1
|
Smith EL, Goley ED. House of CarDs: Functional insights into the transcriptional regulator CdnL. Mol Microbiol 2024; 122:789-796. [PMID: 38664995 PMCID: PMC11502505 DOI: 10.1111/mmi.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Regulation of bacterial transcription is a complex and multi-faceted phenomenon that is critical for growth and adaptation. Proteins in the CarD_CdnL_TRCF family are widespread, often essential, regulators of transcription of genes required for growth and metabolic homeostasis. Research in the last decade has described the mechanistic and structural bases of CarD-CdnL-mediated regulation of transcription initiation. More recently, studies in a range of bacteria have begun to elucidate the physiological roles of CarD-CdnL proteins as well as mechanisms by which these proteins, themselves, are regulated. A theme has emerged wherein regulation of CarD-CdnL proteins is central to bacterial adaptation to stress and/or changing environmental conditions.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
3
|
Gardner CL, da Silva DR, Pagliai FA, Pan L, Padgett-Pagliai KA, Blaustein RA, Merli ML, Zhang D, Pereira C, Teplitski M, Chaparro JX, Folimonova SY, Conesa A, Gezan S, Lorca GL, Gonzalez CF. Assessment of unconventional antimicrobial compounds for the control of 'Candidatus Liberibacter asiaticus', the causative agent of citrus greening disease. Sci Rep 2020; 10:5395. [PMID: 32214166 PMCID: PMC7096471 DOI: 10.1038/s41598-020-62246-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, newly identified small molecules were examined for efficacy against ‘Candidatus Liberibacter asiaticus’ in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of ‘Ca. L. asiaticus’ viability. Analyses of the C. sinensis transcriptome indicated that each treatment consistently induced genes associated with normal metabolism and growth, without compromising tree viability or negatively affecting the indigenous citrus-associated microbiota. It was found that treatment-associated reduction in ‘Ca. L. asiaticus’ was positively correlated with the proliferation of several core taxa related with citrus health. No symptoms of phytotoxicity were observed in any of the treated trees. Trials were also performed in commercial groves to examine the effect of each treatment on fruit productivity, juice quality and efficacy against ‘Ca. L. asiaticus’. Increased fruit production (15%) was observed in C. paradisi following twelve months of treatment with benzbromarone and tolfenamic acid. These results were positively correlated with decreased ‘Ca. L. asiaticus’ transcriptional activity in root samples.
Collapse
Affiliation(s)
- Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Danilo R da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Ryan A Blaustein
- Soil and Water Sciences Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Dan Zhang
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Cécile Pereira
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Max Teplitski
- Soil and Water Sciences Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Jose X Chaparro
- Fruit Tree Breeding and Genetics, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Svetlana Y Folimonova
- Plant Pathology Department, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, 32611, USA
| | - Ana Conesa
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Salvador Gezan
- School of Forest Resources and Conservation, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America.
