1
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
2
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
3
|
Wang PA, Zhang JM, Zhong JJ. CRISPR-Cas9 assisted in-situ complementation of functional genes in the basidiomycete Ganoderma lucidum. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Yamasaki F, Nakazawa T, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system. FEMS Microbiol Lett 2022; 369:6674758. [PMID: 36001999 DOI: 10.1093/femsle/fnac083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene targeting is a promising method used in molecular breeding. We recently reported the successful introduction of this method in the monokaryotic Pleurotus ostreatus (oyster mushroom), PC9. However, considering their application in mushroom breeding, dikaryotic strains (with targeted gene mutations in both nuclei) need to be generated. This is laborious and time-consuming because a classical crossing technique is used. Herein, we report a technique that targets both nuclei of dikaryotic P. ostreatus, PC9×#64 in a transformation experiment using plasmid-based CRISPR/Cas9, with the aim of developing a method for efficient and rapid molecular breeding. As an example, we targeted strains with low basidiospore production ability through the meiosis-related genes mer3 or msh4. Four different plasmids containing expression cassettes for Cas9 and two different gRNAs targeting mer3 or msh4 were constructed and separately introduced into PC9×#64. Eight of the 38 dikaryotic transformants analyzed produced no basidiospores. Genomic PCR suggested that msh4 or mer3 mutations were introduced into both nuclei of seven out of eight strains. Thus, in this study, we demonstrated simultaneous gene targeting using our CRISPR/Cas9 system, which may be useful for the molecular breeding of cultivated agaricomycetes.
Collapse
Affiliation(s)
- Fuga Yamasaki
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do, 22709, Republic of Korea
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Chen CL, Li WC, Chuang YC, Liu HC, Huang CH, Lo KY, Chen CY, Chang FM, Chang GA, Lin YL, Yang WD, Su CH, Yeh TM, Wang TF. Sexual Crossing, Chromosome-Level Genome Sequences, and Comparative Genomic Analyses for the Medicinal Mushroom Taiwanofungus Camphoratus (Syn. Antrodia Cinnamomea, Antrodia Camphorata). Microbiol Spectr 2022; 10:e0203221. [PMID: 35196809 PMCID: PMC8865532 DOI: 10.1128/spectrum.02032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.
Collapse
Affiliation(s)
- Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hao Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ko-Yun Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Yu Chen
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Fang-Mo Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | - Ching-Hua Su
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ming Yeh
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
7
|
Orban A, Weber A, Herzog R, Hennicke F, Rühl M. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. BMC Genomics 2021; 22:324. [PMID: 33947322 PMCID: PMC8097960 DOI: 10.1186/s12864-021-07648-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclocybe aegerita (syn. Agrocybe aegerita) is a commercially cultivated mushroom. Its archetypal agaric morphology and its ability to undergo its whole life cycle under laboratory conditions makes this fungus a well-suited model for studying fruiting body (basidiome, basidiocarp) development. To elucidate the so far barely understood biosynthesis of fungal volatiles, alterations in the transcriptome during different developmental stages of C. aegerita were analyzed and combined with changes in the volatile profile during its different fruiting stages. RESULTS A transcriptomic study at seven points in time during fruiting body development of C. aegerita with seven mycelial and five fruiting body stages was conducted. Differential gene expression was observed for genes involved in fungal fruiting body formation showing interesting transcriptional patterns and correlations of these fruiting-related genes with the developmental stages. Combining transcriptome and volatilome data, enzymes putatively involved in the biosynthesis of C8 oxylipins in C. aegerita including lipoxygenases (LOXs), dioxygenases (DOXs), hydroperoxide lyases (HPLs), alcohol dehydrogenases (ADHs) and ene-reductases could be identified. Furthermore, we were able to localize the mycelium as the main source for sesquiterpenes predominant during sporulation in the headspace of C. aegerita cultures. In contrast, changes in the C8 profile detected in late stages of development are probably due to the activity of enzymes located in the fruiting bodies. CONCLUSIONS In this study, the combination of volatilome and transcriptome data of C. aegerita revealed interesting candidates both for functional genetics-based analysis of fruiting-related genes and for prospective enzyme characterization studies to further elucidate the so far barely understood biosynthesis of fungal C8 oxylipins.
Collapse
Affiliation(s)
- Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Annsophie Weber
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Robert Herzog
- International Institute Zittau, Technical University Dresden, 02763, Zittau, Saxony, Germany
| | - Florian Hennicke
- Project Group Genetics and Genomics of Fungi, Ruhr-University Bochum, Chair Evolution of Plants and Fungi, 44780, Bochum, North Rhine-Westphalia, Germany.
