1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Beath EA, Bailey C, Mahantesh Magadam M, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13, and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. eLife 2024; 13:RP97812. [PMID: 39078879 PMCID: PMC11288632 DOI: 10.7554/elife.97812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| |
Collapse
|
3
|
Beath EA, Bailey C, Magadum MM, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13 and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584242. [PMID: 38559153 PMCID: PMC10979973 DOI: 10.1101/2024.03.12.584242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fertilization occurs before completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
4
|
Antoł W, Palka JK, Sychta K, Dudek K, Prokop ZM. Gene conversion restores selfing in experimentally evolving C. elegans populations with fog-2 loss-of-function mutation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000569. [PMID: 35601754 PMCID: PMC9121179 DOI: 10.17912/micropub.biology.000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022]
Abstract
We have discovered a new case of gene conversion restoring ability of self-fertilization in obligatory outcrossing
Caenorhabditis elegans
populations. The
fog-2(q71)
mutation, used to transform the nematodes’ mating system from mostly self-fertilization to obligatory outcrossing, was spontaneously removed by replacing a fragment of
fog-2
gene with a fragment of its paralog,
ftr-1
. This has occurred spontaneously in experimental evolution with large populations, evolving with
fog-2(q71)
mutation for over a hundred generations, without addition mutagens or other factors promoting mutation accumulation. A converted
fog-2
allele restoring hermaphrodite sperm production was detected in five experimental populations. This raises the question about stability of obligatory outcrossing populations in long-term experiments.
Collapse
Affiliation(s)
- Weronika Antoł
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
,
Correspondence to: Weronika Antoł (
)
| | - Joanna K. Palka
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| | - Karolina Sychta
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
,
Polish Academy of Sciences, Institute of Systematics and Evolution of Animals, Poland
| | - Katarzyna Dudek
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| | - Zofia M. Prokop
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| |
Collapse
|
5
|
Ellis RE. Sex Determination in Nematode Germ Cells. Sex Dev 2022:1-18. [PMID: 35172320 PMCID: PMC9378769 DOI: 10.1159/000520872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Animal germ cells differentiate as sperm or as oocytes. These sexual fates are controlled by complex regulatory pathways to ensure that the proper gametes are made at the appropriate times. SUMMARY Nematodes like Caenorhabditis elegans and its close relatives are ideal models for studying how this regulation works, because the XX animals are self-fertile hermaphrodites that produce both sperm and oocytes. In these worms, germ cells use the same signal transduction pathway that functions in somatic cells. This pathway determines the activity of the transcription factor TRA-1, a Gli protein that can repress male genes. However, the pathway is extensively modified in germ cells, largely by the action of translational regulators like the PUF proteins. Many of these modifications play critical roles in allowing the XX hermaphrodites to make sperm in an otherwise female body. Finally, TRA-1 cooperates with chromatin regulators in the germ line to control the activity of fog-1 and fog-3, which are essential for spermatogenesis. FOG-1 and FOG-3 work together to determine germ cell fates by blocking the translation of oogenic transcripts. Key Messages: Although there is great diversity in how germ cell fates are controlled in other animals, many of the key nematode genes are conserved, and the critical role of translational regulators may be universal.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, USA
| |
Collapse
|
6
|
Uebel CJ, Agbede D, Wallis DC, Phillips CM. Mutator Foci Are Regulated by Developmental Stage, RNA, and the Germline Cell Cycle in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:3719-3728. [PMID: 32763952 PMCID: PMC7534428 DOI: 10.1534/g3.120.401514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
RNA interference is a crucial gene regulatory mechanism in Caenorhabditis elegans Phase-separated perinuclear germline compartments called Mutator foci are a key element of RNAi, ensuring robust gene silencing and transgenerational epigenetic inheritance. Despite their importance, Mutator foci regulation is not well understood, and observations of Mutator foci have been largely limited to adult hermaphrodite germlines. Here we reveal that punctate Mutator foci arise in the progenitor germ cells of early embryos and persist throughout all larval stages. They are additionally present throughout the male germline and in the cytoplasm of post-meiotic spermatids, suggestive of a role in paternal epigenetic inheritance. In the adult germline, transcriptional inhibition results in a pachytene-specific loss of Mutator foci, indicating that Mutator foci are partially reliant on RNA for their stability. Finally, we demonstrate that Mutator foci intensity is modulated by the stage of the germline cell cycle and specifically, that Mutator foci are brightest and most robust in the mitotic cells, transition zone, and late pachytene of adult germlines. Thus, our data defines several new factors that modulate Mutator foci morphology which may ultimately have implications for efficacy of RNAi in certain cell stages or environments.
