes all but the 3'-end of the vermilion gene. To create a more defined mutation in vermilion, the CRISPR/Cas9-nuclease system was used to target wild type vermilion in preblastoderm T. castaneum embryos. As adults, all injected beetles had wild type (black) eye pigmentation; however, when outcrossed to vw mates, one cross produced 19% white-eyed offspring. When the vermilion locus of these offspring was analyzed by target-site sequencing, it was determined that white-eyed individuals had a 2 bp deletion that resulted in a frame-shift mutation, presumably producing a nonfunctional enzyme. Interestingly, some of their black-eyed siblings also had a small deletion of 6 bp, but the resultant loss of two amino acids had no apparent impact on enzyme function. To establish a mutant strain homozygous for the CRISPR-induced knock-out allele, a CRISPR positive G0 male was crossed to wild type females. Their progeny were self-crossed, and white-eyed progeny were used to establish the new strain. This mutant strain is herein named vermilionICE and will be used in future work in addition to or in place of vw.
Collapse
Affiliation(s)
- Sherry Adrianos
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, United States
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States
| | - Brenda Oppert
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, United States.
| |
Collapse
|
11
|
Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife 2018; 7:34410. [PMID: 29595475 PMCID: PMC5929908 DOI: 10.7554/elife.34410] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. During early life, animals develop from a single fertilized egg cell to hundreds, millions or even trillions of cells. These cells specialize to do different tasks; forming different tissues and organs like muscle, skin, lungs and liver. For more than a century, scientists have strived to understand the details of how animal cells become different and specialize, and have created many new techniques and technologies to help them achieve this goal. Limbs – such as arms, legs and wings – form from small lumps of cells called limb buds. Scientists use the shrimp-like crustacean, Parhyale hawaiensis, to study development, including limb growth. This species is useful because it is easy to grow, manipulate and observe its developing young in the laboratory. Understanding how its limbs develop offers important new insights into how limbs develop in other animals too. Wolff, Tinevez, Pietzsch et al. have now combined advanced microscopy with custom computer software, called Massive Multi-view Tracker (MaMuT) to investigate this. As limbs develop in Parhyale, the MaMuT software tracks how cells behave, and how they are organized. This analysis revealed that for cells to produce a limb bud, they need to split at an early stage into separate groups. These groups are organized along two body axes, one that goes from head to tail, and one that runs from back to belly. The limb grows perpendicular to these main body axes, along a new ‘proximal-distal’ axis that goes from nearest to furthest from the body. Wolff et al. found that the cells that contribute to the extremities of the limb divide faster than the ones that stay closer to the body. Finally, the results show that when cells in a limb divide, they mostly divide along the proximal-distal axis, producing one cell that is further from the body than the other. These cell activities may help limbs to get longer as they grow. Notably, the groups of cells seen by Wolff et al. were expressing genes that had previously been identified in developing limbs. This helps to validate the new results and to identify which active genes control the behaviors of the analyzed cells. These findings reveal new ways to study animal development. This approach could have many research uses and may help to link the mechanisms of cell biology to their effects. It could also contribute to new understanding of developmental and genetic conditions that affect human health.
Collapse
Affiliation(s)
- Carsten Wolff
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Tobias Pietzsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Evangelia Stamataki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Benjamin Harich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
12
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
13
|
Strobl F, Ross JA, Stelzer EHK. Non-lethal genotyping of Tribolium castaneum adults using genomic DNA extracted from wing tissue. PLoS One 2017; 12:e0182564. [PMID: 28800588 PMCID: PMC5553768 DOI: 10.1371/journal.pone.0182564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/20/2017] [Indexed: 01/11/2023] Open
Abstract
The red flour beetle Tribolium castaneum has become the second most important insect model organism and is frequently used in developmental biology, genetics and pest-associated research. Consequently, the methodological arsenal increases continuously, but many routinely applied techniques for Drosophila melanogaster and other insect species are still unavailable. For example, a protocol for non-lethal genotyping has not yet been adapted but is particularly useful when individuals with known genotypes are required for downstream experiments. In this study, we present a workflow for non-lethal genotyping of T. castaneum adults based on extracting genomic DNA from wing tissue. In detail, we describe a convenient procedure for wing dissection and a custom method for wing digestion that allows PCR-based genotyping of up to fifty adults in less than an afternoon with a success rate of about 86%. The amount of template is sufficient for up to ten reactions while viability and fertility of the beetles are preserved. We prove the applicability of our protocol by genotyping the white / scarlet gene pair alleles from the black-eyed San Bernadino wild-type and white-eyed Pearl recessive mutant strains spanning four generations. Non-lethal genotyping has the potential to improve and accelerate many workflows: Firstly, during the establishment process of homozygous cultures or during stock keeping of cultures that carry recessively lethal alleles, laborious test crossing is replaced by non-lethal genotyping. Secondly, in genome engineering assays, non-lethal genotyping allows the identification of appropriate founders before they are crossed against wild-types, narrowing the efforts down to only the relevant individuals. Thirdly, non-lethal genotyping simplifies experimental strategies, in which genotype and behavior should be correlated, since the genetic configuration of potential individuals can be determined before the actual behavior assays is performed.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt–Macromolecular Complexes (CEF–MC), Goethe Universität–Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main–Germany