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME Branch for Bioresources, 35392, Giessen, Hesse, Germany.
| |
Collapse
|
8
|
Junier P, Cailleau G, Palmieri I, Vallotton C, Trautschold OC, Junier T, Paul C, Bregnard D, Palmieri F, Estoppey A, Buffi M, Lohberger A, Robinson A, Kelliher JM, Davenport K, House GL, Morales D, Gallegos-Graves LV, Dichosa AEK, Lupini S, Nguyen HN, Young JD, Rodrigues DF, Parra-Vasquez ANG, Bindschedler S, Chain PSG. Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi. FEMS Microbiol Ecol 2021; 97:6095729. [PMID: 33440006 PMCID: PMC7878174 DOI: 10.1093/femsec/fiab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria–fungi interactions (BFIs) are essential in ecosystem functioning. These interactions are modulated not only by local nutritional conditions but also by the physicochemical constraints and 3D structure of the environmental niche. In soils, the unsaturated and complex nature of the substrate restricts the dispersal and activity of bacteria. Under unsaturated conditions, some bacteria engage with filamentous fungi in an interaction (fungal highways) in which they use fungal hyphae to disperse. Based on a previous experimental device to enrich pairs of organisms engaging in this interaction in soils, we present here the design and validation of a modified version of this sampling system constructed using additive printing. The 3D printed devices were tested using a novel application in which a target fungus, the common coprophilous fungus Coprinopsis cinerea, was used as bait to recruit and identify bacterial partners using its mycelium for dispersal. Bacteria of the genera Pseudomonas, Sphingobacterium and Stenotrophomonas were highly enriched in association with C. cinerea. Developing and producing these new easy-to-use tools to investigate how bacteria overcome dispersal limitations in cooperation with fungi is important to unravel the mechanisms by which BFIs affect processes at an ecosystem scale in soils and other unsaturated environments.
Collapse
Affiliation(s)
- Pilar Junier
- Corresponding author: Rue Emile-Argand 9, CH-2000, Neuchatel, Switzerland. Tel: +41327182244; Fax: +41327183001; E-mail: ; MS-M888, TA43-0001, SM30 Bikini Atoll Road, Los Alamos 87545 USA
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Ilona Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Celine Vallotton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Olivia C Trautschold
- Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH, 1015, Lausanne, Switzerland
| | - Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Danae Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Matteo Buffi
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Andrea Lohberger
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Aaron Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Julia M Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Karen Davenport
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Geoffrey L House
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Demosthenes Morales
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | | | - Armand E K Dichosa
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Simone Lupini
- Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Hang N Nguyen
- Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Debora F Rodrigues
- Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | | | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Patrick S G Chain
- Corresponding author: Rue Emile-Argand 9, CH-2000, Neuchatel, Switzerland. Tel: +41327182244; Fax: +41327183001; E-mail: ; MS-M888, TA43-0001, SM30 Bikini Atoll Road, Los Alamos 87545 USA
| |
Collapse
|
9
|
Molecular Mechanism by Which the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of Coprinopsis cinerea under Dark or Light Conditions. mBio 2021; 13:e0362621. [PMID: 35100879 PMCID: PMC8805025 DOI: 10.1128/mbio.03626-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coprinopsis cinerea has seven homologs of the Aspergillus nidulans transcription factor NsdD. Of these, CcNsdD1 and CcNsdD2 from C. cinerea show the best identities of 62 and 50% to A. nidulans NsdD, respectively. After 4 days of constant darkness cultivation, CcnsdD2, but not CcnsdD1, was upregulated on the first day of light/dark cultivation to induce fruiting bodies, and overexpression of CcnsdD2, but not CcnsdD1, produced more fruiting bodies under a light/dark rhythm. Although single knockdown of CcnsdD2 did not affect fruiting body production due to upregulation of its homolog CcnsdD1, the double-knockdown CcNsdD1/NsdD2-RNAi transformant showed defects in fruiting body formation under a light/dark rhythm. Knockdown of CcnsdD1/nsdD2 led to the differentiation of primary hyphal knots into sclerotia rather than secondary hyphal knots under a light/dark rhythm, similar to the differentiation of primary hyphal knots into sclerotia of the wild-type strain under darkness. The CcNsdD2-overexpressing transformant produced more primary hyphal knots, secondary hyphal knots, and fruiting bodies under a light/dark rhythm but only more primary hyphal knots and sclerotia under darkness. RNA-seq revealed that some genes reported previously to be involved in formation of hyphal knots and primordia, cyclopropane-fatty-acyl-phospholipid synthases cfs1-3, galectins cgl1-3, and hydrophobins hyd1-3 were downregulated in the CcNsdD1/NsdD2-RNAi transformant compared to the mock transformant. ChIP-seq and electrophoretic mobility shift assay demonstrated that CcNsdD2 bound to promoter regulatory sequences containing a GATC motif in cfs1, cfs2, cgl1, and hyd1. A molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions is proposed. IMPORTANCE The model mushroom Coprinopsis cinerea exhibits remarkable photomorphogenesis during fruiting body development. This study reports that the C. cinerea transcription factor CcNsdD2 promotes primary hyphal knot formation by upregulating cfs1, cfs2, cgl1, and hyd1. Although the induction of CcnsdD2 is not under direct control of light and photoreceptors, the CcNsdD2-mediated developmental fates of the primary hyphal knots depend on the following light/dark rhythm cultivation or dark cultivation after full growth of mycelia in the constant dark cultivation. This study provides new insight into the molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions. In addition, the result that overexpression of CcnsdD2 induced more secondary hyphal knots, primordia, and fruiting bodies under light/dark rhythm cultivation conditions has potential applied value in the edible mushroom industry.
