1
|
Rios EI, Gonçalves D, Morano KA, Johnson JL. Quantitative proteomic analysis reveals unique Hsp90 cycle-dependent client interactions. Genetics 2024; 227:iyae057. [PMID: 38606935 PMCID: PMC11151932 DOI: 10.1093/genetics/iyae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Hsp90 is an abundant and essential molecular chaperone that mediates the folding and activation of client proteins in a nucleotide-dependent cycle. Hsp90 inhibition directly or indirectly impacts the function of 10-15% of all proteins due to degradation of client proteins or indirect downstream effects. Due to its role in chaperoning oncogenic proteins, Hsp90 is an important drug target. However, compounds that occupy the ATP-binding pocket and broadly inhibit function have not achieved widespread use due to negative effects. More selective inhibitors are needed; however, it is unclear how to achieve selective inhibition. We conducted a quantitative proteomic analysis of soluble proteins in yeast strains expressing wild-type Hsp90 or mutants that disrupt different steps in the client folding pathway. Out of 2,482 proteins in our sample set (approximately 38% of yeast proteins), we observed statistically significant changes in abundance of 350 (14%) of those proteins (log2 fold change ≥ 1.5). Of these, 257/350 (∼73%) with the strongest differences in abundance were previously connected to Hsp90 function. Principal component analysis of the entire dataset revealed that the effects of the mutants could be separated into 3 primary clusters. As evidence that Hsp90 mutants affect different pools of clients, simultaneous co-expression of 2 mutants in different clusters restored wild-type growth. Our data suggest that the ability of Hsp90 to sample a wide range of conformations allows the chaperone to mediate folding of a broad array of clients and that disruption of conformational flexibility results in client defects dependent on those states.
Collapse
Affiliation(s)
- Erick I Rios
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
2
|
Hu L, Sun C, Kidd JM, Han J, Fang X, Li H, Liu Q, May AE, Li Q, Zhou L, Liu Q. A first-in-class inhibitor of Hsp110 molecular chaperones of pathogenic fungi. Nat Commun 2023; 14:2745. [PMID: 37173314 PMCID: PMC10182041 DOI: 10.1038/s41467-023-38220-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Proteins of the Hsp110 family are molecular chaperones that play important roles in protein homeostasis in eukaryotes. The pathogenic fungus Candida albicans, which causes infections in humans, has a single Hsp110, termed Msi3. Here, we provide proof-of-principle evidence supporting fungal Hsp110s as targets for the development of new antifungal drugs. We identify a pyrazolo[3,4-b] pyridine derivative, termed HLQ2H (or 2H), that inhibits the biochemical and chaperone activities of Msi3, as well as the growth and viability of C. albicans. Moreover, the fungicidal activity of 2H correlates with its inhibition of in vivo protein folding. We propose 2H and related compounds as promising leads for development of new antifungals and as pharmacological tools for the study of the molecular mechanisms and functions of Hsp110s.
Collapse
Affiliation(s)
- Liqing Hu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Justin M Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China.
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
3
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
4
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
5
|
Wang Y, Li H, Sun C, Liu Q, Zhou L, Liu Q. Purification and biochemical characterization of Msi3, an essential Hsp110 molecular chaperone in Candida albicans. Cell Stress Chaperones 2021; 26:695-704. [PMID: 34047887 PMCID: PMC8275692 DOI: 10.1007/s12192-021-01213-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Hsp110s are unique and essential molecular chaperones in the eukaryotic cytosol. They play important roles in maintaining cellular protein homeostasis. Candida albicans is the most prevalent yeast opportunistic pathogen that causes fungal infections in humans. As the only Hsp110 in Candida albicans, Msi3 is essential for the growth and infection of Candida albicans. In this study, we have expressed and purified Msi3 in nucleotide-free state and carried out biochemical analyses. Sse1 is the major Hsp110 in budding yeast S. cerevisiae and the best characterized Hsp110. Msi3 can substitute Sse1 in complementing the temperature-sensitive phenotype of S. cerevisiae carrying a deletion of SSE1 gene although Msi3 shares only 63.4% sequence identity with Sse1. Consistent with this functional similarity, the purified Msi3 protein shares many similar biochemical activities with Sse1 including binding ATP with high affinity, changing conformation upon ATP binding, stimulating the nucleotide-exchange for Hsp70, preventing protein aggregation, and assisting Hsp70 in refolding denatured luciferase. These biochemical characterizations suggested that Msi3 can be used as a model for studying the molecular mechanisms of Hsp110s.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Cancan Sun
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Autophagy modulates Aβ accumulation and formation of aggregates in yeast. Mol Cell Neurosci 2020; 104:103466. [PMID: 31962153 DOI: 10.1016/j.mcn.2020.103466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Intracellular accumulation of amyloid-β protein (Aβ) is an early event in Alzheimer's disease (AD). The autophagy-lysosomal pathway is an important pathway for maintaining cellular proteostasis and for the removal of damaged organelles and protein aggregates in all eukaryotes. Despite mounting evidence showing that modulating autophagy promotes clearance of Aβ aggregates, the regulatory mechanisms and signalling pathways underlying this process remain poorly understood. In order to gain better insight we used our previously characterised yeast model expressing GFP-Aβ42 to identify genes that regulate the removal of Aβ42 aggregates by autophagy. We report that GFP-Aβ42 is sequestered and is selectively transported to vacuole for degradation and that autophagy is the prominent pathway for clearance of aggregates. Next, to identify genes that selectively promote the removal of Aβ42 aggregates, we screened levels of GFP-Aβ42 and non-aggregating GFP-Aβ42 (19:34) proteins in a panel of 192 autophagy mutants lacking genes involved in regulation and initiation of the pathway, cargo selection and degradation processes. The nutrient and stress signalling genes RRD1, SNF4, GCN4 and SSE1 were identified. Deletion of these genes impaired GFP-Aβ42 clearance and their overexpression reduced GFP-Aβ42 levels in yeast. Overall, our findings identify a novel role for these nutrient and stress signalling genes in the targeted elimination of Aβ42 aggregates, which offer a promising avenue for developing autophagy based therapies to suppress amyloid deposition in AD.