| |
Collapse
|
4
|
Bernal-Bernal D, Abellón-Ruiz J, Iniesta AA, Pajares-Martínez E, Bastida-Martínez E, Fontes M, Padmanabhan S, Elías-Arnanz M. Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function σ/anti-σ pair and a global regulatory complex. Nucleic Acids Res 2019; 46:6726-6745. [PMID: 29893914 PMCID: PMC6061681 DOI: 10.1093/nar/gky475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Expression of CRISPR-Cas systems is a prerequisite for their defensive role against invading genetic elements. Yet, much remains unknown about how this crucial step is regulated. We describe a new mechanism controlling CRISPR-cas expression, which requires an extracytoplasmic function (ECF) σ factor (DdvS), its membrane-bound anti-σ (DdvA) and a global regulatory complex (CarD–CarG). Transcriptomic analyses revealed that the DdvS/CarD/CarG-dependent regulon comprises a type III-B CRISPR-Cas system in Myxococcus xanthus. We mapped four DdvS-driven CarD/CarG-dependent promoters, with one lying immediately upstream of the cas cluster. Consistent with direct action, DdvS and CarD–CarG localize at these promoters in vivo. The cas genes are transcribed as a polycistronic mRNA that reads through the leader into the CRISPR array, a putative σA-dependent promoter in the leader having negligible activity in vivo. Consequently, expression of the entire CRISPR-Cas system and mature CRISPR-RNA (crRNA) production is DdvS/CarD/CarG-dependent. DdvA likely uses its large C-terminal domain to sense and transduce the extracytoplasmic signal triggering CRISPR-cas expression, which we show is not starvation-induced multicellular development. An ECF-σ/anti-σ pair and a global regulatory complex provide an effective mechanism to coordinate signal-sensing with production of precursor crRNA, its processing Cas6 endoribonuclease and other Cas proteins for mature crRNA biogenesis and interference.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
5
|
Bernal-Bernal D, Abellón-Ruiz J, Iniesta AA, Pajares-Martínez E, Bastida-Martínez E, Fontes M, Padmanabhan S, Elías-Arnanz M. Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function σ/anti-σ pair and a global regulatory complex. Nucleic Acids Res 2018. [PMID: 29893914 DOI: 10.1093/nar/gky475.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of CRISPR-Cas systems is a prerequisite for their defensive role against invading genetic elements. Yet, much remains unknown about how this crucial step is regulated. We describe a new mechanism controlling CRISPR-cas expression, which requires an extracytoplasmic function (ECF) σ factor (DdvS), its membrane-bound anti-σ (DdvA) and a global regulatory complex (CarD-CarG). Transcriptomic analyses revealed that the DdvS/CarD/CarG-dependent regulon comprises a type III-B CRISPR-Cas system in Myxococcus xanthus. We mapped four DdvS-driven CarD/CarG-dependent promoters, with one lying immediately upstream of the cas cluster. Consistent with direct action, DdvS and CarD-CarG localize at these promoters in vivo. The cas genes are transcribed as a polycistronic mRNA that reads through the leader into the CRISPR array, a putative σA-dependent promoter in the leader having negligible activity in vivo. Consequently, expression of the entire CRISPR-Cas system and mature CRISPR-RNA (crRNA) production is DdvS/CarD/CarG-dependent. DdvA likely uses its large C-terminal domain to sense and transduce the extracytoplasmic signal triggering CRISPR-cas expression, which we show is not starvation-induced multicellular development. An ECF-σ/anti-σ pair and a global regulatory complex provide an effective mechanism to coordinate signal-sensing with production of precursor crRNA, its processing Cas6 endoribonuclease and other Cas proteins for mature crRNA biogenesis and interference.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Chen T, Xiang X, Xu H, Zhang X, Zhou B, Yang Y, Lou Y, Yang XF. LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen. Emerg Microbes Infect 2018; 7:126. [PMID: 29985409 PMCID: PMC6037790 DOI: 10.1038/s41426-018-0122-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/12/2023]
Abstract
Little is known about how Borrelia burgdorferi, the Lyme disease pathogen, adapts and survives in the tick vector. We previously identified a bacterial CarD N-terminal-like (CdnL) protein, LtpA (BB0355), in B. burgdorferi that is preferably expressed at lower temperatures, which is a surrogate condition mimicking the tick portion of the enzootic cycle of B. burgdorferi. CdnL-family proteins, an emerging class of bacterial RNAP-interacting transcription factors, are essential for the viability of Mycobacterium tuberculosis and Myxococcus xanthus. Previous attempts to inactivate ltpA in B. burgdorferi have not been successful. In this study, we report the construction of a ltpA mutant in the infectious strain of B. burgdorferi, strain B31-5A4NP1. Unlike CdnL in M. tuberculosis and M. xanthus, LtpA is dispensable for the viability of B. burgdorferi. However, the ltpA mutant exhibits a reduced growth rate and a cold-sensitive phenotype. We demonstrate that LtpA positively regulates 16S rRNA expression, which contributes to the growth defects in the ltpA mutant. The ltpA mutant remains capable of infecting mice, albeit with delayed infection. Additionally, the ltpA mutant produces markedly reduced spirochetal loads in ticks and was not able to infect mice via tick infection. Overall, LtpA represents a novel regulator in the CdnL family that has an important role in the enzootic cycle of B. burgdorferi.