Collapse
Affiliation(s)
- Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Dana Agbede
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
7
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
8
|
Berardi S, McFall A, Toledo-Hernandez A, Coote C, Graham H, Stine L, Rhodehouse K, Auernhamer A, Van Wynsberghe PM. The Period protein homolog LIN-42 regulates germline development in C. elegans. Mech Dev 2018; 153:42-53. [PMID: 30144508 DOI: 10.1016/j.mod.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Germline stem cells are maintained in the distal region of the C. elegans gonad. These cells undergo mitotic divisions, and GLP-1/Notch signaling dictates whether they remain in this state. The somatic distal tip cell (DTC) caps the end of the distal gonad and is essential for maintenance of the germline mitotic zone. As germ cells move away from the DTC they exit mitosis and enter early meiotic prophase. Here we identify the Period protein homolog LIN-42 as a new regulator of germline development in C. elegans. LIN-42 is expressed in almost all somatic cells including the DTC, and LIN-42 functions as a transcription factor in the heterochronic pathway and to regulate molting. We found that the mitotic proliferative zone size in the distal gonad was significantly reduced by ~25% in lin-42 mutants compared to WT N2 worms. A lin-42 mutation also reduced the mitotic proliferative zone size caused by glp-1 partial loss-of-function and gain-of-function alleles. LIN-42 mediates this effect, at least in part, by regulating expression of the GLP-1/Notch ligand LAG-2. We further show that lin-42 expression itself is regulated by ATX-2, which promotes germline proliferation and is the homolog of the RNA binding protein ataxin-2 that is implicated in human neurodegenerative diseases. Altogether our results establish a new role for the conserved, important Period protein homolog LIN-42 in regulating early germline development. These results also suggest that in addition to regulating behavioral rhythms, the circadian clock plays an important role in communicating environmental signals to essential reproductive pathways.
Collapse
Affiliation(s)
- Skyler Berardi
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Alanna McFall
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | | | - Carolyn Coote
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Hillary Graham
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Laurel Stine
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Kyle Rhodehouse
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Anna Auernhamer
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | | |
Collapse
|
9
|
Mohammad A, Vanden Broek K, Wang C, Daryabeigi A, Jantsch V, Hansen D, Schedl T. Initiation of Meiotic Development Is Controlled by Three Post-transcriptional Pathways in Caenorhabditis elegans. Genetics 2018; 209:1197-1224. [PMID: 29941619 PMCID: PMC6063227 DOI: 10.1534/genetics.118.300985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
A major event in germline development is the transition from stem/progenitor cells to entry into meiosis and gametogenesis. This transition requires downregulation of mitotic cell cycle activity and upregulation of processes associated with meiosis. We identify the Caenorhabditis elegans SCFPROM-1 E3 ubiquitin-ligase complex as functioning to downregulate mitotic cell cycle protein levels including cyclin E, WAPL-1, and KNL-2 at meiotic entry and, independently, promoting homologous chromosome pairing as a positive regulator of the CHK-2 kinase. SCFPROM-1 is thus a novel regulator of meiotic entry, coordinating downregulation of mitotic cell cycle proteins and promoting homolog pairing. We further show that SCFPROM-1 functions redundantly, in parallel to the previously described GLD-1 and GLD-2 meiotic entry pathways, downstream of and inhibited by GLP-1 Notch signaling, which specifies the stem cell fate. Accordingly, C. elegans employs three post-transcriptional pathways, SCFPROM-1-mediated protein degradation, GLD-1-mediated translational repression, and GLD-2-mediated translational activation, to control and coordinate the initiation of meiotic development.
Collapse
Affiliation(s)
- Ariz Mohammad
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| | - Kara Vanden Broek
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Christopher Wang
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Tim Schedl
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| |
Collapse
|
10
|
Yoon DS, Cha DS, Alfhili MA, Keiper BD, Lee MH. Subunits of the DNA polymerase alpha-primase complex promote Notch-mediated proliferation with discrete and shared functions in C. elegans germline. FEBS J 2018; 285:2590-2604. [PMID: 29775245 DOI: 10.1111/febs.14512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