Collapse
|
7
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol 2020; 499:110607. [PMID: 31586652 DOI: 10.1016/j.mce.2019.110607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
The cAMP-PKA pathway plays an essential role in the pituitary gland, governing cell differentiation and survival, and maintenance of endocrine function. Somatotroph growth hormone transcription and release as well as cell proliferation are regulated by the cAMP-PKA pathway; cAMP-PKA pathway abnormalities are frequently detected in sporadic as well as in hereditary somatotroph tumors and more rarely in other pituitary tumors. Inactivating variants of the aryl hydrocarbon receptor-interacting protein (AIP)-coding gene are the genetic cause of a subset of familial isolated pituitary adenomas (FIPA). Multiple functional links between the co-chaperone AIP and the cAMP-PKA pathway have been described. This review explores the role of chaperones including AIP in normal pituitary function as well as in somatotroph tumors, and their interaction with the cAMP-PKA pathway.
Collapse
Affiliation(s)
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|
8
|
Kumar S, Masison DC. Hsp70-nucleotide exchange factor (NEF) Fes1 has non-NEF roles in degradation of gluconeogenic enzymes and cell wall integrity. PLoS Genet 2019; 15:e1008219. [PMID: 31242183 PMCID: PMC6615629 DOI: 10.1371/journal.pgen.1008219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2019] [Accepted: 05/28/2019] [Indexed: 12/03/2022] Open
Abstract
Fes1 is a conserved armadillo repeat-containing Hsp70 nucleotide exchange factor important for growth at high temperature, proteasomal protein degradation and prion propagation. Depleting or mutating Fes1 induces a stress response and causes defects in these processes that are ascribed solely to disruption of Fes1 regulation of Hsp70. Here, we find Fes1 was essential for degradation of gluconeogenic enzymes by the vacuole import and degradation (Vid) pathway and for cell wall integrity (CWI), which is crucial for growth at high temperature. Unexpectedly, Fes1 mutants defective in physical or functional interaction with Hsp70 retained activities that support Vid and CWI. Fes1 and the Fes1 mutants bound to the Vid substrate Fbp1 in vitro and captured Slt2, a signaling kinase that regulates CWI, from cell lysates. Our data show that the armadillo domain of Fes1 binds proteins other than Hsp70, that Fes1 has important Hsp70-independent roles in the cell, and that major growth defects caused by depleting Fes1 are due to loss of these functions rather than to loss of Hsp70 regulation. We uncovered diverse functions of Fes1 beyond its defined role in regulating Hsp70, which points to possible multi-functionality among its conserved counterparts in other organisms or organelles. Fes1, a yeast homolog of human nucleotide exchange factor HspBP1, binds and regulates Hsp70, a universally conserved protein that helps maintain health of proteins in cells. Fes1 is believed to function only by helping Hsp70 release ADP and substrates and cells lacking Fes1 are sick. We find Fes1 is essential for protein degradation by a vacuolar pathway (Vid) and for cell wall integrity (CWI), and it interacts with a Vid substrate and a regulator of CWI. Fes1 mutants that cannot regulate Hsp70 can still support Vid and CWI, interact with proteins involved in these processes and restore cell health. Thus, Fes1 binds proteins other than Hsp70 and has important functions beyond regulating Hsp70 that are needed for optimal cell fitness.