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Haijun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xuechao Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bibi Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongliang Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
| | - X Frank Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Pan L, Gardner CL, Pagliai FA, Gonzalez CF, Lorca GL. Identification of the Tolfenamic Acid Binding Pocket in PrbP from Liberibacter asiaticus. Front Microbiol 2017; 8:1591. [PMID: 28878750 PMCID: PMC5572369 DOI: 10.3389/fmicb.2017.01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that was found to regulate gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. It was found that inactivation of PrbP, using the inhibitor tolfenamic acid, resulted in a significant decrease in the overall transcriptional activity of L. asiaticus, and the suppression of L. asiaticus infection in HLB symptomatic citrus seedlings. The molecular interactions between PrbP and tolfenamic acid, however, were yet to be elucidated. In this study, we modeled the structure of PrbP and identified a ligand binding pocket, TaP, located at the interface of the predicted RNA polymerase interaction domain (N-terminus) and the DNA binding domain (C-terminus). The molecular interactions of PrbP with tolfenamic acid were predicted using in silico docking. Site-directed mutagenesis of specific amino acids was followed by electrophoresis mobility shift assays and in vitro transcription assays, where residues N107, G109, and E148 were identified as the primary amino acids involved in interactions with tolfenamic acid. These results provide insight into the binding mechanism of PrbP to a small inhibitory molecule, and a starting scaffold for the identification and development of therapeutics targeting PrbP and other homologs in the CarD_CdnL_TRCF family.
Collapse
Affiliation(s)
| | | | | | | | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of FloridaGainesville, FL, United States
| |
Collapse
|
8
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
9
|
Abellón-Ruiz J, Bernal-Bernal D, Abellán M, Fontes M, Padmanabhan S, Murillo FJ, Elías-Arnanz M. The CarD/CarG regulatory complex is required for the action of several members of the large set of Myxococcus xanthus extracytoplasmic function σ factors. Environ Microbiol 2014; 16:2475-90. [PMID: 24428729 DOI: 10.1111/1462-2920.12386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022]
Abstract
Extracytoplasmic function (ECF) σ factors are critical players in signal transduction networks involved in bacterial response to environmental changes. The Myxococcus xanthus genome reveals ∼45 putative ECF-σ factors, but for the overwhelming majority, the specific signals or mechanisms for selective activation and regulation remain unknown. One well-studied ECF-σ, CarQ, binds to its anti-σ, CarR, and is inactive in the dark but drives its own expression from promoter P(QRS) on illumination. This requires the CarD/CarG complex, the integration host factor (IHF) and a specific CarD-binding site upstream of P(QRS). Here, we show that DdvS, a previously uncharacterized ECF-σ, activates its own expression in a CarD/CarG-dependent manner but is inhibited when specifically bound to the N-terminal zinc-binding anti-σ domain of its cognate anti-σ, DdvA. Interestingly, we find that the autoregulatory action of 11 other ECF-σ factors studied here depends totally or partially on CarD/CarG but not IHF. In silico analysis revealed possible CarD-binding sites that may be involved in direct regulation by CarD/CarG of target promoter activity. CarD/CarG-linked ECF-σ regulation likely recurs in other myxobacteria with CarD/CarG orthologous pairs and could underlie, at least in part, the global regulatory effect of the complex on M. xanthus gene expression.