Notch receptor signaling is a highly conserved cell communication system in most multicellular organisms and plays a critical role at several junctures in animal development. In Caenorhabditis elegans,GLP-1/Notch signaling is essential for both germline stem cell maintenance and germ cell proliferation during gonad development. Here, we show that subunits (POLA-1, DIV-1, PRI-1, and PRI-2) of the DNA polymerase alpha-primase complex are required for germ cell proliferation in response to GLP-1/Notch signaling in different tissues at different developmental stages. Specifically, genetic and functional analyses demonstrated that (a) maternally contributed DIV-1 (regulatory subunit) is indispensable non-cell autonomously for GLP-1/Notch-mediated germ cell proliferation during early larval development, whereas POLA-1 (catalytic subunit) and two primase subunits, PRI-1 and PRI-2, do not appear to be essential; (b) germline POLA-1, PRI-1, and PRI-2 play a crucial role in GLP-1/Notch-mediated maintenance of proliferative cell fate during adulthood, while DIV-1 is dispensable; and (c) germline POLA-1, DIV-1, PRI-1, and PRI-2 function in tandem with PUF (Pumilio/FBF) RNA-binding proteins to maintain germline stem cells in the adult gonad. These findings suggest that the subunits of the DNA polymerase alpha-primase complex exhibit both discrete and shared functions in GLP-1/Notch or PUF-mediated germ cell dynamics in C. elegans. These findings link the biological functions of DNA replication machineries to signals that maintain a stem cell population, and may have further implications for Notch-dependent tumors.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Dong Seok Cha
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk, Korea
| | - Mohammad A Alfhili
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Myon-Hee Lee
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
11
|
Lissemore JL, Connors E, Liu Y, Qiao L, Yang B, Edgley ML, Flibotte S, Taylor J, Au V, Moerman DG, Maine EM. The Molecular Chaperone HSP90 Promotes Notch Signaling in the Germline of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:1535-1544. [PMID: 29507057 PMCID: PMC5940146 DOI: 10.1534/g3.118.300551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
In a genetic screen to identify genes that promote GLP-1/Notch signaling in Caenorhabditis elegans germline stem cells, we found a single mutation, om40, defining a gene called ego-3. ego-3(om40) causes several defects in the soma and the germline, including paralysis during larval development, sterility, delayed proliferation of germline stem cells, and ectopic germline stem cell proliferation. Whole genome sequencing identified om40 as an allele of hsp-90, previously known as daf-21, which encodes the C. elegans ortholog of the cytosolic form of HSP90. This protein is a molecular chaperone with a central position in the protein homeostasis network, which is responsible for proper folding, structural maintenance, and degradation of proteins. In addition to its essential role in cellular function, HSP90 plays an important role in stem cell maintenance and renewal. Complementation analysis using a deletion allele of hsp-90 confirmed that ego-3 is the same gene. hsp-90(om40) is an I→N conservative missense mutation of a highly conserved residue in the middle domain of HSP-90 RNA interference-mediated knockdown of hsp-90 expression partially phenocopied hsp-90(om40), confirming the loss-of-function nature of hsp-90(om40) Furthermore, reduced HSP-90 activity enhanced the effect of reduced function of both the GLP-1 receptor and the downstream LAG-1 transcription factor. Taken together, our results provide the first experimental evidence of an essential role for HSP90 in Notch signaling in development.
Collapse
Affiliation(s)
- James L Lissemore
- Biology Department, John Carroll University, University Heights, OH 44118
| | - Elyse Connors
- Department of Biology, Syracuse University, NY 13244
| | - Ying Liu
- Department of Biology, Syracuse University, NY 13244
| | - Li Qiao
- Department of Biology, Syracuse University, NY 13244
| | - Bing Yang
- Department of Biology, Syracuse University, NY 13244
| | - Mark L Edgley
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Vinci Au
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
12
|
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the regulation of a pool of stem cells and progression of cells from a stem cell state to a differentiated state. At the tissue level, the germline is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated cells at the other. A simple mesenchymal niche caps the GSC region of the germline and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Downstream of Notch signaling, key regulators include novel LST-1 and SYGL-1 proteins and a network of RNA regulatory proteins. In this chapter we present methods for characterizing the C. elegans GSC pool and early germ cell differentiation. The methods include examination of the germline in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutants that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA.
| | - Hannah S Seidel
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| | - Judith Kimble
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| |
Collapse
|
13
|
Stubenvoll MD, Medley JC, Irwin M, Song MH. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics. PLoS Genet 2016; 12:e1006370. [PMID: 27689799 PMCID: PMC5045193 DOI: 10.1371/journal.pgen.1006370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.
Collapse
Affiliation(s)
- Michael D. Stubenvoll
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Miranda Irwin
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
14
|
Gnazzo MM, Uhlemann EME, Villarreal AR, Shirayama M, Dominguez EG, Skop AR. The RNA-binding protein ATX-2 regulates cytokinesis through PAR-5 and ZEN-4. Mol Biol Cell 2016; 27:3052-3064. [PMID: 27559134 PMCID: PMC5063614 DOI: 10.1091/mbc.e16-04-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Cell division is regulated by the conserved RNA-binding protein, ATX-2/Ataxin-2, which facilitates the targeting of ZEN-4 to the spindle midzone by mediating PAR-5. The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5–GFP, and ultimately a reduction of ZEN-4–GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5.