Collapse
|
10
|
Dörnte B, Peng C, Fang Z, Kamran A, Yulvizar C, Kües U. Selection markers for transformation of the sequenced reference monokaryon Okayama 7/#130 and homokaryon AmutBmut of Coprinopsis cinerea. Fungal Biol Biotechnol 2020; 7:15. [PMID: 33062286 PMCID: PMC7552465 DOI: 10.1186/s40694-020-00105-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two reference strains have been sequenced from the mushroom Coprinopsis cinerea, monokaryon Okayama 7/#130 (OK130) and the self-compatible homokaryon AmutBmut. An adenine-auxotrophy in OK130 (ade8-1) and a para-aminobenzoic acid (PABA)-auxotrophy in AmutBmut (pab1-1) offer selection markers for transformations. Of these two strains, homokaryon AmutBmut had been transformed before to PABA-prototrophy and with the bacterial hygromycin resistance marker hph, respectively. RESULTS Gene ade8 encodes a bifunctional enzyme with an N-terminal glycinamide ribonucleotide synthase (GARS) and a C-terminal aminoimidazole ribonucleotide synthase (AIRS) domain required for steps 2 and 5 in the de novo biosynthesis of purines, respectively. In OK130, a missense mutation in ade8-1 rendered residue N231 for ribose recognition by the A loop of the GARS domain into D231. The new ade8 + vector pCcAde8 complements the auxotrophy of OK130 in transformations. Transformation rates with pCcAde8 in single-vector and co-transformations with ade8 +-selection were similarly high, unlike for trp1 + plasmids which exhibit suicidal feedback-effects in single-vector transformations with complementation of tryptophan synthase defects. As various other plasmids, unselected pCcAde8 helped in co-transformations of trp1 strains with a trp1 +-selection vector to overcome suicidal effects by transferred trp1 +. Co-transformation rates of pCcAde8 in OK130 under adenine selection with nuclear integration of unselected DNA were as high as 80% of clones. Co-transformation rates of expressed genes reached 26-42% for various laccase genes and up to 67% with lcc9 silencing vectors. The bacterial gene hph can also be used as another, albeit less efficient, selection marker for OK130 transformants, but with similarly high co-transformation rates. We further show that the pab1-1 defect in AmutBmut is due to a missense mutation which changed the conserved PIKGT motif for chorismate binding in the C-terminal PabB domain to PIEGT in the mutated 4-amino-4-deoxychorismate synthase. CONCLUSIONS ade8-1 and pab1-1 auxotrophic defects in C. cinerea reference strains OK130 and AmutBmut for complementation in transformation are described. pCcAde8 is a new transformation vector useful for selection in single and co-transformations of the sequenced monokaryon OK130 which was transformed for the first time. The bacterial gene hph can also be used as an additional selection marker in OK130, making in combination with ade8 + successive rounds of transformation possible.
Collapse
Affiliation(s)
- Bastian Dörnte
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Can Peng
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Aysha Kamran
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Present Address: Institute for Microbiology and Genetics, University of Goettingen, 37077 Goettingen, Germany
| | - Cut Yulvizar
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Asai S, Tsunematsu Y, Masuya T, Otaka J, Osada H, Watanabe K. Uncovering hidden sesquiterpene biosynthetic pathway through expression boost area-mediated productivity enhancement in basidiomycete. J Antibiot (Tokyo) 2020; 73:721-728. [DOI: 10.1038/s41429-020-0355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
|
12
|
Okuda Y, Ito M, Shimada Y, Ishigami M, Matsumoto T. Morphological, cytological and genetic analyzes of the 'sango' mutant with the defects in basidiocarp development in edible mushroom Pleurotus pulmonarius. FEMS Microbiol Lett 2020; 366:5626343. [PMID: 31730201 DOI: 10.1093/femsle/fnz227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022] Open
Abstract
A spontaneous, morphological variation 'sango' was observed in the progeny of a Pleurotus pulmonarius (Fr.) Quél. wild-type basidiocarp (also known as fruiting body) collected from the field. This variant developed wart- and coral-like structures instead of normal basidiocarps. Microscopic analysis showed that the sango phenotype had defects in the differentiation of the pileus and hymenium. Basidiocarp phenotypic data analysis in the progenies revealed that the sango trait is a heritable mutation character controlled by a single recessive gene. This mutation locus was mapped on linkage group III of a previously constructed genetic linkage map by amplified fragment length polymorphism (AFLP) technique in P. pulmonarius. Four AFLP markers identified by bulked segregant analysis showed linkage to the sango mutation locus, with the genetic distance ranging from 0 to 2.1 cM. Of these markers, one marker was co-segregated with the sango mutation locus. This knowledge will be a useful foundation for practical breeding as well as for elucidating molecular mechanisms in basidiocarp development of main edible mushrooms.