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Ramón-García S, Ng C, Jensen PR, Dosanjh M, Burian J, Morris RP, Folcher M, Eltis LD, Grzesiek S, Nguyen L, Thompson CJ. WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J Biol Chem 2013; 288:34514-28. [PMID: 24126912 DOI: 10.1074/jbc.m113.516385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WhiB-like (Wbl) proteins are well known for their diverse roles in actinobacterial morphogenesis, cell division, virulence, primary and secondary metabolism, and intrinsic antibiotic resistance. Gene disruption experiments showed that three different Actinobacteria (Mycobacterium smegmatis, Streptomyces lividans, and Rhodococcus jostii) each exhibited a different whiB7-dependent resistance profile. Heterologous expression of whiB7 genes showed these resistance profiles reflected the host's repertoire of endogenous whiB7-dependent genes. Transcriptional activation of two resistance genes in the whiB7 regulon, tap (a multidrug transporter) and erm(37) (a ribosomal methyltransferase), required interaction of WhiB7 with their promoters. Furthermore, heterologous expression of tap genes isolated from Mycobacterium species demonstrated that divergencies in drug specificity of homologous structural proteins contribute to the variation of WhiB7-dependent drug resistance. WhiB7 has a specific tryptophan/glycine-rich region and four conserved cysteine residues; it also has a peptide sequence (AT-hook) at its C terminus that binds AT-rich DNA sequence motifs upstream of the promoters it activates. Targeted mutagenesis showed that these motifs were required to provide antibiotic resistance in vivo. Anaerobically purified WhiB7 from S. lividans was dimeric and contained 2.1 ± 0.3 and 2.2 ± 0.3 mol of iron and sulfur, respectively, per protomer (consistent with the presence of a 2Fe-2S cluster). However, the properties of the dimer's absorption spectrum were most consistent with the presence of an oxygen-labile 4Fe-4S cluster, suggesting 50% occupancy. These data provide the first insights into WhiB7 iron-sulfur clusters as they exist in vivo, a major unresolved issue in studies of Wbl proteins.
Collapse
Affiliation(s)
- Santiago Ramón-García
- From the Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Volz C, Kegler C, Müller R. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation. ACTA ACUST UNITED AC 2013. [PMID: 23177199 DOI: 10.1016/j.chembiol.2012.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Motile predatory Myxobacteria are producers of multiple secondary metabolites and, on starvation, undergo concerted cellular differentiation to form multicellular fruiting bodies. These abilities demand myxobacterial genomes to encode sophisticated regulatory networks that are not satisfactorily understood. Here, we present two bacterial enhancer binding proteins (bEBPs) encoded in Myxococcus xanthus acting as direct regulators of secondary metabolites intriguingly exhibiting activating and inhibitory effects. Elucidation of a regulon for each bEBP enabled us to unravel their role in myxococcal development, predation, and motility. Interestingly, both bEBPs are able to interact by forming a hetero-oligomeric complex. Our findings represent an alternative mode of operation of bEBPs, which are currently thought to enhance promoter activity by acting as homo-oligomers. Furthermore, a direct link between secondary metabolite gene expression and predation, motility, and cellular development could be shown for the first time.
Collapse
Affiliation(s)
- Carsten Volz
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research, Saarland (HIPS), Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | | | | |
Collapse
|
12
|
Elías-Arnanz M, Padmanabhan S, Murillo FJ. The regulatory action of the myxobacterial CarD/CarG complex: a bacterial enhanceosome? FEMS Microbiol Rev 2010; 34:764-78. [PMID: 20561058 DOI: 10.1111/j.1574-6976.2010.00235.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A global regulatory complex made up of two unconventional transcriptional factors, CarD and CarG, is implicated in the control of various processes in Myxococcus xanthus, a Gram-negative bacterium that serves as a prokaryotic model system for multicellular development and the response to blue light. CarD has a unique two-domain architecture composed of: (1) a C-terminal DNA-binding domain that resembles eukaryotic high mobility group A (HMGA) proteins, which are relatively abundant, nonhistone components of chromatin that remodel DNA and prime it for the assembly of multiprotein-DNA complexes essential for various DNA transactions, and (2) an N-terminal domain involved in interactions with CarG and RNA polymerase, which is also the founding member of the large CarD_TRCF family of bacterial proteins. CarG, which does not bind DNA directly, has a zinc-binding motif of the type found in the archaemetzincin class of metalloproteases that, in CarG, appears to play a purely structural role. This review aims to provide an overview of the known molecular details and insights emerging from the study of the singular CarD-CarG prokaryotic regulatory complex and its parallels with enhanceosomes, the higher order, nucleoprotein transcription complexes in eukaryotes.