Collapse
Affiliation(s)
- Megan M Gnazzo
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Eva-Maria E Uhlemann
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex R Villarreal
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute, and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Eddie G Dominguez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
15
|
Bar DZ, Charar C, Dorfman J, Yadid T, Tafforeau L, Lafontaine DLJ, Gruenbaum Y. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc Natl Acad Sci U S A 2016; 113:E4620-9. [PMID: 27457958 PMCID: PMC4987808 DOI: 10.1073/pnas.1512156113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dietary restriction (DR) is a metabolic intervention that extends the lifespan of multiple species, including yeast, flies, nematodes, rodents, and, arguably, rhesus monkeys and humans. Hallmarks of lifelong DR are reductions in body size, fecundity, and fat accumulation, as well as slower development. We have identified atx-2, the Caenorhabditis elegans homolog of the human ATXN2L and ATXN2 genes, as the regulator of these multiple DR phenotypes. Down-regulation of atx-2 increases the body size, cell size, and fat content of dietary-restricted animals and speeds animal development, whereas overexpression of atx-2 is sufficient to reduce the body size and brood size of wild-type animals. atx-2 regulates the mechanistic target of rapamycin (mTOR) pathway, downstream of AMP-activated protein kinase (AMPK) and upstream of ribosomal protein S6 kinase and mTOR complex 1 (TORC1), by its direct association with Rab GDP dissociation inhibitor β, which likely regulates RHEB shuttling between GDP-bound and GTP-bound forms. Taken together, this work identifies a previously unknown mechanism regulating multiple aspects of DR, as well as unknown regulators of the mTOR pathway. They also extend our understanding of diet-dependent growth retardation, and offers a potential mechanism to treat obesity.
Collapse
Affiliation(s)
- Daniel Z Bar
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Chayki Charar
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Jehudith Dorfman
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Tam Yadid
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Lionel Tafforeau
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies B-6041, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies B-6041, Belgium
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
16
|
Hubstenberger A, Cameron C, Noble SL, Keenan S, Evans TC. Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. J Cell Biol 2015; 211:703-16. [PMID: 26527741 PMCID: PMC4639854 DOI: 10.1083/jcb.201504044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
Modifiers of aberrant solid RNP granules suggest new insights into pathways that control dynamics of large-scale RNP bodies and mRNAs during C. elegans oogenesis. Ribonucleoproteins (RNPs) often coassemble into supramolecular bodies with regulated dynamics. The factors controlling RNP bodies and connections to RNA regulation are unclear. During Caenorhabditis elegans oogenesis, cytoplasmic RNPs can transition among diffuse, liquid, and solid states linked to mRNA regulation. Loss of CGH-1/Ddx6 RNA helicase generates solid granules that are sensitive to mRNA regulators. Here, we identified 66 modifiers of RNP solids induced by cgh-1 mutation. A majority of genes promote or suppress normal RNP body assembly, dynamics, or metabolism. Surprisingly, polyadenylation factors promote RNP coassembly in vivo, suggesting new functions of poly(A) tail regulation in RNP dynamics. Many genes carry polyglutatmine (polyQ) motifs or modulate polyQ aggregation, indicating possible connections with neurodegenerative disorders induced by CAG/polyQ expansion. Several RNP body regulators repress translation of mRNA subsets, suggesting that mRNAs are repressed by multiple mechanisms. Collectively, these findings suggest new pathways of RNP modification that control large-scale coassembly and mRNA activity during development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Pierre-and-Marie-Curie University, University Paris 06, 75005 Paris, France
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Graduate Program in Molecular Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean Keenan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
17
|
Lowry J, Yochem J, Chuang CH, Sugioka K, Connolly AA, Bowerman B. High-Throughput Cloning of Temperature-Sensitive Caenorhabditis elegans Mutants with Adult Syncytial Germline Membrane Architecture Defects. G3 (BETHESDA, MD.) 2015; 5:2241-55. [PMID: 26311651 PMCID: PMC4632044 DOI: 10.1534/g3.115.021451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
The adult Caenorhabditis elegans hermaphrodite gonad consists of two mirror-symmetric U-shaped arms, with germline nuclei located peripherally in the distal regions of each arm. The nuclei are housed within membrane cubicles that are open to the center, forming a syncytium with a shared cytoplasmic core called the rachis. As the distal germline nuclei progress through meiotic prophase, they move proximally and eventually cellularize as their compartments grow in size. The development and maintenance of this complex and dynamic germline membrane architecture are relatively unexplored, and we have used a forward genetic screen to identify 20 temperature-sensitive mutations in 19 essential genes that cause defects in the germline membrane architecture. Using a combined genome-wide SNP mapping and whole genome sequencing strategy, we have identified the causal mutations in 10 of these mutants. Four of the genes we have identified are conserved, with orthologs known to be involved in membrane biology, and are required for proper development or maintenance of the adult germline membrane architecture. This work provides a starting point for further investigation of the mechanisms that control the dynamics of syncytial membrane architecture during adult oogenesis.