Collapse
Affiliation(s)
- Yasuhito Okuda
- Contribution No. 418 from the Tottori Mycological Institute, 211 Kokoge, Tottori 689-1125, Japan
| | - Mikinari Ito
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| | - Yu Shimada
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| | - Masato Ishigami
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| | - Teruyuki Matsumoto
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| |
Collapse
|
13
|
Transcriptome Changes during Major Developmental Transitions Accompanied with Little Alteration of DNA Methylome in Two Pleurotus Species. Genes (Basel) 2019; 10:genes10060465. [PMID: 31212970 PMCID: PMC6627472 DOI: 10.3390/genes10060465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Pleurotus tuoliensis (Pt) and P. eryngii var. eryngii (Pe) are important edible mushrooms. The epigenetic and gene expression signatures characterizing major developmental transitions in these two mushrooms remain largely unknown. Here, we report global analyses of DNA methylation and gene expression in both mushrooms across three major developmental transitions, from mycelium to primordium and to fruit body, by whole-genome bisulfite sequencing (WGBS) and RNA-seq-based transcriptome profiling. Our results revealed that in both Pt and Pe the landscapes of methylome are largely stable irrespective of genomic features, e.g., in both protein-coding genes and transposable elements (TEs), across the developmental transitions. The repressive impact of DNA methylation on expression of a small subset of genes is likely due to TE-associated effects rather than their own developmental dynamics. Global expression of gene orthologs was also broadly conserved between Pt and Pe, but discernible interspecific differences exist especially at the fruit body formation stage, and which are primarily due to differences in trans-acting factors. The methylome and transcriptome repertories we established for the two mushroom species may facilitate further studies of the epigenetic and transcriptional regulatory mechanisms underpinning gene during development in Pleurotus and related genera.
Collapse
|
14
|
Masuya T, Tsunematsu Y, Hirayama Y, Sato M, Noguchi H, Nakazawa T, Watanabe K. Biosynthesis of lagopodins in mushroom involves a complex network of oxidation reactions. Org Biomol Chem 2019; 17:234-239. [DOI: 10.1039/c8ob02814a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted gene knockout in Coprinopsis cinerea, yeast in vivo bioconversion and in vitro assays elucidated the lagopodin biosynthetic pathway, including a complexity-generating network of oxidation steps.
Collapse
Affiliation(s)
- Takahiro Masuya
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Hiroshi Noguchi
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
- Nihon Pharmaceutical University
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| |
Collapse
|
15
|
Lolli V, Dall'Asta M, Del Rio D, Palla G, Caligiani A. Presence of cyclopropane fatty acids in foods and estimation of dietary intake in the Italian population. Int J Food Sci Nutr 2018; 70:467-473. [PMID: 30451036 DOI: 10.1080/09637486.2018.1540556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyclopropane fatty acids (CPFAs) are the most abundant cyclic fatty acids in microorganisms with unknown role(s) regarding their dietary relevance and biological effects in humans. This work was aimed to draw up a list of CPFAs-containing foods for estimating their dietary intake in the Italian population to provide a basis for evaluating their nutritional relevance and potential health-related effects. The CPFAs content of more than 500 food items was investigated and a preliminary dietary intake was assessed (12.0 ± 6.0 mg/day), based on the data reported by the Italian National Food Consumption Survey INRAN-SCAI 2005-06. CPFAs should be considered of dietary relevance in view of their potential physiological activity in humans and their presence in significant amounts in dairy products, as Grana Padano cheese (9.0-30.0 mg/100 g), and in bovine meat (0.7-4.0 mg/100 g). Future studies should elucidate whether this uncommon class of fatty acids has a biological role in human health.
Collapse
Affiliation(s)
- Veronica Lolli
- a Department of Food and Drug , University of Parma , Parma , Italy
| | | | - Daniele Del Rio
- b Department of Veterinary Science , University of Parma , Parma , Italy
| | - Gerardo Palla
- a Department of Food and Drug , University of Parma , Parma , Italy
| | | |
Collapse
|
16
|
Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS One 2018; 13:e0198234. [PMID: 30231028 PMCID: PMC6145500 DOI: 10.1371/journal.pone.0198234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Coprinopsis cinerea is a model mushroom particularly suited for the study of fungal fruiting body development and the evolution of multicellularity in fungi. While microRNAs (miRNAs) have been extensively studied in animals and plants for their essential roles in post-transcriptional regulation of gene expression, miRNAs in fungi are less well characterized and their potential roles in controlling mushroom development remain unknown. To identify miRNA-like RNAs (milRNAs) in C. cinerea and explore their expression patterns during the early developmental transition of mushroom development, small RNA libraries of vegetative mycelium and primordium were generated and putative milRNA candidates were identified following the standards of miRNA prediction in animals and plants. Two out of 22 novel predicted milRNAs, cci-milR-12c and cci-milR-13e-5p, were validated by northern blot and stem-loop reverse transcription real-time PCR. Cci-milR-12c was differentially expressed whereas the expression levels of cci-milR-13e-5p were similar in the two developmental stages. Target prediction of the validated milRNAs resulted in genes associated with fruiting body development, including pheromone, hydrophobin, cytochrome P450, and protein kinase. Essential genes for miRNA biogenesis, including three coding for Dicer-like (DCL), one for Argonaute (AGO), one for AGO-like and one for quelling deficient-2 (QDE-2) proteins, were also identified in the C. cinerea genome. Phylogenetic analysis showed that the DCL and AGO proteins of C. cinerea were more closely related to those in other basidiomycetes and ascomycetes than to those in animals and plants. Taken together, our findings provided the first evidence for milRNAs in the model mushroom and their potential roles in regulating fruiting body development. New information on the evolutionary relationship of milRNA biogenesis proteins across kingdoms has also provided new insights for guiding further functional and evolutionary studies of miRNAs.