Collapse
Affiliation(s)
- Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Area de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
13
|
García-Moreno D, Abellón-Ruiz J, García-Heras F, Murillo FJ, Padmanabhan S, Elías-Arnanz M. CdnL, a member of the large CarD-like family of bacterial proteins, is vital for Myxococcus xanthus and differs functionally from the global transcriptional regulator CarD. Nucleic Acids Res 2010; 38:4586-98. [PMID: 20371514 PMCID: PMC2919716 DOI: 10.1093/nar/gkq214] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CarD, a global transcriptional regulator in Myxococcus xanthus, interacts with CarG via CarDNter, its N-terminal domain, and with DNA via a eukaryotic HMGA-type C-terminal domain. Genomic analysis reveals a large number of standalone proteins resembling CarDNter. These constitute, together with the RNA polymerase (RNAP) interacting domain, RID, of transcription–repair coupling factors, the CarD_TRCF protein family. We show that one such CarDNter-like protein, M. xanthus CdnL, cannot functionally substitute CarDNter (or vice versa) nor interact with CarG. Unlike CarD, CdnL is vital for growth, and lethality due to its absence is not rescued by homologs from various other bacteria. In mycobacteria, with no endogenous DksA, the function of the CdnL homolog mirrors that of Escherichia coli DksA. Our finding that CdnL, like DksA, is indispensable in M. xanthus implies that they are not functionally redundant. Cells are normal on CdnL overexpression, but divide aberrantly on CdnL depletion. CdnL localizes to the nucleoid, suggesting piggyback recruitment by factors such as RNAP, which we show interacts with CdnL, CarDNter and RID. Our study highlights a complex network of interactions involving these factors and RNAP, and points to a vital role for M. xanthus CdnL in an essential DNA transaction that affects cell division.
Collapse
Affiliation(s)
- Diana García-Moreno
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Lambert C, Chang CY, Capeness MJ, Sockett RE. The first bite--profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One 2010; 5:e8599. [PMID: 20062540 PMCID: PMC2797640 DOI: 10.1371/journal.pone.0008599] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/09/2009] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio bacteriovorus is a Gram-negative bacterium that is a pathogen of other Gram-negative bacteria, including many bacteria which are pathogens of humans, animals and plants. As such Bdellovibrio has potential as a biocontrol agent, or living antibiotic. B. bacteriovorus HD100 has a large genome and it is not yet known which of it encodes the molecular machinery and genetic control of predatory processes. We have tried to fill this knowledge-gap using mixtures of predator and prey mRNAs to monitor changes in Bdellovibrio gene expression at a timepoint of early-stage prey infection and prey killing in comparison to control cultures of predator and prey alone and also in comparison to Bdellovibrio growing axenically (in a prey-or host independent “HI” manner) on artificial media containing peptone and tryptone. From this we have highlighted genes of the early predatosome with predicted roles in prey killing and digestion and have gained insights into possible regulatory mechanisms as Bdellovibrio enter and establish within the prey bdelloplast. Approximately seven percent of all Bdellovibrio genes were significantly up-regulated at 30 minutes of infection- but not in HI growth- implicating the role of these genes in prey digestion. Five percent were down-regulated significantly, implicating their role in free-swimming, attack-phase physiology. This study gives the first post- genomic insight into the predatory process and reveals some of the important genes that Bdellovibrio expresses inside the prey bacterium during the initial attack.