Collapse
Affiliation(s)
- Josh Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - John Yochem
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kenji Sugioka
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
18
|
Caenorhabditis elegans Models to Study the Molecular Biology of Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Jiménez-López D, Guzmán P. Insights into the evolution and domain structure of Ataxin-2 proteins across eukaryotes. BMC Res Notes 2014; 7:453. [PMID: 25027299 PMCID: PMC4105795 DOI: 10.1186/1756-0500-7-453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/03/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. RESULTS We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. CONCLUSION Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
| |
Collapse
|
20
|
Zanetti S, Puoti A. Sex Determination in the Caenorhabditis elegans Germline. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:41-69. [DOI: 10.1007/978-1-4614-4015-4_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Hansen D, Schedl T. Stem cell proliferation versus meiotic fate decision in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:71-99. [PMID: 22872475 PMCID: PMC3786863 DOI: 10.1007/978-1-4614-4015-4_4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C. elegans germ line has emerged as an important model for -understanding how a stem cell population is maintained throughout the life of the animal while still producing the gametes necessary for propagation of the species. The stem cell population in the adult hermaphrodite is relatively large, with stem cells giving rise to daughters that appear intrinsically equivalent; however, some of the daughters retain the proliferative fate while others enter meiotic prophase. While machinery exists for cells to progress through the mitotic cell cycle and machinery exists for cells to progress through meiotic prophase, central to understanding germ line development is identifying the genes and regulatory processes that determine whether the mitotic cell cycle or meiotic prophase machinery will be utilized; in other words, the genes that regulate the switch of germ cells from the proliferative stem cell fate to the meiotic development fate. Whether a germ cell self-renews or enters meiotic prophase is largely determined by its proximity to the distal tip cell (DTC), which is the somatic niche cell that caps the distal end of the gonad. Germ cells close to the DTC have high levels of GLP-1 Notch signaling, which promotes the proliferative fate, while cells further from the DTC have high activity levels of the GLD-1 and GLD-2 redundant RNA regulatory pathways, as well as a third uncharacterized pathway, each of which direct cells to enter meiotic prophase. Other factors and pathways modulate this core genetic pathway, or work in parallel to it, presumably to ensure that a tight balance is maintained between proliferation and meiotic entry.
Collapse
Affiliation(s)
- Dave Hansen
- Department of Biological Sciences, 2500 University Drive, University of Calgary, Calgary, Alberta, Canada
| | - Tim Schedl
- Department of Genetics, Campus Box 8232, Washington University School of Medicine, 4566 Scott Ave, St Louis MO
| |
Collapse
|
22
|
Kershner A, Crittenden SL, Friend K, Sorensen EB, Porter DF, Kimble J. Germline stem cells and their regulation in the nematode Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:29-46. [PMID: 23696350 DOI: 10.1007/978-94-007-6621-1_3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
C. elegans germline stem cells exist within a stem cell pool that is maintained by a single-celled mesenchymal niche and Notch signaling. Downstream of Notch signaling, a regulatory network governs stem cells and differentiation. Central to that network is the FBF RNA-binding protein, a member of the widely conserved PUF family that functions by either of two broadly conserved mechanisms to repress its target mRNAs. Without FBF, germline stem cells do not proliferate and they do not maintain their naïve, undifferentiated state. Therefore, FBF is a pivotal regulator of germline self-renewal. Validated FBF targets include several key differentiation regulators as well as a major cell cycle regulator. A genomic analysis identifies many other developmental and cell cycle regulators as likely FBF targets and suggests that FBF is a broad-spectrum regulator of the genome with >1,000 targets. A comparison of the FBF target list with similar lists for human PUF proteins, PUM1 and PUM2, reveals ∼200 shared targets. The FBF hub works within a network controlling self-renewal vs. differentiation. This network consists of classical developmental cell fate regulators and classical cell cycle regulators. Recent results have begun to integrate developmental and cell cycle regulation within the network. The molecular dynamics of the network remain a challenge for the future, but models are proposed. We suggest that molecular controls of C. elegans germline stem cells provide an important model for controls of stem cells more broadly.
Collapse
Affiliation(s)
- Aaron Kershner
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kimble J. Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol 2011; 3:a002683. [PMID: 21646377 PMCID: PMC3140684 DOI: 10.1101/cshperspect.a002683] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A major step in the journey from germline stem cell to differentiated gamete is the decision to leave the mitotic cell cycle and begin progression through the meiotic cell cycle. Over the past decade, molecular regulators of the mitosis/meiosis decision have been discovered in most of the major model multicellular organisms. Historically, the mitosis/meiosis decision has been closely linked with controls of germline self-renewal and the sperm/egg decision, especially in nematodes and mice. Molecular explanations of those linkages clarify our understanding of this fundamental germ cell decision, and unifying themes have begun to emerge. Although the complete circuitry of the decision is not known in any organism, the recent advances promise to impact key issues in human reproduction and agriculture.