| | - J. Alexander Ross
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt–Macromolecular Complexes (CEF–MC), Goethe Universität–Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main–Germany
| | - Ernst H. K. Stelzer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt–Macromolecular Complexes (CEF–MC), Goethe Universität–Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main–Germany
- * E-mail:
| |
Collapse
|
14
|
Strobl F, Klees S, Stelzer EHK. Light Sheet-based Fluorescence Microscopy of Living or Fixed and Stained Tribolium castaneum Embryos. J Vis Exp 2017. [PMID: 28518097 DOI: 10.3791/55629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The red flour beetle Tribolium castaneum has become an important insect model organism in developmental genetics and evolutionary developmental biology. The observation of Tribolium embryos with light sheet-based fluorescence microscopy has multiple advantages over conventional widefield and confocal fluorescence microscopy. Due to the unique properties of a light sheet-based microscope, three dimensional images of living specimens can be recorded with high signal-to-noise ratios and significantly reduced photo-bleaching as well as photo-toxicity along multiple directions over periods that last several days. With more than four years of methodological development and a continuous increase of data, the time seems appropriate to establish standard operating procedures for the usage of light sheet technology in the Tribolium community as well as in the insect community at large. This protocol describes three mounting techniques suitable for different purposes, presents two novel custom-made transgenic Tribolium lines appropriate for long-term live imaging, suggests five fluorescent dyes to label intracellular structures of fixed embryos and provides information on data post-processing for the timely evaluation of the recorded data. Representative results concentrate on long-term live imaging, optical sectioning and the observation of the same embryo along multiple directions. The respective datasets are provided as a downloadable resource. Finally, the protocol discusses quality controls for live imaging assays, current limitations and the applicability of the outlined procedures to other insect species. This protocol is primarily intended for developmental biologists who seek imaging solutions that outperform standard laboratory equipment. It promotes the continuous attempt to close the gap between the technically orientated laboratories/communities, which develop and refine microscopy methodologically, and the life science laboratories/communities, which require 'plug-and-play' solutions to technical challenges. Furthermore, it supports an axiomatic approach that moves the biological questions into the center of attention.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Selina Klees
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Ernst H K Stelzer
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg;
| |
Collapse
|
15
|
Alwes F, Enjolras C, Averof M. Live imaging reveals the progenitors and cell dynamics of limb regeneration. eLife 2016; 5. [PMID: 27776632 PMCID: PMC5079749 DOI: 10.7554/elife.19766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023] Open
Abstract
Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg.
Collapse
Affiliation(s)
- Frederike Alwes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Camille Enjolras
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| |
Collapse
|
16
|
Evangelinos M, Anagnostopoulos G, Karvela-Kalogeraki I, Stathopoulou PM, Scazzocchio C, Diallinas G. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans. Fungal Genet Biol 2015; 81:1-11. [PMID: 26021704 DOI: 10.1016/j.fgb.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Transposons constitute powerful genetic tools for gene inactivation, exon or promoter trapping and genome analyses. The Minos element from Drosophila hydei, a Tc1/mariner-like transposon, has proved as a very efficient tool for heterologous transposition in several metazoa. In filamentous fungi, only a handful of fungal-specific transposable elements have been exploited as genetic tools, with the impala Tc1/mariner element from Fusarium oxysporum being the most successful. Here, we developed a two-component transposition system to manipulate Minos transposition in Aspergillus nidulans (AnMinos). Our system allows direct selection of transposition events based on re-activation of niaD, a gene necessary for growth on nitrate as a nitrogen source. On average, among 10(8) conidiospores, we obtain up to ∼0.8×10(2) transposition events leading to the expected revertant phenotype (niaD(+)), while ∼16% of excision events lead to AnMinos loss. Characterized excision footprints consisted of the four terminal bases of the transposon flanked by the TA target duplication and led to no major DNA rearrangements. AnMinos transposition depends on the presence of its homologous transposase. Its frequency was not significantly affected by temperature, UV irradiation or the transcription status of the original integration locus (niaD). Importantly, transposition is dependent on nkuA, encoding an enzyme essential for non-homologous end joining of DNA in double-strand break repair. AnMinos proved to be an efficient tool for functional analysis as it seems to transpose in different genomic loci positions in all chromosomes, including a high proportion of integration events within or close to genes. We have used Minos to obtain morphological and toxic analogue resistant mutants. Interestingly, among morphological mutants some seem to be due to Minos-elicited over-expression of specific genes, rather than gene inactivation.
Collapse
Affiliation(s)
- Minoas Evangelinos
- Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece
| | | | | | | | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London SW7 2AZ, United Kingdom; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - George Diallinas
- Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece.
| |
Collapse
|
17
|
Gilles AF, Schinko JB, Averof M. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 2015; 142:2832-9. [DOI: 10.1242/dev.125054] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/29/2015] [Indexed: 12/26/2022]
Abstract
Gene editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knock-out and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knock-outs; 71-100% carry such mutations in their germline and transmit them to the next generation. We show that CRISPR-mediated gene knock-out of the Tribolium E-cadherin gene gives defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marked transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.