Collapse
Affiliation(s)
- Carey Lambert
- Institute of Genetics, School of Biology, Nottingham University, Queen's Medical Centre, Nottingham, United Kingdom
| | - Chien-Yi Chang
- Institute of Genetics, School of Biology, Nottingham University, Queen's Medical Centre, Nottingham, United Kingdom
| | - Michael J. Capeness
- Institute of Genetics, School of Biology, Nottingham University, Queen's Medical Centre, Nottingham, United Kingdom
| | - R. Elizabeth Sockett
- Institute of Genetics, School of Biology, Nottingham University, Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Functional equivalence of HMGA- and histone H1-like domains in a bacterial transcriptional factor. Proc Natl Acad Sci U S A 2009; 106:13546-51. [PMID: 19666574 DOI: 10.1073/pnas.0902233106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Histone H1 and high-mobility group A (HMGA) proteins compete dynamically to modulate chromatin structure and regulate DNA transactions in eukaryotes. In prokaryotes, HMGA-like domains are known only in Myxococcus xanthus CarD and its Stigmatella aurantiaca ortholog. These have an N-terminal module absent in HMGA that interacts with CarG (a zinc-associated factor that does not bind DNA) to form a stable complex essential in regulating multicellular development, light-induced carotenogenesis, and other cellular processes. An analogous pair, CarD(Ad) and CarG(Ad), exists in another myxobacterium, Anaeromyxobacter dehalogenans. Intriguingly, the CarD(Ad) C terminus lacks the hallmark HMGA DNA-binding AT-hooks and instead resembles the C-terminal region (CTR) of histone H1. We find that CarD(Ad) alone could not replace CarD in M. xanthus. By contrast, when introduced with CarG(Ad), CarD(Ad) functionally replaced CarD in regulating not just 1 but 3 distinct processes in M. xanthus, despite the lower DNA-binding affinity of CarD(Ad) versus CarD in vitro. The ability of the cognate CarD(Ad)-CarG(Ad) pair to interact, but not the noncognate CarD(Ad)-CarG, rationalizes these data. Thus, in chimeras that conserve CarD-CarG interactions, the H1-like CTR of CarD(Ad) could replace the CarD HMGA AT-hooks with no loss of function in vivo. More tellingly, even chimeras with the CarD AT-hook region substituted by human histone H1 CTR or full-length H1 functioned in M. xanthus. Our domain-swap analyses showing functional equivalence of HMGA AT-hooks and H1 CTR in prokaryotic transcriptional regulation provide molecular insights into possible modes of action underlying their biological roles.
Collapse
|
16
|
Mirassou Y, García-Moreno D, Santiveri CM, Santoro J, Elías-Arnanz M, Padmanabhan S, Jiménez MA. 1H, 13C and 15N backbone and side chain resonance assignments of the C-terminal domain of CdnL from Myxococcus xanthus. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:9-12. [PMID: 19636935 DOI: 10.1007/s12104-008-9128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/31/2008] [Indexed: 05/28/2023]
Abstract
CdnL, a 164-residue protein essential for Myxococcus xanthus viability, is a member of a large family of bacterial proteins of unknown structure and function. Here, we report the (1)H, (13)C and (15)N backbone and side chain assignments for the stable C-terminal domain of CdnL identified by limited proteolysis.