Collapse
Affiliation(s)
- Judith Kimble
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
24
|
Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T. Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 2011; 138:2223-34. [PMID: 21558371 DOI: 10.1242/dev.059535] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The C. elegans germline provides an excellent model for analyzing the regulation of stem cell activity and the decision to differentiate and undergo meiotic development. The distal end of the adult hermaphrodite germline contains the proliferative zone, which includes a population of mitotically cycling cells and cells in meiotic S phase, followed by entry into meiotic prophase. The proliferative fate is specified by somatic distal tip cell (DTC) niche-germline GLP-1 Notch signaling through repression of the redundant GLD-1 and GLD-2 pathways that promote entry into meiosis. Here, we describe characteristics of the proliferative zone, including cell cycle kinetics and population dynamics, as well as the role of specific cell cycle factors in both cell cycle progression and the decision between the proliferative and meiotic cell fate. Mitotic cell cycle progression occurs rapidly, continuously, with little or no time spent in G1, and with cyclin E (CYE-1) levels and activity high throughout the cell cycle. In addition to driving mitotic cell cycle progression, CYE-1 and CDK-2 also play an important role in proliferative fate specification. Genetic analysis indicates that CYE-1/CDK-2 promotes the proliferative fate downstream or in parallel to the GLD-1 and GLD-2 pathways, and is important under conditions of reduced GLP-1 signaling, possibly corresponding to mitotically cycling proliferative zone cells that are displaced from the DTC niche. Furthermore, we find that GLP-1 signaling regulates a third pathway, in addition to the GLD-1 and GLD-2 pathways and also independent of CYE-1/CDK-2, to promote the proliferative fate/inhibit meiotic entry.
Collapse
Affiliation(s)
- Paul M Fox
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
26
|
Abstract
Caenorhabditis elegans primarily reproduces as a hermaphrodite. Independent gene conversion events in mutant obligately outcrossing populations of C. elegans [fog-2(lf)] spontaneously repaired the loss-of-function mutation in the fog-2 locus, thereby reestablishing hermaphroditism as the primary means of reproduction for the populations.
Collapse
|
27
|
Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buchmann J, Hintermann E, Sandhoff K, Schürmann A, Nowock J, Auburger G. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum Mol Genet 2008; 17:1465-81. [PMID: 18250099 DOI: 10.1093/hmg/ddn035] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ataxin-2 is a cytoplasmic protein, product of the SCA2 gene. Expansion of the normal polyglutamine tract in the protein leads to the neurodegenerative disorder Spino-Cerebellar Ataxia type 2 (SCA2). Although ataxin-2 has been related to polyribosomes, endocytosis and actin-cytoskeleton organization, its biological function remains unknown. In the present study, an ataxin-2 deficient mouse (Sca2(-/-)) was generated to investigate the functional role of this protein. Homozygous mice exhibited reduced fertility and locomotor hyperactivity. In analyses up to the age of 6 months, the absence of ataxin-2 led to abdominal obesity and hepatosteatosis. This was associated with reduced insulin receptor expression in liver and cerebellum, although the mRNA levels were increased indicating a post-transcriptional effect of ataxin-2 on the insulin receptor status. As in insulin resistance syndromes, insulin levels were increased in pancreas and blood serum. In the cerebellum, increased levels of gangliosides and sulfatides, as well as decreased cholesterol dynamics, may be relevant for cellular membrane functions, and alterations in the sphingomyelin cycle may affect second messengers. Thus, the data suggest altered signaling in ataxin-2 deficient organisms.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Department of Neurology, J.W. Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sexual identity is one of the most important factors that determine how an animal will develop. Although it controls many dimorphic tissues in the body, its most ancient role is in the germ line, where it species that some cells become sperm, and others become eggs. In most animals, these two fates occur in distinct sexes. However, certain nematodes like C. elegans produce XX hermaphrodites, which make both types of gametes. In these animals, a core sex-determination pathway regulates the development of both the body and the germ line. However, modifier genes alter the activity of this pathway in germ cells, and these changes are critical for allowing XX animals to produce oocytes and sperm in an otherwise female body. In this review, I focus on (1) the core sex-determination pathway, (2) the activity of the transcription factor TRA-1 and its immediate targets fog-1 and fog-3 in germ cells, (3) how the regulation of tra-2 activity allows XX spermatogenesis, and (4) how the regulation of fem-3 activity maintains the appropriate balance between TRA-2 and FEM-3 in the germ line. Finally, I consider the major questions in this field that are driving new research.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, School of Osteopathic Medicine, B303 Science Center, The University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| |
Collapse
|
29
|
Abstract
We present methods for characterizing the mitotic and early meiotic regions of the Caenorhabditis elegans germline. The methods include examination of germlines in living and fixed worms, cell cycle analysis, analysis of markers, and initial characterization of mutants that affect germline proliferation.