Collapse
Affiliation(s)
- Anna F. Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69264, France
- École doctorale BMIC, Université Claude Bernard - Lyon 1, France
| | - Johannes B. Schinko
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69264, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69264, France
- Centre National de la Recherche Scientifique (CNRS), France
| |
Collapse
|
18
|
Luan Q, Chen Q, Friedrich M. The Pax6 genes eyeless and twin of eyeless are required for global patterning of the ocular segment in the Tribolium embryo. Dev Biol 2014; 394:367-81. [PMID: 25149513 DOI: 10.1016/j.ydbio.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023]
Abstract
The transcription factor gene Pax6 is widely considered a master regulator of eye development in bilaterian animals. However, the existence of visual organs that develop without Pax6 input and the considerable pleiotropy of Pax6 outside the visual system dictate further studies into defining ancestral functions of this important regulator. Previous work has shown that the combinatorial knockdown of the insect Pax6 orthologs eyeless (ey) and twin of eyeless (toy) perturbs the development of the visual system but also other areas of the larval head in the red flour beetle Tribolium castaneum. To elucidate the role of Pax6 during Tribolium head development in more detail, we studied head cuticle morphology, brain anatomy, embryonic head morphogenesis, and developmental marker gene expression in combinatorial ey and toy knockdown animals. Our experiments reveal that Pax6 is broadly required for patterning the anterior embryonic head. One of the earliest detectable roles is the formation of the embryonic head lobes, which originate from within the ocular segment and give rise to large parts of the supraesophageal brain including the mushroom body, a part of the posterior head capsule cuticle, and the visual system. We present further evidence that toy continues to be required for the development of the larval eyes after formation of the embryonic head lobes in cooperation with the eye developmental transcription factor dachshund (dac). The sum of our findings suggests that Pax6 functions as a competence factor throughout the development of the insect ocular segment. Comparative evidence identifies this function as an ancestral aspect of bilaterian head development.
Collapse
Affiliation(s)
- Qing Luan
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
Trubitsyna M, Morris ER, Finnegan DJ, Richardson JM. Biochemical characterization and comparison of two closely related active mariner transposases. Biochemistry 2014; 53:682-9. [PMID: 24404958 PMCID: PMC3922039 DOI: 10.1021/bi401193w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
![]()
Most DNA transposons move from one
genomic location to another
by a cut-and-paste mechanism and are useful tools for genomic manipulations.
Short inverted repeat (IR) DNA sequences marking each end of the transposon
are recognized by a DNA transposase (encoded by the transposon itself).
This enzyme cleaves the transposon ends and integrates them at a new
genomic location. We report here a comparison of the biophysical and
biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own
IR sequences, as well as cross-recognition of their inverted repeat
sequences. We found that, like Mos1, untagged recombinant Mboumar-9
transposase is a dimer and forms a stable complex with inverted repeat
DNA in the presence of Mg2+ ions. Mboumar-9 transposase
cleaves its inverted repeat DNA in the manner observed for Mos1 transposase.
There was minimal cross-recognition of IR sequences between Mos1 and
Mboumar-9 transposases, despite these enzymes having 68% identical
amino acid sequences. Transposases sharing common biophysical and
biochemical properties, but retaining recognition specificity toward
their own IR, are a promising platform for the design of chimeric
transposases with predicted and improved sequence recognition.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- School of Biological Sciences, University of Edinburgh , The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
20
|
Benton MA, Pavlopoulos A. Tribolium embryo morphogenesis: may the force be with you. BIOARCHITECTURE 2014; 4:16-21. [PMID: 24451992 DOI: 10.4161/bioa.27815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of multicellular organisms depends on patterning and growth mechanisms encoded in the genome, but also on the physical properties and mechanical interactions of the constituent cells that interpret these genetic cues. This fundamental biological problem requires integrated studies at multiple levels of biological organization: from genes, to cell behaviors, to tissue morphogenesis. We have recently combined functional genetics with live imaging approaches in embryos of the insect Tribolium castaneum, in order to understand their remarkable transformation from a uniform single-layered blastoderm into a condensed multi-layered embryo covered by extensive extra-embryonic tissues. We first developed a quick and reliable methodology to fluorescently label various cell components in entire Tribolium embryos. Live imaging of labeled embryos at single cell resolution provided detailed descriptions of cell behaviors and tissue movements during normal embryogenesis. We then compared cell and tissue dynamics between wild-type and genetically perturbed embryos that exhibited altered relative proportions of constituent tissues. This systematic comparison led to a qualitative model of the molecular, cellular and tissue interactions that orchestrate the observed epithelial rearrangements. We expect this work to establish the Tribolium embryo as a powerful and attractive model system for biologists and biophysicists interested in the molecular, cellular and mechanical control of tissue morphogenesis.
Collapse
Affiliation(s)
- Matthew A Benton
- Laboratory for Development and Evolution; Department of Zoology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
21
|
Benton MA, Akam M, Pavlopoulos A. Cell and tissue dynamics during Tribolium embryogenesis revealed by versatile fluorescence labeling approaches. Development 2013; 140:3210-20. [PMID: 23861059 PMCID: PMC3930475 DOI: 10.1242/dev.096271] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on new arthropod models such as the beetle Tribolium castaneum are shifting our knowledge of embryonic patterning and morphogenesis beyond the Drosophila paradigm. In contrast to Drosophila, Tribolium embryos exhibit the short-germ type of development and become enveloped by extensive extra-embryonic membranes, the amnion and serosa. The genetic basis of these processes has been the focus of active research. Here, we complement genetic approaches with live fluorescence imaging of Tribolium embryos to make the link between gene function and morphogenetic cell behaviors during blastoderm formation and differentiation, germband condensation and elongation, and extra-embryonic development. We first show that transient labeling methods result in strong, homogeneous and persistent expression of fluorescent markers in Tribolium embryos, labeling the chromatin, membrane, cytoskeleton or combinations thereof. We then use co-injection of fluorescent markers with dsRNA for live imaging of embryos with disrupted caudal gene function caused by RNA interference. Using these approaches, we describe and compare cell and tissue dynamics in Tribolium embryos with wild-type and altered fate maps. We find that Tribolium germband condensation is effected by cell contraction and intercalation, with the latter being dependent on the anterior-posterior patterning system. We propose that germband condensation drives initiation of amnion folding, whereas expansion of the amniotic fold and closure of the amniotic cavity are likely driven by contraction of an actomyosin cable at the boundary between the amnion and serosa. Our methodology provides a comprehensive framework for testing quantitative models of patterning, growth and morphogenetic mechanisms in Tribolium and other arthropod species.