Collapse
Affiliation(s)
- Yasmina Mirassou
- Instituto de Química Física Rocasolano, CSIC, 28006, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Differential expression of a putative CarD-like transcriptional regulator, LtpA, in Borrelia burgdorferi. Infect Immun 2008; 76:4439-44. [PMID: 18663002 DOI: 10.1128/iai.00740-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of microbial genome information has provided a fruitful opportunity for studying regulatory networks in a variety of pathogenic bacteria. In an initial effort to elucidate regulatory networks potentially involved in differential gene expression by the Lyme disease pathogen Borrelia burgdorferi, we have been investigating the functions and regulation of putative transcriptional regulatory factors predicted to be encoded within the B. burgdorferi genome. Herein we report the regulation of one of the predicted transcriptional regulators, LtpA (BB0355), which is homologous to the transcriptional regulator CarD from Myxococcus xanthus. LtpA expression was assessed in response to various environmental stimuli. Immunoblot and quantitative reverse transcription-PCR analyses revealed that unlike many well-characterized differentially regulated Borrelia genes whose expression is induced by elevated temperature, the expression of LtpA was significantly downregulated when spirochetes were grown at an elevated temperature (37 degrees C), as well as when the bacteria were cultivated in a mammalian host-adapted environment. In contrast, LtpA was induced at a lower culture temperature (23 degrees C). Further analyses indicated that the downregulation of LtpA was not dependent on the Rrp2-RpoN-RpoS regulatory pathway, which is involved in the downregulation of OspA when B. burgdorferi is grown in a mammalian host-adapted environment. LtpA protein levels in B. burgdorferi were unaltered in response to changes in the pH in the borrelial cultures. Multiple attempts to generate an LtpA-deficient mutant were unsuccessful, which has hampered the elucidation of its role in pathogenesis. Given that LtpA is exclusively expressed during borrelial cultivation at a lower temperature, a parameter that has been widely used as a surrogate condition to mimic B. burgdorferi in unfed (flat) ticks, and because LtpA is homologous to a known transcriptional regulator, we postulate that LtpA functions as a regulator modulating the expression of genes important to B. burgdorferi's survival within its arthropod vector.
Collapse
|
18
|
Galbis-Martínez L, Galbis-Martínez M, Murillo FJ, Fontes M. An anti-antisigma factor in the response of the bacterium Myxococcus xanthus to blue light. MICROBIOLOGY-SGM 2008; 154:895-904. [PMID: 18310035 DOI: 10.1099/mic.0.2007/013359-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cells of the Gram-negative bacterium Myxococcus xanthus respond to blue light by producing carotenoids, pigments that play a protective role against the oxidative effects of light. Blue light triggers a network of regulatory actions that lead to the transcriptional activation of the structural genes for carotenoid synthesis. The product of carF, similar to a family of proteins of unknown function called Kua, is an early regulator of this process. Previous genetic data indicate that CarF participates in the light-dependent inactivation of the antisigma factor CarR. In the dark, CarR sequesters the ECF-sigma factor CarQ to the membrane, thereby preventing the activation of the structural genes for carotenoid synthesis. Using a bacterial two-hybrid system, we show here that both CarF and CarQ physically interact with CarR. These results, together with the finding that CarF is located at the membrane, support the hypothesis that CarF acts as an anti-antisigma factor. Comparison of CarF with other Kua proteins shows a remarkable conservation of a number of histidine residues. The effects on CarF function of several histidine to alanine substitutions and of the truncation of specific CarF domains are also reported here.
Collapse
Affiliation(s)
- Lilian Galbis-Martínez
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco J Murillo
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
19
|
Peñalver-Mellado M, García-Heras F, Padmanabhan S, García-Moreno D, Murillo FJ, Elías-Arnanz M. Recruitment of a novel zinc-bound transcriptional factor by a bacterial HMGA-type protein is required for regulating multiple processes in Myxococcus xanthus. Mol Microbiol 2006; 61:910-26. [PMID: 16879646 DOI: 10.1111/j.1365-2958.2006.05289.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhanceosome assembly in eukaryotes often requires high mobility group A (HMGA) proteins. In prokaryotes, the only known transcriptional regulator with HMGA-like physical, structural and DNA-binding properties is Myxococcus xanthus CarD. Here, we report that every CarD-regulated process analysed also requires the product of gene carG, located immediately downstream of and transcriptionally coupled to carD. CarG has the zinc-binding H/C-rich metallopeptidase motif found in archaemetzincins, but with Q replacing a catalytically essential E. CarG, a monomer, binds two zinc atoms, shows no apparent metallopeptidase activity, and its stability in vivo absolutely requires the cysteines. This indicates a strictly structural role for zinc-binding. In vivo CarG localizes to the nucleoid but only if CarD is also present. In vitro CarG shows no DNA-binding but physically interacts with CarD via its N-terminal and not HMGA domain. CarD and CarG thus work as a single, physically linked, transcriptional regulatory unit, and if one exists in a bacterium so does the other. Like zinc-associated eukaryotic transcriptional adaptors in enhanceosome assembly, CarG regulates by interacting not with DNA but with another transcriptional factor.