Collapse
|
17
|
Sakamoto Y, Sato S, Ito M, Ando Y, Nakahori K, Muraguchi H. Blue light exposure and nutrient conditions influence the expression of genes involved in simultaneous hyphal knot formation in Coprinopsis cinerea. Microbiol Res 2018; 217:81-90. [PMID: 30384911 DOI: 10.1016/j.micres.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
Light and nutrients are crucial environmental factors influencing fungal sexual reproduction. Blue light induces simultaneous hyphal knot formation in Coprinopsis cinerea mycelia grown on low-glucose media but not in mycelia grown on high-glucose media. Many hyphal knots are visible in the arc near the edge of the colony one day after 15 min of blue light stimulation. These findings collectively suggest that blue light accelerates hyphal knot induction in nutrient-limited conditions. Transcriptome analysis revealed that gene expression after light exposure is divided into at least two major stages. In the first stage, genes coding for fasciclin (fas1), cyclopropane-fatty-acyl-phospholipid synthases (cfs1 and cfs2), and putative lipid exporter (nod1) are highly expressed after 1 h of light exposure in the mycelial region where the hyphal knot will be developed. These genes are upregulated by blue light and not influenced by glucose condition and mating. These results suggest that although some of the genes are critical for induction of the hyphal knots, they are not sufficient for hyphal knot development. In the second gene expression stage, genes encoding galectins (cgl1-3), farnesyl cysteine-carboxyl methyltransferases, mating pheromone-containing protein, nucleus protein (ich1), and laccase (lcc1) are specifically upregulated at 10-16 h after blue light exposure when the mycelia are cultivated on low-glucose media. These genes might be involved in the architecture of hyphal knots or signal transduction for further fruiting body development. These results contribute to the understanding of the effect of environmental factors on sexual reproduction in basidiomycetous fungi.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami Iwate, 024-0003, Japan.
| | - Shiho Sato
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami Iwate, 024-0003, Japan
| | - Miyuki Ito
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami Iwate, 024-0003, Japan
| | - Yuki Ando
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kiyoshi Nakahori
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| |
Collapse
|
18
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Gupta DK, Rühl M, Mishra B, Kleofas V, Hofrichter M, Herzog R, Pecyna MJ, Sharma R, Kellner H, Hennicke F, Thines M. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. BMC Genomics 2018; 19:48. [PMID: 29334897 PMCID: PMC5769442 DOI: 10.1186/s12864-017-4430-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. RESULTS Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. CONCLUSIONS The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.
Collapse
Affiliation(s)
- Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany.,Project Group "Bioresources", Fraunhofer IME, Giessen, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Vanessa Kleofas
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Martin Hofrichter
- International Institute (IHI) Zittau, Technische Universität Dresden, Zittau, Germany
| | - Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Gesellschaft für Naturforschung, Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Marek J Pecyna
- University of Applied Sciences Zittau/Görlitz, Zittau, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany.,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany
| | - Harald Kellner
- International Institute (IHI) Zittau, Technische Universität Dresden, Zittau, Germany
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Gesellschaft für Naturforschung, Frankfurt a. M., Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany. .,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany. .,LOEWE Cluster of Integrative Fungal Research (IPF), Frankfurt a. M., Germany.
| |
Collapse
|
20
|
Otaka J, Hashizume D, Masumoto Y, Muranaka A, Uchiyama M, Koshino H, Futamura Y, Osada H. Hitoyol A and B, Two Norsesquiterpenoids from the Basidiomycete Coprinopsis cinerea. Org Lett 2017; 19:4030-4033. [DOI: 10.1021/acs.orglett.7b01784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Daisuke Hashizume
- Materials
Characterization Support Unit, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yui Masumoto
- Elements
Chemistry Laboratory, RIKEN, and Advanced Elements Chemistry Research
Team, RIKEN CSRS, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuya Muranaka
- Elements
Chemistry Laboratory, RIKEN, and Advanced Elements Chemistry Research
Team, RIKEN CSRS, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Elements
Chemistry Laboratory, RIKEN, and Advanced Elements Chemistry Research
Team, RIKEN CSRS, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
21
|
León-Ramírez CG, Cabrera-Ponce JL, Martínez-Soto D, Sánchez-Arreguin A, Aréchiga-Carvajal ET, Ruiz-Herrera J. Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda. Fungal Genet Biol 2017; 101:34-45. [PMID: 28285895 DOI: 10.1016/j.fgb.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.