Collapse
Affiliation(s)
- Sarah L Crittenden
- Howard Hughes Medical Institute and Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | | |
Collapse
|
30
|
Kimble J, Crittenden SL. Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 2007; 23:405-33. [PMID: 17506698 DOI: 10.1146/annurev.cellbio.23.090506.123326] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Caenorhabditis elegans germ line provides an exceptional model for analysis of the molecular controls governing stem cell maintenance, the cell cycle transition from mitosis to meiosis, and the choice of sexual identity-sperm or oocyte. Germline stem cells are maintained in an undifferentiated state within a well-defined niche formed by a single somatic cell, the distal tip cell (DTC). In both sexes, the DTC employs GLP-1/Notch signaling and FBF/PUF RNA-binding proteins to maintain stem cells and promote mitotic divisions, three additional RNA regulators (GLD-1/quaking, GLD-2/poly(A) polymerase, and GLD-3/Bicaudal-C) control entry into meiosis, and FOG-1/CPEB and FOG-3/Tob proteins govern sperm specification. These key regulators are part of a robust regulatory network that controls germ cell proliferation, stem cell maintenance, and sex determination. Parallels with controls in other organisms include the use of PUF proteins for stem cell maintenance and the prominence of mRNA regulation for the control of germline development.
Collapse
Affiliation(s)
- Judith Kimble
- Department of Biochemistry and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706-1544, USA.
| | | |
Collapse
|
31
|
Abstract
Like many stem cell systems, the Caenorhabditis elegans germ line contains a self-renewing germ cell population that is maintained by a niche. Although the exact cellular mechanism for self-renewal is not yet known, three recent studies shed considerable light on the cell cycle behavior of germ cells, including a support for significant and plastic renewal potential. This review brings together the results of the three recent cell-based studies, places them in the context of previous work, and discusses future perspectives for the field.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- New York University School of Medicine, Developmental Genetics, Skirball Institute for Biomolecular Medicine, Department of Pathology, Helen and Martin Kimmel Center for Stem Cell Biology, New York, New York 10016, USA.
| |
Collapse
|
32
|
Liu Y, Maine EM. The Bro1-domain protein, EGO-2, promotes Notch signaling in Caenorhabditis elegans. Genetics 2007; 176:2265-77. [PMID: 17603118 PMCID: PMC1950630 DOI: 10.1534/genetics.107.071225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 06/02/2007] [Indexed: 01/15/2023] Open
Abstract
In Caenorhabditis elegans, as in other animals, Notch-type signaling mediates numerous inductive events during development. The mechanism of Notch-type signaling involves proteolytic cleavage of the receptor and subsequent transport of the receptor intracellular domain to the nucleus, where it acts as a transcriptional regulator. Notch-type signaling activity is modulated by post-translational modifications and endocytosis of ligand and receptor. We previously identified the ego-2 (enhancer of glp-1) gene as a positive regulator of germline proliferation that interacts genetically with the GLP-1/Notch signaling pathway in the germline. Here, we show that ego-2 positively regulates signaling in various tissues via both GLP-1 and the second C. elegans Notch-type receptor, LIN-12. ego-2 activity also promotes aspects of development not known to require GLP-1 or LIN-12. The EGO-2 protein contains a Bro1 domain, which is known in other systems to localize to certain endosomal compartments. EGO-2 activity in the soma promotes GLP-1 signaling in the germline, consistent with a role for EGO-2 in production of active ligand. Another C. elegans Bro1-domain protein, ALX-1, is known to interact physically with LIN-12/Notch. We document a complex phenotypic interaction between ego-2 and alx-1, consistent with their relationship being antagonistic with respect to some developmental processes and agonistic with respect to others.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biology, Syracuse University, 108 College Place, Syracuse, NY 13244, USA
| | | |
Collapse
|
33
|
Hansen D, Schedl T. The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 2006; 76:185-215. [PMID: 17118267 DOI: 10.1016/s0070-2153(06)76006-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The germ line of sexually reproducing animals, at some point in development, consists of both proliferating and differentiating cells. Proliferation is needed to increase cell number, ensuring that a sufficient quantity of gametes is produced. Meiotic development is needed to produce gametes that can support embryogenesis, each with half the ploidy of the somatic cells. For the reproductive strategy of a given species, regulating the timing and number of gametes, and thus controlling the timing of differentiation and the extent of proliferation, is very important for reproductive fitness. Therefore, animals have evolved regulatory mechanisms that tightly control and balance the proliferation-initiation of meiotic development (meiotic entry) decision. Genetic analysis has identified signaling mechanisms involved in controlling this balance in some animals, including mice, Drosophila, and Caenorhabditis elegans. In this chapter, we present our understanding of the genetic hierarchy controlling the proliferation-meiotic entry decision in C. elegans. A core regulatory network controls the decision under all known conditions (developmental stage, sex, and growth temperature). It consists of a canonical Notch signaling pathway promoting proliferation by inhibiting two redundant mRNA regulatory pathways, the GLD-1 and GLD-2 pathways, which promote meiotic entry. Superimposed on the core network is a complex set of factors, some yet to be identified, and many with regulatory relationships still poorly understood, which control the activities of the GLD-1 and GLD-2 pathways and possibly parallel pathways. Some of the complexity arises from these regulators acting only under certain conditions. We also highlight major areas where we lack knowledge. For example, it is unknown if the entire population of proliferating cells are stem cells capable of self-renewal or if only a small portion are stem cells and the rest are transit amplifying cells.