Collapse
Affiliation(s)
- Marcos Peñalver-Mellado
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Takano H, Asker D, Beppu T, Ueda K. Genetic control for light-induced carotenoid production in non-phototrophic bacteria. J Ind Microbiol Biotechnol 2005; 33:88-93. [PMID: 16091943 DOI: 10.1007/s10295-005-0005-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
Carotenoids are naturally occurring yellow or orange pigments that serve as a protectant against photo-oxidative damages. Among the wide variety of producers, the prokaryotes generate a broad spectrum of carotenoids with diverse chemical structures that are expected to have a high potential in biotechnological applications. Bacterial carotenogenesis occurs in a constitutive or light-induced manner, which suggests the diversity of the regulatory mechanism. The mechanism for light-induced carotenoid production in non-phototrophic bacteria has been studied in detail in Myxococcus xanthus, a Gram-negative gliding bacterium. The complicated mechanism involves the activation of an extracytoplasmic function (ECF) sigma factor (CarQ), which leads to the sequestration of a MerR family transcriptional regulator (CarA) that represses the expression of the carotenoid biosynthesis genes in the dark. Recently, we identified another regulatory mechanism for light-induced carotenogenesis in Streptomyces coelicolor A3(2), a Gram-positive soil bacterium. In this organism, the transcription of the carotenoid biosynthesis gene cluster is specified by LitS, a photo-inducible ECF sigma factor. The evidence indicates that the photo-dependent transcription of litS is mediated by LitR, a MerR family transcriptional regulator. In addition, it is suggested that the conformational alteration of LitR upon receiving the illumination signal determines its binding to DNA. The carboxy-terminal domain of LitR contains a possible binding site for Vitamin B12, which may serve as a capturing apparatus for the illumination signal.
Collapse
Affiliation(s)
- Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-8510, Japan
| | | | | | | |
Collapse
|
21
|
Moraleda-Muñoz A, Pérez J, Fontes M, Murillo FJ, Muñoz-Dorado J. Copper induction of carotenoid synthesis in the bacterium Myxococcus xanthus. Mol Microbiol 2005; 56:1159-68. [PMID: 15882411 DOI: 10.1111/j.1365-2958.2005.04613.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper induces a red pigmentation in cells of the bacterium Myxococcus xanthus when they are incubated in the dark, at suboptimal growth conditions. The colouration results from the accumulation of carotenoids, as demonstrated by chemical analysis, and by the lack of a copper effect on M. xanthus mutants affected in known structural genes for carotenoid synthesis. None of several other metals or oxidative agents can mimic the copper effect on carotenoid synthesis. Until now, blue light was the only environmental agent known to induce carotenogenesis in M. xanthus. As happens for the blue light, copper activates the transcription of the structural genes for carotenoid synthesis through the transcriptional activation of the carQRS operon. This encodes the ECF sigma factor CarQ, directly or indirectly responsible for the activation of the structural genes, and the anti-sigma factor CarR, which physically interacts with CarQ to blocks its action in the absence of external stimuli. All but one of the other regulatory elements known to participate in the induction of carotenoid synthesis by blue light are required for the response to copper. The exception is CarF, a protein required for the light-mediated dismantling of the CarR-CarQ complex. In addition to carotenogenesis, copper induces other unknown cellular mechanisms that confer tolerance to the metal.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071 Granada, Spain
| | | | | | | | | |
Collapse
|