Collapse
Affiliation(s)
- Shailesh Kumar
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS One 2019; 14:e0212389. [PMID: 31112537 PMCID: PMC6528989 DOI: 10.1371/journal.pone.0212389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete with food-based cropping systems. Importantly, two critical bottlenecks prevent economic adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical biomass pretreatment required to release fermentable sugars generates a variety of toxins, which inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1 to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate and glucose consumption in various media but do not have a specific impact on xylose fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We hypothesized improving stress tolerance would enhance the rate of xylose consumption in hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular stress limit this strain's ability for anaerobic xylose fermentation in hydrolysate.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison WI United States of America
- Morgridge Institute for Research, Madison, WI United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI United States of America
| |
Collapse
|
10
|
Yakubu UM, Morano KA. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding. Biol Chem 2019; 399:1215-1221. [PMID: 29908125 DOI: 10.1515/hsz-2018-0209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023]
Abstract
Cellular protein homeostasis (proteostasis) is maintained by a broad network of proteins involved in synthesis, folding, triage, repair and degradation. Chief among these are molecular chaperones and their cofactors that act as powerful protein remodelers. The growing realization that many human pathologies are fundamentally diseases of protein misfolding (proteopathies) has generated interest in understanding how the proteostasis network impacts onset and progression of these diseases. In this minireview, we highlight recent progress in understanding the enigmatic Hsp110 class of heat shock protein that acts as both a potent nucleotide exchange factor to regulate activity of the foldase Hsp70, and as a passive chaperone capable of recognizing and binding cellular substrates on its own, and its integration into the proteostasis network.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Garcia VM, Nillegoda NB, Bukau B, Morano KA. Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone Sse1 is not obligate for its biological activities. Mol Biol Cell 2017; 28:2066-2075. [PMID: 28539411 PMCID: PMC5509420 DOI: 10.1091/mbc.e17-01-0070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 02/05/2023] Open
Abstract
The highly conserved heat shock protein 70 (Hsp70) is a ubiquitous molecular chaperone essential for maintaining cellular protein homeostasis. The related protein Hsp110 (Sse1/Sse2 in Saccharomyces cerevisiae) functions as a nucleotide exchange factor (NEF) to regulate the protein folding activity of Hsp70. Hsp110/Sse1 also can prevent protein aggregation in vitro via its substrate-binding domain (SBD), but the cellular roles of this "holdase" activity are poorly defined. We generated and characterized an Sse1 mutant that separates, for the first time, its nucleotide exchange and substrate-binding functions. Sse1sbd retains nucleotide-binding and nucleotide exchange activities while exhibiting severe deficiencies in chaperone holdase activity for unfolded polypeptides. In contrast, we observed no effect of the SBD mutation in reconstituted disaggregation or refolding reactions in vitro. In vivo, Sse1sbd successfully heterodimerized with the yeast cytosolic Hsp70s Ssa and Ssb and promoted normal growth, with the exception of sensitivity to prolonged heat but not other proteotoxic stress. Moreover, Sse1sbd was fully competent to support Hsp90-dependent signaling through heterologously expressed glucocorticoid receptor and degradation of a permanently misfolded protein, two previously defined roles for Sse1. We conclude that despite conservation among eukaryotic homologues, chaperone holdase activity is not an obligate function in the Hsp110 family.
Collapse
Affiliation(s)
- Veronica M Garcia
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University and German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University and German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030
| |
Collapse
|
12
|
Fischer S, Engstler C, Procopio S, Becker T. EGFP-based evaluation of temperature inducible native promoters of industrial ale yeast by using a high throughput system. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
O'Driscoll J, Clare D, Saibil H. Prion aggregate structure in yeast cells is determined by the Hsp104-Hsp110 disaggregase machinery. J Cell Biol 2015; 211:145-58. [PMID: 26438827 PMCID: PMC4602031 DOI: 10.1083/jcb.201505104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022] Open
Abstract
3D structural analysis of a yeast [PSI+] prion model by correlative fluorescence and electron tomography reveals that prion aggregate structure depends on the levels of Hsp70 chaperones, the protein remodeling ATPase Hsp104, and the Hsp70 nucleotide exchange factor/disaggregase Sse1 (yeast Hsp110). Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.
Collapse
Affiliation(s)
- Jonathan O'Driscoll
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Daniel Clare
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Helen Saibil
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
14
|
Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Subcell Biochem 2015; 78:1-33. [PMID: 25487014 DOI: 10.1007/978-3-319-11731-7_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Dept. of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany,
| | | |
Collapse
|
15
|
Mohamed BA, Barakat AZ, Held T, Elkenani M, Mühlfeld C, Männer J, Adham IM. Respiratory Distress and Early Neonatal Lethality inHspa4l/Hspa4Double-Mutant Mice. Am J Respir Cell Mol Biol 2014; 50:817-24. [DOI: 10.1165/rcmb.2013-0132oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Abrams JL, Verghese J, Gibney PA, Morano KA. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. J Biol Chem 2014; 289:13155-67. [PMID: 24671421 DOI: 10.1074/jbc.m113.530014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.