Collapse
Affiliation(s)
- Matthew A Benton
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
22
|
Schulte C, Leboulle G, Otte M, Grünewald B, Gehne N, Beye M. Honey bee promoter sequences for targeted gene expression. INSECT MOLECULAR BIOLOGY 2013; 22:399-410. [PMID: 23668189 DOI: 10.1111/imb.12031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue-specific and cold shock-induced gene expression. We identified the promoter sequences of Am-actin5c, elp2l, Am-hsp83 and Am-hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron-specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes.
Collapse
Affiliation(s)
- C Schulte
- Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
24
|
Schinko JB, Hillebrand K, Bucher G. Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol 2012; 222:287-98. [PMID: 22890852 DOI: 10.1007/s00427-012-0412-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/29/2012] [Indexed: 12/18/2022]
Abstract
Insect gene function has mainly been studied in the fruit fly Drosophila melanogaster because in this species many techniques and resources are available for gene knock down and the ectopic activation of gene function. However, in order to study biological aspects that are not represented by the Drosophila model, and in order to test to what degree gene functions are conserved within insects and what changes in gene function accompanied the evolution of novel traits, the establishment of respective tools in other insect species is required. While gene knock down can be induced by RNA interference in many insects, methods to misexpress genes are much less developed. In order to allow misexpression of genes in a timely controlled manner in the red flour beetle Tribolium castaneum, we have established a heat shock-mediated misexpression system. We show that endogenous heat shock elements perform better than artificial heat shock elements derived from vertebrates. We carefully determine the optimal conditions for heat shock and define a core promoter for use in future constructs. Finally, using this system, we study the effects of misexpressing the head patterning gene Tc-orthodenticle1 (Tc-otd1), We show that Tc-otd1 suppresses Tc-wingless (Tc-wg) in the trunk and to some degree in the head.
Collapse
Affiliation(s)
- Johannes Benno Schinko
- Institute of Molecular Biology and Biotechnology, Nik. Plastira 100, 71110 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
25
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
26
|
Stringent analysis of gene function and protein-protein interactions using fluorescently tagged genes. Genetics 2011; 190:931-40. [PMID: 22174071 DOI: 10.1534/genetics.111.136465] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila collections of green fluorescent protein (GFP) trap lines have been used to probe the endogenous expression patterns of trapped genes or the subcellular localization of their protein products. Here, we describe a method, based on nonoverlapping, highly specific, shRNA transgenes directed against GFP, that extends the utility of these collections to loss-of-function studies. Furthermore, we used a MiMIC transposon to generate GFP traps in Drosophila cell lines with distinct subcellular localization patterns, which will permit high-throughput screens using fluorescently tagged proteins. Finally, we show that fluorescent traps, paired with recombinant nanobodies and mass spectrometry, allow the study of endogenous protein complexes in Drosophila.
Collapse
|
27
|
MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 2011; 8:737-43. [PMID: 21985007 PMCID: PMC3191940 DOI: 10.1038/nmeth.1662] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit.
Collapse
|
28
|
Kontarakis Z, Konstantinides N, Pavlopoulos A, Averof M. Reconfiguring gene traps for new tasks using iTRAC. Fly (Austin) 2011; 5:352-5. [PMID: 22004889 DOI: 10.4161/fly.5.4.18108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We recently developed integrase-mediated trap conversion (iTRAC) as a means of exploiting gene traps to create new genetic tools, such as markers for imaging, drivers for gene expression and landing sites for gene and chromosome engineering. The principle of iTRAC is simple: primary gene traps are generated with transposon vectors carrying φC31 integrase docking sites, which are subsequently utilized to integrate different constructs into the selected trapped loci. Thus, iTRAC allows us to reconfigure selected traps for new purposes. Two features make iTRAC an attractive approach for Drosophila research. First, its versatility permits the exploitation of gene traps in an open-ended way, for applications that were not envisaged during the primary trapping screen. Second, iTRAC is readily transferable to new species and provides a means for developing complex genetic tools in drosophilids that lack the facility of Drosophila melanogaster genetics.
Collapse
Affiliation(s)
- Zacharias Kontarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece
| | | | | | | |
Collapse
|
29
|
Kontarakis Z, Pavlopoulos A, Kiupakis A, Konstantinides N, Douris V, Averof M. A versatile strategy for gene trapping and trap conversion in emerging model organisms. Development 2011; 138:2625-30. [PMID: 21610038 DOI: 10.1242/dev.066324] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.