Collapse
Affiliation(s)
- C G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico
| | - J L Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico.
| | - D Martínez-Soto
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico
| | - A Sánchez-Arreguin
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico; Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, Mexico
| | - E T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, Mexico
| | - J Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
22
|
Xiao Y, Cheng X, Liu J, Li C, Nong W, Bian Y, Cheung MK, Kwan HS. Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China. Sci Rep 2016; 6:36789. [PMID: 27830835 PMCID: PMC5103288 DOI: 10.1038/srep36789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
The elucidation of genome-wide variations could help reveal aspects of divergence, domestication, and adaptation of edible mushrooms. Here, we resequenced the whole genomes of 39 wild and 21 cultivated strains of Chinese Lentinula edodes, the shiitake mushroom. We identified three distinct genetic groups in the Chinese L. edodes population with robust differentiation. Results of phylogenetic and population structure analyses suggest that the cultivated strains and most of the wild trains of L. edodes in China possess different gene pools and two outlier strains show signatures of hybridization between groups. Eighty-four candidate genes contributing to population divergence were detected in outlier analysis, 18 of which are involved in response to environmental stresses. Gene enrichment analysis of group-specific single nucleotide polymorphisms showed that the cultivated strains were genetically diversified in biological processes related to stress response. As the formation of fruiting bodies is a stress-response process, we postulate that environment factors, such as temperature, drove the population divergence of L. edodes in China by natural or artificial selection. We also found phenotypic variations between groups and identified some wild strains that have potential to diversify the genetic pool for improving agricultural traits of L. edodes cultivars in China.
Collapse
Affiliation(s)
- Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, 430070, Hubei Province, P. R. China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Xuanjin Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Jun Liu
- Institute of Applied Mycology, Huazhong Agricultural University, 430070, Hubei Province, P. R. China
| | - Chuang Li
- Institute of Applied Mycology, Huazhong Agricultural University, 430070, Hubei Province, P. R. China
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, 430070, Hubei Province, P. R. China
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| |
Collapse
|
23
|
Paradoxical performance of tryptophan synthase gene trp1 (+) in transformations of the basidiomycete Coprinopsis cinerea. Appl Microbiol Biotechnol 2016; 100:8789-807. [PMID: 27368741 DOI: 10.1007/s00253-016-7693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Several transformation strains of Coprinopsis cinerea carry the defective tryptophan synthase allele trp1-1,1-6 which can be complemented by introduction of the trp1 (+) wild-type gene. Regularly in C. cinerea, single-trp1 (+)-vector transformations yield about half the numbers of clones than cotransformations with a non-trp1 (+)-plasmid done in parallel. The effect is also observed with the orthologous Schizophyllum commune trpB (+) gene shown here to function as a selection marker in C. cinerea. Parts of single-trp1 (+) - or single-trpB (+) -vector transformants are apparently lost. This paradoxical phenomenon relates to de-regulation of aromatic amino acid biosynthesis pathways. Adding tryptophan precursors to protoplast regeneration agar or feeding with other aromatic amino acids increases loss of single-trp1 (+)-vector transformants and also sets off loss of clones in cotransformation with a non-trp1 (+)-plasmid. Feedback control by tryptophan and cross-pathway control by tyrosine and phenylalanine are both active in the process. We deduce from the observations that more cotransformants than single-vector transformants are obtained by in average less disturbance of the tryptophan biosynthesis pathway. DNA in C. cinerea transformation usually integrates into the genome at multiple ectopic places. Integration events for a single vector per nucleus should statistically be 2-fold higher in single-vector transformations than in cotransformations in which the two different molecules compete for the same potential integration sites. Integration of more trp1 (+) copies into the genome might more likely lead to sudden tryptophan overproduction with subsequent rigid shut-down of the pathway. Blocking ectopic DNA integration in a Δku70 mutant abolished the effect of doubling clone numbers in cotransformations due to preferred single trp1 (+) integration by homologous recombination at its native genomic site.
Collapse
|
24
|
Tollot M, Assmann D, Becker C, Altmüller J, Dutheil JY, Wegner CE, Kahmann R. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathog 2016; 12:e1005697. [PMID: 27332891 PMCID: PMC4917244 DOI: 10.1371/journal.ppat.1005697] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 “late effectors” was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection. The fungus Ustilago maydis is a pathogen of maize which induces tumor formation in the infected tissue. In these tumors huge amounts of fungal spores develop. As a biotrophic pathogen, U. maydis establishes itself in the plant with the help of a large number of secreted effector proteins. Many effector proteins are important for virulence because they counteract plant defense reactions. In this manuscript we have identified and characterized Ros1, a master regulator for the late stages of U. maydis development. This transcription factor is expressed late during infection and controls nuclear fusion, hyphal aggregation and late proliferation. ros1 mutants are still able to induce tumor formation but these are a dead end because they do not contain any spores. We show that Ros1 interferes with the early regulatory cascade controlled by a complex of two homeodomain proteins. In addition, Ros1 triggers a major switch in the effector repertoire, suggesting that different sets of effectors are needed for different stages of fungal development inside the plant.