Collapse
Affiliation(s)
- Jennifer L Abrams
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | | | | | | |
Collapse
|
17
|
Mutational analysis of Sse1 (Hsp110) suggests an integral role for this chaperone in yeast prion propagation in vivo. G3-GENES GENOMES GENETICS 2013; 3:1409-18. [PMID: 23797105 PMCID: PMC3737180 DOI: 10.1534/g3.113.007112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The yeast Hsp110 chaperone Sse1 is a conserved protein that is a noncanonical member of the Hsp70 protein superfamily. Sse1 influences the cellular response to heat stress and has also been implicated in playing a role in the propagation of prions in yeast. Sse1 can seemingly exert its effects in vivo through direct or indirect actions by influencing the nucleotide exchange activity of canonical cytosolic Hsp70s. Using a genetic screen based on the inability to propagate the yeast [PSI(+)] prion, we have identified 13 new Sse1 mutants that are predicted to alter chaperone function through a variety of different mechanisms. Not only are these new Sse1 mutants altered in the ability to propagate and cure yeast prions but also to varying degrees in the ability to grow at elevated temperatures. The expression levels of chaperone proteins known to influence yeast prion propagation are unaltered in the Sse1 mutants, suggesting that the observed phenotypic effects are caused by direct functional alterations in these mutants. Mapping the location of the mutants onto the Sse1 crystal structure suggests that more than one functional alteration in Sse1 may result in changes in prion propagation and ability to function at elevated temperatures. All Sse1 mutants isolated provide essential functions in the cell under normal growth conditions, further demonstrating that essential chaperone functions in vivo can to some degree at least be detached from those related to propagation of prions. Our results suggest that Sse1 can influence prion propagation through a variety of different mechanisms.
Collapse
|
18
|
Makhnevych T, Houry WA. The control of spindle length by Hsp70 and Hsp110 molecular chaperones. FEBS Lett 2013; 587:1067-72. [DOI: 10.1016/j.febslet.2013.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/20/2022]
|
19
|
Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci 2012; 13:15706-23. [PMID: 23443089 PMCID: PMC3546657 DOI: 10.3390/ijms131215706] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) family mediates stress signal transduction, and plays important roles in the control of normal growth of human cells and in promoting development of tumor cells. Hsp90s have become a currently important subject in cellular immunity, signal transduction, and anti-cancer research. Studies on the physiological functions of Hsp90s began much later in plants than in animals and fungi. Significant progress has been made in understanding complex mechanisms of HSP90s in plants, including ATPase-coupled conformational changes and interactions with cochaperone proteins. A wide range of signaling proteins interact with HSP90s. Recent studies revealed that plant Hsp90s are important in plant development, environmental stress response, and disease and pest resistance. In this study, the plant HSP90 family was classified into three clusters on the basis of phylogenetic relationships, gene structure, and biological functions. We discuss the molecular functions of Hsp90s, and systematically review recent progress of Hsp90 research in plants.
Collapse
Affiliation(s)
- Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
20
|
Welch AZ, Gibney PA, Botstein D, Koshland DE. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell 2012; 24:115-28. [PMID: 23171550 PMCID: PMC3541959 DOI: 10.1091/mbc.e12-07-0524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000-fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.
Collapse
Affiliation(s)
- Aaron Z Welch
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
21
|
Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae. Biochem J 2012; 446:477-88. [PMID: 22747505 DOI: 10.1042/bj20120634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike other stresses, the physiological significance and molecular mechanisms involved in the yeast cold response are largely unknown. In the present study, we show that the CWI (cell wall integrity) pathway plays an important role in the growth of Saccharomyces cerevisiae at low temperatures. Cells lacking the Wsc1p (wall integrity and stress response component 1) membrane sensor or the MAPKs (mitogen-activated protein kinases) Bck1p (bypass of C kinase 1), Mkk (Mapk kinase) 1p/Mkk2p or Slt2p (suppressor of lyt2) exhibited cold sensitivity. However, there was no evidence of either a cold-provoked perturbation of the cell wall or a differential cold expression program mediated by Slt2p. The results of the present study suggest that Slt2p is activated by different inputs in response to nutrient signals and mediates growth control through TORC1 (target of rapamycin 1 complex)-Sch9p (suppressor of cdc25) and PKA (protein kinase A) at low temperatures. We found that absence of TOR1 (target of rapamycin 1) causes cold sensitivity, whereas a ras2Δ mutant shows increased cold growth. Lack of Sch9p alleviates the phenotype of slt2Δ and bck1Δ mutant cells, as well as attenuation of PKA activity by overexpression of BCY1 (bypass of cyclase mutations 1). Interestingly, swi4Δ mutant cells display cold sensitivity, but the phenotype is neither mediated by the Slt2p-regulated induction of Swi4p (switching deficient 4)-responsive promoters nor influenced by osmotic stabilization. Hence, cold signalling through the CWI pathway has distinct features and might mediate still unknown effectors and targets.