Collapse
Affiliation(s)
- Zacharias Kontarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-70013 Heraklio, Crete, Greece
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Collapse
Affiliation(s)
- Jeremy A. Lynch
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
31
|
Warren IA, Fowler K, Smith H. Germline transformation of the stalk-eyed fly, Teleopsis dalmanni. BMC Mol Biol 2010; 11:86. [PMID: 21080934 PMCID: PMC2999598 DOI: 10.1186/1471-2199-11-86] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stalk-eyed flies of the family Diopsidae have proven to be an excellent model organism for studying the evolution of ornamental sexual traits. In diopsid flies the eyes and antennae are borne at the end of lateral head projections called 'eye-stalks'. Eyespan, the distance between the eyes, and the degree of sexual dimorphism in eyespan vary considerably between species and several sexually dimorphic species show sexual selection through female mate preference for males with exaggerated eyespan. Relatively little is known about the molecular genetic basis of intra- or inter-species variation in eyespan, eye-stalk development or growth regulation in diopsids. Molecular approaches including comparative developmental analyses, EST screening and QTL mapping have identified potential candidate loci for eyespan regulation in the model species Teleopsis dalmanni. Functional analyses of these genes to confirm and fully characterise their roles in eye-stalk growth require the development of techniques such as germline transformation to manipulate gene activity in vivo. RESULTS We used in vivo excision assays to identify transposon vector systems with the activity required to mediate transgenesis in T. dalmanni. Mariner based vectors showed no detectable excision while both Minos and piggyBac were active in stalk-eyed fly embryos. Germline transformation with an overall efficiency of 4% was achieved using a Minos based vector and the 3xP3-EGFP marker construct. Chromosomal insertion of constructs was confirmed by Southern blot analysis. Both autosomal and X-linked inserts were recovered. A homozygous stock, established from one of the X-linked inserts, has maintained stable expression for eight generations. CONCLUSIONS We have performed stable germline transformation of a stalk-eyed fly, T. dalmanni. This is the first transgenic protocol to be developed in an insect species that exhibits an exaggerated male sexual trait. Transgenesis will enable the development of a range of techniques for analysing gene function in this species and so provide insight into the mechanisms underlying the development of a morphological trait subject to sexual selection. Our X-linked insertion line will permit the sex of live larvae to be determined. This will greatly facilitate the identification of genes which are differentially expressed during eye-stalk development in males and females.
Collapse
Affiliation(s)
- Ian A Warren
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | | | | |
Collapse
|
32
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Abstract
With its recently sequenced genome, the red flour beetle Tribolium castaneum became one of the few model organisms with all the main genetic tools. As a coleoptera, it belongs to the most species-rich order of animals. Tribolium is also a worldwide pest for stored dried foods. Regarding developmental biology, Tribolium offers a complementary model to the highly derived Drosophila. For example, the function of many gap and pair-rule segmentation genes is different in both species. These differences reveal the evolutionary plasticity between two modes of development, with a long germ band in fly and a short one in Tribolium. This beetle allowed the identification of a new type of ecdysone receptor for holometabolous insects. Finally, in the search for the juvenile hormone receptor, a crucial result was obtained with experiments that could be performed only with Tribolium, and not with Drosophila. Tribolium, in association with Drosophila, should help to understand the general rules of development in insects.
Collapse
Affiliation(s)
- François Bonneton
- Université de Lyon, Université Lyon 1, ENS de Lyon, IGFL, CNRS UMR 5242, INRA UMR1237, 46, allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
34
|
Schinko JB, Weber M, Viktorinova I, Kiupakis A, Averof M, Klingler M, Wimmer EA, Bucher G. Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC DEVELOPMENTAL BIOLOGY 2010; 10:53. [PMID: 20482875 PMCID: PMC2882914 DOI: 10.1186/1471-213x-10-53] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/19/2010] [Indexed: 12/05/2022]
Abstract
Background The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far. Results Here we report the establishment of the GAL4/UAS binary expression system in Tribolium castaneum. Both GAL4Δ and GAL4VP16 driven by the endogenous heat shock inducible promoter of the Tribolium hsp68 gene are efficient in activating reporter gene expression under the control of the Upstream Activating Sequence (UAS). UAS driven ubiquitous tGFP fluorescence was observed in embryos within four hours after activation while in-situ hybridization against tGFP revealed expression already after two hours. The response is quick in relation to the duration of embryonic development in Tribolium - 72 hours with segmentation being completed after 24 hours - which makes the study of early embryonic processes possible using this system. By comparing the efficiency of constructs based on Tribolium, Drosophila, and artificial core promoters, respectively, we find that the use of endogenous core promoters is essential for high-level expression of transgenic constructs. Conclusions With the established GAL4/UAS binary expression system, ectopic misexpression approaches are now feasible in Tribolium. Our results support the contention that high-level transgene expression usually requires endogenous regulatory sequences, including endogenous core promoters in Tribolium and probably also other model systems.
Collapse
Affiliation(s)
- Johannes B Schinko
- Ernst Caspari Haus, Georg-August-University Göttingen, Justus-von-Liebig-Weg11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sasakura Y, Yaguchi J, Yaguchi S, Yajima M. Excision and transposition activity of Tc1/mariner superfamily transposons in sea urchin embryos. Zoolog Sci 2010; 27:256-62. [PMID: 20192694 DOI: 10.2108/zsj.27.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tc1/mariner superfamily transposons are used as transformation vectors in various model organisms. The utility of this transposon family is evidenced by the fact that Tc1/mariner transposons have loose host specificity. However, the activity of these transposons has been observed in only a few organisms, and a recent study in the ascidian Ciona intestinalis suggests that not all Tc1/ mariner transposons show loose host specificity. To understand host specificity, we used sea urchins, since they have a long history as materials of embryology and developmental biology. Transposon techniques have not been reported in this organism, despite the likelihood that these techniques would open up many experimental possibilities. Here we tested the activity of three Tc1/ mariner transposons (Minos, Sleeping Beauty, and Frog Prince) in the sea urchin Hemicentrotus pulcherrimus. Minos has both excision and transposition activity in H. pulcherrimus embryos, whereas no excision activity was detected for Sleeping Beauty or Frog Prince. This study suggests that Minos is active in a broad range of non-host organisms and can be used as a transformation tool in sea urchin embryos.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | |
Collapse
|
36
|
Peel AD. Forward genetics in Tribolium castaneum: opening new avenues of research in arthropod biology. J Biol 2009; 8:106. [PMID: 20053302 PMCID: PMC2804280 DOI: 10.1186/jbiol208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A recent paper in BMC Biology reports the first large-scale insertional mutagenesis screen in a non-drosophilid insect, the red flour beetle Tribolium castaneum. This screen marks the beginning of a non-biased, 'forward genetics' approach to the study of genetic mechanisms operating in Tribolium. See research article http://biomedcentral.com/1741-7007/7/73
Collapse
Affiliation(s)
- Andrew D Peel
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FoRTH), Nikolaou Plastira 100, GR-70013 Iraklio, Crete, Greece.