Collapse
Affiliation(s)
- Marie Tollot
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Daniela Assmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Julien Y. Dutheil
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Carl-Eric Wegner
- Max Planck Institute for Terrestrial Microbiology, Deparment of Biogeochemistry, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Gong WB, Li L, Zhou Y, Bian YB, Kwan HS, Cheung MK, Xiao Y. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl Microbiol Biotechnol 2016; 100:5437-52. [PMID: 26875873 DOI: 10.1007/s00253-016-7347-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/28/2022]
Abstract
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
Collapse
Affiliation(s)
- Wen-Bing Gong
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Lei Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yan Zhou
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yin-Bing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Hoi-Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Man-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
26
|
Nakazawa T, Ando Y, Hata T, Nakahori K. A mutation in the Cc.arp9 gene encoding a putative actin-related protein causes defects in fruiting initiation and asexual development in the agaricomycete Coprinopsis cinerea. Curr Genet 2016; 62:565-74. [DOI: 10.1007/s00294-015-0560-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022]
|
27
|
Xu H, Navarro-Ródenas A, Cooke JEK, Zwiazek JJ. Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca. MYCORRHIZA 2016; 26:19-31. [PMID: 25957233 DOI: 10.1007/s00572-015-0643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Sporocarp formation is part of the reproductive stage in the life cycle of many mycorrhizal macrofungi. Sporocarp formation is accompanied by a transcriptomic switch and profound changes in regulation of the gene families that play crucial roles in the sporocarp initiation and maturation. Since sporocarp growth requires efficient water delivery, in the present study, we investigated changes in transcript abundance of six fungal aquaporin genes that could be cloned from the ectomycorrhizal fungus Laccaria bicolor strain UAMH8232, during the initiation and development of its basidiocarp. Aquaporins are intrinsic membrane proteins facilitating the transmembrane transport of water and other small neutral molecules. In controlled-environment experiments, we induced basidiocarp formation in L. bicolor, which formed ectomycorrhizal associations with white spruce (Picea glauca) seedlings. We profiled transcript abundance corresponding to six fungal aquaporin genes at six different developmental stages of basidiocarp growth and development. We also compared physiological parameters of non-inoculated to mycorrhizal seedlings with and without the presence of basidiocarps. Two L. bicolor aquaporins--JQ585592, a functional channel for CO2, NO and H2O2, and JQ585595, a functional water channel--showed the greatest degree of upregulation during development of the basidiocarp. Our findings point to the importance of aquaporin-mediated transmembrane water and CO2 transport during distinct stages of basidiocarp development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, T6G 2E3
| | | | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, T6G 2E3.
| |
Collapse
|
28
|
Kües U, Navarro-González M. How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Plaza DF, Lin CW, van der Velden NSJ, Aebi M, Künzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics 2014; 15:492. [PMID: 24942908 PMCID: PMC4082614 DOI: 10.1186/1471-2164-15-492] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/12/2014] [Indexed: 11/12/2022] Open
Abstract
Background It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. Results In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC-MS. This proteome data confirmed the presence of intracellular defense proteins in primordia. Conclusions This study shows that the exposure of different tissues in fungi to different types of antagonists shapes the expression pattern of defense loci in a tissue-specific manner. Furthermore, we identify a transcriptional circuitry conserved among basidiomycetes during fruiting body formation that involves, amongst other transcription factors, the up-regulation of a Velvet domain-containing protein. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-492) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genomics 2013; 14:195. [PMID: 23514374 PMCID: PMC3606632 DOI: 10.1186/1471-2164-14-195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/08/2013] [Indexed: 12/02/2022] Open
Abstract
Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Food Research Centre and Food and Nutrition Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, S.A.R., Hong Kong
| | | | | | | | | | | | | |
Collapse
|
31
|
Oyola SO, Evans KJ, Smith TK, Smith BA, Hilley JD, Mottram JC, Kaye PM, Smith DF. Functional analysis of Leishmania cyclopropane fatty acid synthetase. PLoS One 2012; 7:e51300. [PMID: 23251490 PMCID: PMC3519623 DOI: 10.1371/journal.pone.0051300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/31/2012] [Indexed: 01/14/2023] Open
Abstract
The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism.
Collapse
Affiliation(s)
- Samuel O Oyola
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ando Y, Nakazawa T, Oka K, Nakahori K, Kamada T. Cc.snf5, a gene encoding a putative component of the SWI/SNF chromatin remodeling complex, is essential for sexual development in the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 2012; 50:82-9. [PMID: 23078835 DOI: 10.1016/j.fgb.2012.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022]
Abstract
We characterized a Coprinopsis cinerea mutant strain, Spe20, defective in fruiting initiation, which was isolated after restriction enzyme-mediated integration (REMI) mutagenesis of a homokaryotic fruiting strain, 326. A plasmid rescue followed by complementation experiments, RACE, and cDNA analyses revealed that the gene, a mutation of which is responsible for the phenotype, is predicted to encode a protein that exhibits a high similarity to yeast Snf5p, a key component of the chromatin remodeling complex SWI/SNF, and named Cc.snf5. Cc.Snf5 is, however, different from Snf5p in that the former has, in addition to an Snf5 domain comprising N-terminal repeat1 (rp1) and C-terminal repeat2 (rp2) subdomains in a middle region, a GATA Zn-finger domain in a C-terminal region. In strain Spe20, plasmid pPHT1 used for REMI is inserted in the ORF encoding rp2. This raised the possibility that in strain Spe20, the disrupted Cc.Snf5 is functionally active albeit incompletely because it retains rp1. Thus, we disrupted the whole SNF5 domain and its downstream peptide and found that the disruption results in inhibition of not only fruiting initiation but also dikaryon development, a prerequisite for fruiting. We also found that specific disruption of the Zn-finger domain results in inhibition of fruiting initiation. These results indicate that Cc.Snf5 plays an essential role in sexual development of C. cinerea.