Collapse
|
22
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
23
|
Interactions between the kinetochore complex and the protein kinase A pathway in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2012; 2:831-41. [PMID: 22870406 PMCID: PMC3385989 DOI: 10.1534/g3.112.002675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/16/2012] [Indexed: 11/28/2022]
Abstract
The kinetochore is a large structure composed of multiple protein subcomplexes that connect chromosomes to spindle microtubules to enable accurate chromosome segregation. Significant advances have been made in the identification of kinetochore proteins and elucidation of kinetochore structure; however, comparatively little is known about how cellular signals integrate with kinetochore function. In the budding yeast Saccharomyces cerevisiae, the cyclic AMP protein kinase A signaling pathway promotes cellular growth in response to glucose. In this study, we find that decreasing protein kinase A activity, either by overexpressing negative regulators of the pathway or deleting the upstream effector Ras2, improves the viability of ipl1 and spc24 kinetochore mutants. Ipl1/Aurora B is a highly conserved kinase that corrects attachment of sister kinetochores that have attached to the same spindle pole, whereas Spc24 is a component of the conserved Ndc80 kinetochore complex that attaches directly to microtubules. Unexpectedly, we find that kinetochore mutants have increased phosphorylation levels of protein kinase A substrates, suggesting that the cyclic AMP protein kinase A signaling pathway is stimulated. The increase in protein kinase A activity in kinetochore mutants is not induced by activation of the spindle checkpoint or a metaphase delay because protein kinase A activity remains constant during an unperturbed cell cycle. Finally, we show that lowering protein kinase A activity can rescue the chromosome loss defect of the inner kinetochore ndc10 mutant. Overall, our data suggest that the increased protein kinase A activity in kinetochore mutants is detrimental to cellular growth and chromosome transmission fidelity.
Collapse
|
24
|
Flom GA, Langner E, Johnson JL. Identification of an Hsp90 mutation that selectively disrupts cAMP/PKA signaling in Saccharomyces cerevisiae. Curr Genet 2012; 58:149-63. [PMID: 22461145 DOI: 10.1007/s00294-012-0373-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 01/14/2023]
Abstract
The molecular chaperone Hsp90 cooperates with multiple cochaperone proteins as it promotes the folding and activation of diverse client proteins. Some cochaperones regulate the ATPase activity of Hsp90, while others appear to promote Hsp90 interaction with specific types of client proteins. Through its interaction with the adenylate cyclase Cyr1, the Sgt1 cochaperone modulates the activity of the cAMP pathway in Saccharomyces cerevisiae. A specific mutation in yeast Hsp90, hsc82-W296A, or a mutation in Sgt1, sgt1-K360E, resulted in altered transcription patterns genetically linked to the cAMP pathway. Hsp90 interacted with Cyr1 in vivo and the hsc82-W296A mutation resulted in reduced accumulation of Cyr1. Hsp90-Sgt1 interaction was altered by either the hsc82-W296A or sgt1-K360E mutation, suggesting defective Hsp90-Sgt1 cooperation leads to reduced Cyr1 activity. Microarray analysis of hsc82-W296A cells indicated that over 80 % of all transcriptional changes in this strain may be attributed to altered cAMP signaling. This suggests that a majority of the cellular defects observed in hsc82-W296A cells are due to altered interaction with one specific essential cochaperone, Sgt1 and one essential client, Cyr1. Together our results indicate that specific interaction of Hsp90 and Sgt1 with Cyr1 plays a key role in regulating gene expression, including genes involved in polarized morphogenesis.
Collapse
Affiliation(s)
- Gary A Flom
- Department of Biological Sciences, Center for Reproductive Biology, University of Idaho, Life Sciences South Room 252, P.O. Box 443051, Moscow, ID 83844-3051, USA
| | | | | |
Collapse
|
25
|
Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefèvre L, Louvet C, Tournigand C, Lefèvre JH, Parc Y, Tiret E, Fléjou JF, Gaub MP, Garrido C, Duval A. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 2011; 17:1283-9. [PMID: 21946539 DOI: 10.1038/nm.2457] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/01/2011] [Indexed: 12/26/2022]
Abstract
Heat shock proteins (HSPs) are necessary for cancer cell survival. We identified a mutant of HSP110 (HSP110ΔE9) in colorectal cancer showing microsatellite instability (MSI CRC), generated from an aberrantly spliced mRNA and lacking the HSP110 substrate-binding domain. This mutant was expressed at variable levels in almost all MSI CRC cell lines and primary tumors tested. HSP110ΔE9 impaired both the normal cellular localization of HSP110 and its interaction with other HSPs, thus abrogating the chaperone activity and antiapoptotic function of HSP110 in a dominant-negative manner. HSP110ΔE9 overexpression caused the sensitization of cells to anticancer agents such as oxaliplatin and 5-fluorouracil, which are routinely prescribed in the adjuvant treatment of people with CRC. The survival and response to chemotherapy of subjects with MSI CRCs was associated with the tumor expression level of HSP110ΔE9. HSP110 may thus constitute a major determinant for both prognosis and treatment response in CRC.
Collapse
Affiliation(s)
- Coralie Dorard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine, Equipe 'Instabilité des Microsatellites et Cancers', Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein JM. Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem 2011; 286:22017-27. [PMID: 21531713 DOI: 10.1074/jbc.m110.200071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.
Collapse
Affiliation(s)
- Karin Voordeckers
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven and Department of Molecular Microbiology, VIB, B-3001 Leuven-Heverlee, Flanders, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Pallavi R, Acharya P, Chandran S, Daily JP, Tatu U. Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malar J 2010; 9:236. [PMID: 20719001 PMCID: PMC2933700 DOI: 10.1186/1475-2875-9-236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/19/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. METHODS Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. RESULTS Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. CONCLUSION In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria.