Collapse
Affiliation(s)
- Dave Hansen
- Department of Biological Sciences, University of Calgary Calgary, Alberta, Canada T2N-1N4
| | | |
Collapse
|
34
|
Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, Huynh DP, Pulst SM. Generation and characterization of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res Commun 2006; 339:17-24. [PMID: 16293225 DOI: 10.1016/j.bbrc.2005.10.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 10/23/2005] [Indexed: 10/25/2022]
Abstract
Ataxin-2, the gene product of the Spinocerebellar Ataxia Type 2 (SCA2) gene, is a protein of unknown function with abundant expression in embryonic and adult tissues. Its interaction with A2BP1/Fox-1, a protein with an RNA recognition motif, suggests involvement of ataxin-2 in mRNA translation or transport. To study the effects of in vivo ataxin-2 function, we generated an ataxin-2 deficient mouse strain. Ataxin-2 deficient mice were viable. Genotypic analysis of litters from mating of heterozygous mice showed segregation distortion with a significant reduction in the birth of Sca-/- females. Detailed macroscopic and microscopic analysis of surviving nullizygous Sca2 knockout mice showed no major histological abnormalities. On a fat-enriched diet, ataxin-2 deficient animals had increased weight gain. Our results demonstrate that ataxin-2, although widely expressed, is not essential in development or during adult survival in the mouse, but leads to adult-onset obesity.
Collapse
Affiliation(s)
- Tim-Rasmus Kiehl
- Rose Moss Laboratory for Parkinson and Neurodegenerative Diseases, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
35
|
Yu X, Vought VE, Conradt B, Maine EM. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development inCaenorhabditis elegans. Genesis 2006; 44:412-8. [PMID: 16937415 DOI: 10.1002/dvg.20232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | |
Collapse
|
36
|
Vought VE, Ohmachi M, Lee MH, Maine EM. EGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in Caenorhabditis elegans. Genetics 2005; 170:1121-32. [PMID: 15911573 PMCID: PMC1451164 DOI: 10.1534/genetics.105.042135] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growth.
Collapse
Affiliation(s)
- Valarie E. Vought
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | - Mitsue Ohmachi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Min-Ho Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, New York 13244
- Corresponding author: Department of Biology, Syracuse University, 108 College Pl., Syracuse, NY 13244. E-mail:
| |
Collapse
|
37
|
Nayak S, Goree J, Schedl T. fog-2 and the evolution of self-fertile hermaphroditism in Caenorhabditis. PLoS Biol 2004; 3:e6. [PMID: 15630478 PMCID: PMC539060 DOI: 10.1371/journal.pbio.0030006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 10/16/2004] [Indexed: 01/06/2023] Open
Abstract
Somatic and germline sex determination pathways have diverged significantly in animals, making comparisons between taxa difficult. To overcome this difficulty, we compared the genes in the germline sex determination pathways of Caenorhabditis elegans and C. briggsae, two Caenorhabditis species with similar reproductive systems and sequenced genomes. We demonstrate that C. briggsae has orthologs of all known C. elegans sex determination genes with one exception: fog-2. Hermaphroditic nematodes are essentially females that produce sperm early in life, which they use for self fertilization. In C. elegans, this brief period of spermatogenesis requires FOG-2 and the RNA-binding protein GLD-1, which together repress translation of the tra-2 mRNA. FOG-2 is part of a large C. elegans FOG-2-related protein family defined by the presence of an F-box and Duf38/FOG-2 homogy domain. A fog-2-related gene family is also present in C. briggsae, however, the branch containing fog-2 appears to have arisen relatively recently in C. elegans, post-speciation. The C-terminus of FOG-2 is rapidly evolving, is required for GLD-1 interaction, and is likely critical for the role of FOG-2 in sex determination. In addition, C. briggsae gld-1 appears to play the opposite role in sex determination (promoting the female fate) while maintaining conserved roles in meiotic progression during oogenesis. Our data indicate that the regulation of the hermaphrodite germline sex determination pathway at the level of FOG-2/GLD-1/tra-2 mRNA is fundamentally different between C. elegans and C. briggsae, providing functional evidence in support of the independent evolution of self-fertile hermaphroditism. We speculate on the convergent evolution of hermaphroditism in Caenorhabditis based on the plasticity of the C. elegans germline sex determination cascade, in which multiple mutant paths yield self fertility. A comparison of sex determination genes in C. elegans and C. briggsae provides evidence in support of the convergent evolution of self-fertile hermaphroditism in the Caenorhabditis clade
Collapse
Affiliation(s)
- Sudhir Nayak
- 1Department of Genetics, Washington University School of MedicineSt. Louis, MissouriUnited States of America
| | - Johnathan Goree
- 1Department of Genetics, Washington University School of MedicineSt. Louis, MissouriUnited States of America
| | - Tim Schedl
- 1Department of Genetics, Washington University School of MedicineSt. Louis, MissouriUnited States of America
| |
Collapse
|