| |
Collapse
|
37
|
Abstract
A recent workshop held at the Arizona State University Center for Social Dynamics and Complexity gathered over 50 prominent researchers from around the globe to discuss the development of genomic resources for several ant species. Ants play crucial roles in many ecological niches and the sequencing of several ant genomes promises to elucidate topics ranging from the genetic basis for social complexity, longevity and behaviour to systems biology and the identification of novel antimicrobial compounds. Unlike other species, most ant genomes are being generated by individual labs and small collaborations without the annotation and computational resources that support prominent model organism genome databases such those for the fruitfly and roundworm. Attendees summarized their current progress and future plans for several ant genomes and discussed how best to coordinate the analysis and annotation of ant sequences to benefit the broad research interests of the social insect community.
Collapse
|
38
|
Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G, Brown SJ. Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 2009; 7:73. [PMID: 19891766 PMCID: PMC2779179 DOI: 10.1186/1741-7007-7-73] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/05/2009] [Indexed: 11/26/2022] Open
Abstract
Background Given its sequenced genome and efficient systemic RNA interference response, the red flour beetle Tribolium castaneum is a model organism well suited for reverse genetics. Even so, there is a pressing need for forward genetic analysis to escape the bias inherent in candidate gene approaches. Results To produce easy-to-maintain insertional mutations and to obtain fluorescent marker lines to aid phenotypic analysis, we undertook a large-scale transposon mutagenesis screen. In this screen, we produced more than 6,500 new piggyBac insertions. Of these, 421 proved to be recessive lethal, 75 were semi-lethal, and eight indicated recessive sterility, while 505 showed new enhancer-trap patterns. Insertion junctions were determined for 403 lines and often appeared to be located within transcription units. Insertion sites appeared to be randomly distributed throughout the genome, with the exception of a preference for reinsertion near the donor site. Conclusion A large collection of enhancer-trap and embryonic lethal beetle lines has been made available to the research community and will foster investigations into diverse fields of insect biology, pest control, and evolution. Because the genetic elements used in this screen are species-nonspecific, and because the crossing scheme does not depend on balancer chromosomes, the methods presented herein should be broadly applicable for many insect species.
Collapse
Affiliation(s)
- Jochen Trauner
- 1Department of Biology, Developmental Biology, Friedrich-Alexander-University Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci U S A 2009; 106:13897-902. [PMID: 19666530 DOI: 10.1073/pnas.0902804106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.
Collapse
|
40
|
Brown SJ, Shippy TD, Miller S, Bolognesi R, Beeman RW, Lorenzen MD, Bucher G, Wimmer EA, Klingler M. The red flour beetle, Tribolium castaneum (Coleoptera): a model for studies of development and pest biology. Cold Spring Harb Protoc 2009; 2009:pdb.emo126. [PMID: 20147228 DOI: 10.1101/pdb.emo126] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INTRODUCTIONTribolium castaneum is a small, low-maintenance beetle that has emerged as a sophisticated model system for studying the evolution of development and that complements (in some cases, even rivals) Drosophila for functional genetic analysis of basic biological questions. Although Tribolium and Drosophila are both holometabolous insects, they differ fundamentally in larval and adult morphology. Even generally conserved developmental features, such as body segmentation, are achieved by quite different means. Thus, comparison of developmental mechanisms between these two insects can address many interesting questions concerning the evolution of morphology and other characters. Genetic tools available for Tribolium include genetic maps for visible and molecular markers, chromosomal rearrangements that enable lethal mutations to be balanced in true-breeding stocks, transposon-based transformation systems, a completed and annotated genome sequence, and systemic RNA interference (RNAi), which makes it possible to knock down any given gene and even particular splice variants in the offspring or in any tissue of the injected animal. Inactivating gene functions at various developmental stages provides new opportunities to investigate post-embryonic development, as well as larval and adult physiology, including hormonal control, host-parasite interactions, and pesticide resistance.
Collapse
Affiliation(s)
- Susan J Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bazopoulou D, Tavernarakis N. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 2009; 137:39-46. [PMID: 19343510 DOI: 10.1007/s10709-009-9361-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/20/2009] [Indexed: 12/01/2022]
Abstract
The nematode Caenorhabditis elegans is a widely appreciated, powerful platform in which to study important biological mechanisms related to human health. More than 65% of human disease genes have homologues in the C. elegans genome, and essential aspects of mammalian cell biology, neurobiology and development are faithfully recapitulated in this organism. The EU-funded NemaGENETAG project was initiated with the aim to develop cutting-edge tools and resources that will facilitate modelling of human pathologies in C. elegans, and advance our understanding of animal development and physiology. The main objective of the project involves the generation and evaluation of a large collection of transposon-tagged mutants. In the process of achieving this objective the NemaGENETAG consortium also endeavours to optimize and automate existing transposon-mediated mutagenesis methodologies based on the Mos1 transposable element, in addition to developing alternatives using other transposon systems. The final product of this initiative-a comprehensive collection of transposon-tagged alleles-together with the acquisition of efficient transposon-based tools for mutagenesis and transgenesis in C. elegans, should yield a wealth of information on gene function, immediately relevant to key biological processes and to pharmaceutical research and development.