Collapse
Affiliation(s)
- Rani Pallavi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | | | | | | | | |
Collapse
|
28
|
Soulard A, Cremonesi A, Moes S, Schütz F, Jenö P, Hall MN. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 2010; 21:3475-86. [PMID: 20702584 PMCID: PMC2947482 DOI: 10.1091/mbc.e10-03-0182] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.
Collapse
|
29
|
Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J. Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9. FEMS Yeast Res 2008; 8:1276-88. [DOI: 10.1111/j.1567-1364.2008.00432.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Dechant R, Peter M. Nutrient signals driving cell growth. Curr Opin Cell Biol 2008; 20:678-87. [PMID: 18930818 DOI: 10.1016/j.ceb.2008.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/22/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Regulation of cell growth in response to nutrients is crucial for the survival of all organisms. In yeast, cell growth and division require two signaling pathways, TORC1 and PKA. Activation of these pathways crucially depends on intracellular metabolic signals, but the mechanisms remain elusive. Recent studies have identified potential activators of TORC1 and have highlighted a crucial role for the endomembrane system. Moreover, calcium was recognized as an important second messenger for TORC1 activation in response to amino acid levels. On the contrary, genetic analysis indicates that PKA activation depends on an intracellular glucose metabolite. Together with novel quantitative approaches, these findings provide important groundwork in our understanding of the molecular mechanisms for nutrient sensing in yeast and humans.
Collapse
Affiliation(s)
- Reinhard Dechant
- Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland.
| | | |
Collapse
|
31
|
Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc Natl Acad Sci U S A 2008; 105:16519-24. [PMID: 18948593 DOI: 10.1073/pnas.0804187105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hsp110 proteins are relatives of canonical Hsp70 chaperones and are expressed abundantly in the eukaryotic cytosol. Recently, it has become clear that Hsp110 proteins are essential nucleotide exchange factors (NEFs) for Hsp70 chaperones. Here, we report the architecture of the complex between the yeast Hsp110, Sse1, and its cognate Hsp70 partner, Ssa1, as revealed by hydrogen-deuterium exchange analysis and site-specific cross-linking. The two nucleotide-binding domains (NBDs) of Sse1 and Ssa1 are positioned to face each other and form extensive contacts between opposite lobes of their NBDs. A second contact with the periphery of the Ssa1 NBD lobe II is likely mediated via the protruding C-terminal alpha-helical subdomain of Sse1. To address the mechanism of catalyzed nucleotide exchange, we have compared the hydrogen exchange characteristics of the Ssa1 NBD in complex with either Sse1 or the yeast homologs of the NEFs HspBP1 and Bag-1. We find that Sse1 exploits a Bag-1-like mechanism to catalyze nucleotide release, which involves opening of the Ssa1 NBD by tilting lobe II. Thus, Hsp110 proteins use a unique binding mode to catalyze nucleotide release from Hsp70s by a functionally convergent mechanism.
Collapse
|
32
|
Shaner L, Gibney PA, Morano KA. The Hsp110 protein chaperone Sse1 is required for yeast cell wall integrity and morphogenesis. Curr Genet 2008; 54:1-11. [PMID: 18478233 DOI: 10.1007/s00294-008-0193-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 04/18/2008] [Accepted: 04/24/2008] [Indexed: 12/29/2022]
Abstract
Molecular chaperones direct refolding and triage decisions and support signal transduction responses to cytotoxic stress. The eukaryotic chaperone Hsp110 is represented by the SSE1/2 genes in Saccharomyces cerevisiae, which act as nucleotide exchange factors (NEFs) for cognate cytosolic Hsp70 chaperones. In this report, we present evidence that Sse1 is required for signaling through the cell integrity pathway via partnership with Hsp90 and the terminal MAP kinase Slt2. We found that sse1Delta and sti1Delta mutant cells share the typical cell integrity mutant phenotypes of osmoremediated temperature-sensitive growth and sensitivity to cell wall-damaging agents. Sse1 binds to Slt2 in vivo and similar to Hsp90 mutants, Slt2 stability and phosphorylation is not compromised in sse1Delta cells, whereas activation of the downstream transcription factor Rlm1 is abolished. In addition to Rlm1, Slt2 activates the Swi4/Swi6 heterodimer SBF in response to cell wall damage. SSE1 displayed dramatic synthetic phenotypes when disrupted in combination with mutations in SBF and the related Mbp1/Swi6 heterodimer MBF, characterized by severe growth and morphological defects. These defects were reversed by restoration of Hsp70 NEF activity, providing a mechanistic model wherein Sse1 functionally partners with Hsp90 as an Hsp70 NEF to promote client protein maturation and interaction with downstream effectors.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes. EUKARYOTIC CELL 2008; 7:967-79. [PMID: 18375619 DOI: 10.1128/ec.00438-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol phosphates are involved in signal transduction, cytoskeletal organization, and membrane trafficking. Inositol polyphosphates, produced from phosphatidylinositol phosphates by the phospholipase C-dependent pathway, regulate chromatin remodeling. We used genome-wide expression analysis to further investigate the roles of Plc1p (phosphoinositide-specific phospholipase C in Saccharomyces cerevisiae) and inositol polyphosphates in transcriptional regulation. Plc1p contributes to the regulation of approximately 2% of yeast genes in cells grown in rich medium. Most of these genes are induced by nutrient limitation and other environmental stresses and are derepressed in plc1 Delta cells. Surprisingly, genes regulated by Plc1p do not correlate with gene sets regulated by Swi/Snf or RSC chromatin remodeling complexes but show correlation with genes controlled by Msn2p. Our results suggest that the increased expression of stress-responsive genes in plc1 Delta cells is mediated by decreased cyclic AMP synthesis and protein kinase A (PKA)-mediated phosphorylation of Msn2p and increased binding of Msn2p to stress-responsive promoters. Accordingly, plc1 Delta cells display other phenotypes characteristic of cells with decreased PKA activity. Our results are consistent with a model in which Plc1p acts together with the membrane receptor Gpr1p and associated G(alpha) protein Gpa2p in a pathway separate from Ras1p/Ras2p and converging on PKA.
Collapse
|
34
|
Andréasson C, Fiaux J, Rampelt H, Mayer MP, Bukau B. Hsp110 is a nucleotide-activated exchange factor for Hsp70. J Biol Chem 2008; 283:8877-84. [PMID: 18218635 DOI: 10.1074/jbc.m710063200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp110 proteins constitute a subfamily of the Hsp70 chaperones and are potent nucleotide exchange factors (NEFs) for canonical Hsp70s of the eukaryotic cytosol. Here, we show that the NEF activity of the yeast Hsp110 homologue Sse1 itself is controlled by nucleotide. Nucleotide binding results in formation of a stabilized conformation of Sse1 that is required for association with the yeast Hsp70 Ssa1. The interaction triggers release of bound ADP from Ssa1, but nucleotide persists bound to Sse1 in the complex. Surprisingly, removal of this nucleotide does not affect the integrity of the complex. Instead, rebinding of ATP to the Hsp70 prompts the dissociation of the complex. Our data demonstrate that in contrast to previously characterized NEFs for Hsp70 chaperones, the NEF activity of Sse1 requires nucleotide binding and let us propose a new model for Hsp110 function.
Collapse
Affiliation(s)
- Claes Andréasson
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZBH Alliance, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Flo11p-independent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast. Genetics 2007; 177:1679-89. [PMID: 17947402 DOI: 10.1534/genetics.107.081141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been used as a model for fungal biofilm formation due to its ability to adhere to plastic surfaces and to form mats on low-density agar petri plates. Mats are complex multicellular structures composed of a network of cables that form a central hub from which emanate multiple radial spokes. This reproducible and elaborate pattern is indicative of a highly regulated developmental program that depends on specific transcriptional programming, environmental cues, and possibly cell-cell communication systems. While biofilm formation and sliding motility were shown to be strictly dependent on the cell-surface adhesin Flo11p, little is known about the cellular machinery that controls mat formation. Here we show that Hsp70 molecular chaperones play key roles in this process with the assistance of the nucleotide exchange factors Fes1p and Sse1p and the Hsp40 family member Ydj1p. The disruption of these cofactors completely abolished mat formation. Furthermore, complex interactions among SSA genes were observed: mat formation depended mostly on SSA1 while minor defects were observed upon loss of SSA2; additional mutations in SSA3 or SSA4 further enhanced these phenotypes. Importantly, these mutations did not compromise invasive growth or Flo11p expression, suggesting that Flo11p-independent pathways are necessary to form mats.
Collapse
|
36
|
Shaner L, Morano KA. All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 2007; 12:1-8. [PMID: 17441502 PMCID: PMC1852889 DOI: 10.1379/csc-245r.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Shaner L, Sousa R, Morano KA. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 2007; 45:15075-84. [PMID: 17154545 PMCID: PMC2676923 DOI: 10.1021/bi061279k] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
38
|
Abstract
Sch9 appears to be the Saccharomyces cerevisiae homolog of protein kinase B and is involved in the control of numerous nutrient-sensitive processes, including regulation of cell size, cell cycle progression, and stress resistance. Sch9 has also been implicated in the regulation of replicative and chronological life span. Systematic comparison of the phenotypes of sch9 and other AGC kinase mutants in fungal species with their counterparts in model eukaryotic organisms provides insight into the functions of AGC kinases. The availability of data from global studies of protein-protein interactions now makes it possible to predict and validate functional connections between Sch9, its putative substrates, and other proteins. This review highlights several emerging paradigms of AGC kinase signaling that are relevant for growth, development, and aging.