Collapse
Affiliation(s)
- Daphne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | | |
Collapse
|
42
|
Siebert KS, Lorenzen MD, Brown SJ, Park Y, Beeman RW. Tubulin superfamily genes in Tribolium castaneum and the use of a Tubulin promoter to drive transgene expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:749-755. [PMID: 18625397 DOI: 10.1016/j.ibmb.2008.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/14/2008] [Accepted: 04/16/2008] [Indexed: 05/26/2023]
Abstract
The use of native promoters to drive transgene expression has facilitated overexpression studies in Drosophila and other insects. We identified 12 Tubulin family members from the genome sequence of the red flour beetle, Tribolium castaneum, and used the promoter from one of these to drive constitutive expression of a transgene. The activity of the T. castaneum alpha-Tubulin1 (TcalphaTub1) putative promoter was pre-tested in conjunction with an eye-color gene, T. castaneum vermilion (Tcv), by transient expression in Tcv-deficient embryos. Such embryos showed complete rescue of larval eyespot pigmentation. We also examined the TcalphaTub1 expression pattern in germline transformants using the enhanced green fluorescent protein (EGFP) reporter. Beetles transformed with this piggyBac-based reporter ubiquitously expressed EGFP at all stages.
Collapse
Affiliation(s)
- Kendra S Siebert
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
43
|
Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S. The red flour beetle's large nose: an expanded odorant receptor gene family in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:387-397. [PMID: 18342245 DOI: 10.1016/j.ibmb.2007.10.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/02/2007] [Accepted: 10/08/2007] [Indexed: 05/26/2023]
Abstract
The Tribolium castaneum genome sequence reveals a large number of odorant receptor (Or) genes compared to those found in other insects whose olfactory genomes have been studied-341 Or genes and pseudogenes, encoding 259 intact odorant receptor proteins. An RT-PCR study of larvae and adults revealed that only 145 (64%) of 233 genes with successful genomic DNA amplifications were expressed. No expression of the other 87 genes was detected at any age, suggesting either that these genes are not expressed in this particular strain, or that they are induced only in certain environmental or developmental conditions. TcOR1, the ortholog of the Drosophila Or83b (DmOr83b) gene, which is required for the function of olfactory receptor proteins in Drosophila, was expressed in extracts from adult and larval heads and in extracts from adult bodies. Expression of 41 TcOr genes was detected in extracts from larval head tissue and 111 in extracts from adult head tissue (both figures exclude TcOr1). Twenty-eight TcOrs were detected only in adult bodies. Beetle pupae were injected with TcOr1 dsRNA; unlike sham-injected and control beetles, these knock-down beetles showed no significant response to the Tribolium aggregation pheromone, supporting the hypothesis that TcOr1 plays a similar decisive role in olfaction to DmOr83b. The substantial number of Ors poses the question of why Tribolium has such a large olfactory receptor repertoire, and underlines the need for more studies of the natural history of this species.
Collapse
|
44
|
Wang J, Du Y, Wang S, Brown SJ, Park Y. Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:490-8. [PMID: 18342253 PMCID: PMC3206788 DOI: 10.1016/j.ibmb.2007.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/25/2007] [Indexed: 05/12/2023]
Abstract
The piggyBac transposable element (TE), originally discovered in the cabbage looper, Trichoplusia ni, has been widely used in insect transgenesis including the red flour beetle Tribolium castaneum. We surveyed piggyBac-like (PLE) sequences in the genome of T. castaneum by homology searches using as queries the diverse PLE sequences that have been described previously. The search yielded a total of 32 piggyBac-like elements (TcPLEs) which were classified into 14 distinct groups. Most of the TcPLEs contain defective functional motifs in that they are lacking inverted terminal repeats (ITRs) or have disrupted open reading frames. Only one single copy of TcPLE1 appears to be intact with imperfect 16bp ITRs flanking an open reading frame encoding a transposase of 571 amino acid residues. Many copies of TcPLEs were found to be inserted into or close to other transposon-like sequences. This large diversity of TcPLEs with generally low copy numbers suggests multiple invasions of the TcPLEs over a long evolutionary time without extensive multiplications or occurrence of rapid loss of TcPLEs copies.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Plant Protection, Yangzhou University, Yangzhou, China.
| | | | | | | | | |
Collapse
|
45
|
Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 2008; 9:R10. [PMID: 18201385 PMCID: PMC2395250 DOI: 10.1186/gb-2008-9-1-r10] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/13/2007] [Accepted: 01/17/2008] [Indexed: 12/13/2022] Open
Abstract
Tribolium resembles C. elegans in showing a robust systemic RNAi response, but does not have C. elegans-type RNAi mechanisms; insect systemic RNAi probably uses a different mechanism. Background RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. Results We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Conclusion Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches.