Collapse
Affiliation(s)
- Alex Sobko
- Iogen Corporation, 310 Hunt Club Road East, Ottawa, Ontario, K1V 1C1, Canada.
| |
Collapse
|
39
|
Held T, Paprotta I, Khulan J, Hemmerlein B, Binder L, Wolf S, Schubert S, Meinhardt A, Engel W, Adham IM. Hspa4l-deficient mice display increased incidence of male infertility and hydronephrosis development. Mol Cell Biol 2006; 26:8099-108. [PMID: 16923965 PMCID: PMC1636758 DOI: 10.1128/mcb.01332-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hspa4l gene, also known as Apg1 or Osp94, belongs to the HSP110 heat shock gene family, which includes three genes encoding highly conserved proteins. This study shows that Hspa4l is expressed ubiquitously and predominantly in the testis. The protein is highly expressed in spermatogenic cells, from late pachytene spermatocytes to postmeiotic spermatids. In the kidney, the protein is restricted to cortical segments of distal tubules. To study the physiological role of this gene in vivo, we generated mice deficient in Hspa4l by gene targeting. Hspa4l-deficient mice were born at expected ratios and appeared healthy. However, approximately 42% of Hspa4l(-/-) male mice suffered from fertility defects. Whereas the seminiferous tubules of Hspa4l(-/-) testes contained all stages of germ cells, the number of mature sperm in the epididymis and sperm motility were drastically reduced. The reduction of the sperm count was due to the elimination of a significant number of developing germ cells via apoptosis. No defects in fertility were observed in female mutants. In addition, 12% of null mutant mice developed hydronephrosis. Concentrations of plasma and urine electrolytes in Hspa4l(-/-) mice were similar to wild-type values, suggesting that the renal function was not impaired. However, Hspa4l(-/-) animals were preferentially susceptible to osmotic stress. These results provide evidence that Hspa4l is required for normal spermatogenesis and suggest that Hspa4l plays a role in osmotolerance.
Collapse
Affiliation(s)
- Torsten Held
- Institute of Human Genetics, University of Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 2006; 25:2510-8. [PMID: 16688211 PMCID: PMC1478168 DOI: 10.1038/sj.emboj.7601139] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/12/2006] [Indexed: 12/14/2022] Open
Abstract
The Hsp110 proteins, exclusively found in the eukaryotic cytosol, have significant sequence homology to the Hsp70 molecular chaperone superfamily. Despite this homology and the cellular abundance of these proteins, the precise functional role has remained undefined. Here, we present the intriguing finding that the yeast homologue, Sse1p, acts as an efficient nucleotide exchange factor (NEF) for both yeast cytosolic Hsp70s, Ssa1p and Ssb1p. The mechanism involves formation of a stable nucleotide-sensitive complex, but does not require ATP hydrolysis by Sse1p. The NEF activity of Sse1p stimulates in vitro Ssa1p-mediated refolding of thermally denatured luciferase, and appears to have an essential role in vivo. Overexpression of the only other described cytosolic NEF, Fes1p, can partially compensate for a lethal sse1,2Delta phenotype, however, the cells are sensitive to stress conditions. Furthermore, in the absence of Sse, the in vivo refolding of thermally denatured model proteins is affected. This is the first report of a nucleotide exchange activity for the Hsp110 class of proteins, and provides a key piece in the puzzle of the cellular chaperone network.
Collapse
Affiliation(s)
- Holger Raviol
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Heather Sadlish
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Fernanda Rodriguez
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany. Tel.: + 49 6221 546 795; Fax: +49-6221 545 894; E-mail:
| |
Collapse
|
41
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
42
|
Shaner L, Wegele H, Buchner J, Morano KA. The Yeast Hsp110 Sse1 Functionally Interacts with the Hsp70 Chaperones Ssa and Ssb. J Biol Chem 2005; 280:41262-9. [PMID: 16221677 DOI: 10.1074/jbc.m503614200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Yam AYW, Albanèse V, Lin HTJ, Frydman J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem 2005; 280:41252-61. [PMID: 16219770 DOI: 10.1074/jbc.m503615200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular chaperones such as Hsp70 use ATP binding and hydrolysis to prevent aggregation and ensure the efficient folding of newly translated and stress-denatured polypeptides. Eukaryotic cells contain several cytosolic Hsp70 subfamilies. In yeast, these include the Hsp70s SSB and SSA as well as the Hsp110-like Sse1/2p. The cellular functions and interplay between these different Hsp70 systems remain ill-defined. Here we show that the different cytosolic Hsp70 systems functionally interact with Hsp110 to form a chaperone network that interacts with newly translated polypeptides during their biogenesis. Both SSB and SSA Hsp70s form stable complexes with the Hsp110 Sse1p. Pulse-chase analysis indicates that these Hsp70/Hsp110 teams, SSB/SSE and SSA/SSE, transiently associate with newly synthesized polypeptides with different kinetics. SSB Hsp70s bind cotranslationally to a large fraction of nascent chains, suggesting an early role in the stabilization of nascent chains. SSA Hsp70s bind mostly post-translationally to a more restricted subset of newly translated polypeptides, suggesting a downstream function in the folding pathway. Notably, loss of SSB dramatically enhances the cotranslational association of SSA with nascent chains, suggesting SSA can partially fulfill an SSB-like function. On the other hand, the absence of SSE1 enhances polypeptide binding to both SSB and SSA and impairs cell growth. It, thus, appears that Hsp110 is an important regulator of Hsp70-substrate interactions. Based on our data, we propose that Hsp110 cooperates with the SSB and SSA Hsp70 subfamilies, which act sequentially during de novo folding.
Collapse
Affiliation(s)
- Alice Yen-Wen Yam
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|