Collapse
Affiliation(s)
- Yoshinori Tomoyasu
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Angelini DR, Jockusch EL. Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers. Mol Phylogenet Evol 2008; 46:127-41. [PMID: 18024090 PMCID: PMC2292397 DOI: 10.1016/j.ympev.2007.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/25/2007] [Accepted: 08/16/2007] [Indexed: 11/23/2022]
Abstract
Model species often provide initial hypotheses and tools for studies of development, genetics and molecular evolution in closely related species. Flour beetles of the genus Tribolium Macleay (1825) are one group with potential for such comparative studies. Tribolium castaneum (Herbst 1797) is an increasingly useful developmental genetic system. The convenience with which congeneric and other species of tenebrionid flour beetles can be reared in the laboratory makes this group attractive for comparative studies on a small phylogenetic scale. Here we present the results of phylogenetic analyses of relationships among the major pest species of Tribolium based on two mitochondrial and three nuclear markers (cytochrome oxidase 1, 16S ribosomal DNA, wingless, 28S ribosomal DNA and histone H3). The utility of partitioning the dataset in a manner informed by biological structure and function is demonstrated by comparing various partitioning strategies. In parsimony and partitioned Bayesian analyses of the combined dataset, the castaneum and confusum species groups are supported as monophyletic and as each other's closest relatives. However, a sister group relationship between this clade and Tribolium brevicornis (Leconte 1859) is not supported. The inferred phylogeny provides an evolutionary framework for comparative studies using flour beetles.
Collapse
Affiliation(s)
- David R Angelini
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA.
| | | |
Collapse
|
47
|
Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C. The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol 2007; 8 Suppl 1:S2. [PMID: 18047694 PMCID: PMC2106841 DOI: 10.1186/gb-2007-8-s1-s2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transposons are powerful tools for conducting genetic manipulation and functional studies in organisms that are of scientific, economic, or medical interest. Minos, a member of the Tc1/mariner family of DNA transposons, exhibits a low insertional bias and transposes with high frequency in vertebrates and invertebrates. Its use as a tool for transgenesis and genome analysis of rather different animal species is described.
Collapse
Affiliation(s)
- Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1385, Heraklion 71110, Crete, Greece
| | | | | | | |
Collapse
|
48
|
Altincicek B, Knorr E, Vilcinskas A. Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 32:585-595. [PMID: 17981328 DOI: 10.1016/j.dci.2007.09.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/10/2007] [Accepted: 09/27/2007] [Indexed: 05/25/2023]
Abstract
The red flour beetle, Tribolium castaneum, is an established genetically tractable model insect for evolutionary and developmental studies. Therefore, it may also represent a valuable model for comparative analysis of insect immunity. Here, we used the suppression subtractive hybridization method to identify Tribolium genes that are transcriptionally induced in response to injection of crude lipopolysaccharide (LPS). Determined genes encode proteins that share sequence similarities with counterparts from other insects known to mediate sensing of infection (e.g. Toll and PGRP) or to represent potential antimicrobial effectors (e.g. ferritin, c-type lysozyme, serine proteinase inhibitors, and defensins). Especially significant is the identification of thaumatin-like peptides, representing ancient antifungal peptides originally reported from plants, that are absent from the genomes of many other insects such as Drosophila, Anopheles, and Apis. We produced recombinant thaumatin-1 in bacteria and we found that it represents an antimicrobial peptide against filamentous fungi in Tribolium. Additionally, septic injury induces expression of genes involved in stress adaptation (e.g. heat-shock proteins) or insecticide resistance (e.g. cytochrome P450s) in Tribolium, suggesting that there may be crosstalk between the immune and stress responses.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
49
|
Damen WGM. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 2007; 236:1379-91. [PMID: 17440988 DOI: 10.1002/dvdy.21157] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fundamental characteristic of the arthropod body plan is its organization in metameric units along the anterior-posterior axis. The segmental organization is laid down during early embryogenesis. Our view on arthropod segmentation is still strongly influenced by the huge amount of data available from the fruit fly Drosophila melanogaster (the Drosophila paradigm). However, the simultaneous formation of the segments in Drosophila is a derived mode of segmentation. Successive terminal addition of segments from a posteriorly localized presegmental zone is the ancestral mode of arthropod segmentation. This review focuses on the evolutionary conservation and divergence of the genetic mechanisms of segmentation within arthropods. The more downstream levels of the segmentation gene network (e.g., segment polarity genes) appear to be more conserved than the more upstream levels (gap genes, Notch/Delta signaling). Surprisingly, the basally branched arthropod groups also show similarities to mechanisms used in vertebrate somitogenesis. Furthermore, it has become clear that the activation of pair rule gene orthologs is a key step in the segmentation of all arthropods. Important findings of conserved and diverged aspects of segmentation from the last few years now allow us to draw an evolutionary scenario on how the mechanisms of segmentation could have evolved and led to the present mechanisms seen in various insect groups including dipterans like Drosophila.
Collapse
Affiliation(s)
- Wim G M Damen
- Institut für Genetik der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany.
| |
Collapse
|
50
|
Lorenzen MD, Kimzey T, Shippy TD, Brown SJ, Denell RE, Beeman RW. piggyBac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids. INSECT MOLECULAR BIOLOGY 2007; 16:265-75. [PMID: 17316329 DOI: 10.1111/j.1365-2583.2007.00727.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We describe an efficient method for generating new piggyBac insertions in the germline of F(1) hybrid Tribolium castaneum derived from crosses between transgenic helper and donor strains. Helper strains carried single Minos elements encoding piggyBac transposase. The donor strain carried a single piggyBac element inserted into an actin gene, expanding the eye-specific, 3xP3-EGFP (enhanced green fluorescent protein) reporter expression domain to include muscle. Remobilization of the donor element is accompanied by loss of muscle fluorescence but retention of eye fluorescence. In a pilot screen, the piggyBac donor was remobilized in 84% of the hybrid crosses, generating hundreds of new lethal, enhancer-trap, semisterile and other insertions. The jumpstarter system described herein makes genome-wide, saturation insertional mutagenesis a realistic goal in this coleopteran species.
Collapse
Affiliation(s)
- M D Lorenzen
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|