Collapse
Affiliation(s)
- Yuki Ando
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | |
Collapse
|
33
|
Kües U, Navarro-González M. Mating-type orthologous genes in the primarily homothallic Moniliophthora perniciosa, the causal agent of Witches' Broom Disease in cacao. J Basic Microbiol 2010; 50:442-51. [PMID: 20586074 DOI: 10.1002/jobm.201000013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cacao-pathogenic Moniliophthora perniciosa C-biotype is a primarily homothallic Agaricomycete of which the genome has recently become available. Searching of the genome sequence with mating type proteins from other basidiomycetes detected one or possibly two potential genes for HD1 homeodomain transcription factors, 7 or possibly 8 genes for potential pheromone receptors and five genes for putative pheromone precursors. Apparently, the fungus possesses gene functions encoded in the tetrapolar basidiomycetes in the A and B mating loci, respectively. In the tetrapolar species, the A and B mating type genes govern formation of clamp cells at hyphal septa of the dikaryon and their fusion with sub-apical cells as well as mushroom production. The C-biotype forms fused clamp cells and also basidiocarps on mycelia germinated from basidiospores and their development might be controlled by the detected genes. It represents the first example of a primarily homothallic basidiomycete where A - and B -mating-type-like genes were found. Various strategies are discussed as how self-compatibility in presence of such genes can evolve. An A -mating-type like gene for an HD2 homeodomain transcription factor is, however, not included in the available sequence representing estimated 69% coverage of the haploid genome but there are non-mating genes for other homeodomain transcription factors of currently unknown function that are conserved in basidiomycetes and also various ascomycetes.
Collapse
Affiliation(s)
- Ursula Kües
- Division of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.
| | | |
Collapse
|
34
|
Luan R, Liang Y, Chen Y, Liu H, Jiang S, Che T, Wong B, Sun H. Opposing developmental functions of Agrocybe aegerita galectin (AAL) during mycelia differentiation. Fungal Biol 2010; 114:599-608. [PMID: 20943171 DOI: 10.1016/j.funbio.2010.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 05/07/2010] [Accepted: 05/09/2010] [Indexed: 12/22/2022]
Abstract
Mycelia of basidiomycetes differentiating into fruiting body is a controlled developmental process, however the underlying molecular mechanism remains unknown. In previous work, a novel fungal Agrocybe aegerita galectin (AAL) was isolated from A. aegerita in our laboratory. AAL was shown to promote mycelial differentiation in A. aegerita and Auricularia polytricha, indicating that AAL might function as a conserved fruiting initiator during basidiomycete mycelia development. In the current work, we investigate the role of AAL in mycelia differentiation and fruiting body formation. First, the expression and localization of AAL in mycelia, primordium and fruiting body were assessed by Western blotting and immunohistochemistry. AAL was found to be ubiquitously expressed in the primordium and fruiting body but not in the mycelia. AAL facilitated mycelia congregation and promoted fruiting body production when AAL was applied on mycelia. At the same time, when AAL was spread on potato dextrose agar (PDA) medium prior to mycelia inoculation, mycelia exhibited slowed growth rates, resulting in mycelia cords formation and inhibition of fruiting body formation. The 5' regulatory sequence of aal was cloned by 'genome walking'. Here, we show that aal lack introns in the coding region and the upstream 740 bp sequence was characterized by the existence of core promoter elements, which included: two CCAAT boxes (-535/-280), a GC box (-145), a TATA box (-30) and a fungal leader intron within the 5' UTR. The identification of regulatory expression elements may provide an explanation to the stage-specific and high-level expression of aal during fruiting development.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mutations in the Cc.rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea. Curr Genet 2010; 56:361-7. [PMID: 20495806 DOI: 10.1007/s00294-010-0307-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
We characterized two developmental mutants of Coprinopsis cinerea, Apa56 and Sac29, newly isolated from a homokaryotic fruiting strain, 326 (Amut Bmut pab1-1), after restriction enzyme-mediated integration (REMI) mutagenesis. Both Apa56 and Sac29 exhibited slower mycelial growth than the parental wild-type strain and failed to initiate fruiting when grown on standard malt extract-yeast extract-glucose medium under 12 h light/12 h dark cycle. Both mutants exhibited unusual differentiation in aerial hyphae: differentiated hyphae lacked clamp connections and exhibited irregular shapes. The differentiated hyphae were similar to the component cells of hyphal knots, but did not form hyphal knots: they spread as dense mycelial mats. When the carbon source (glucose) in the medium was substituted with sucrose or galactose, both strains formed as many hyphal knots as the parental wild type. The hyphal knots formed, however, did not develop into fruiting-body initials, but developed into sclerotia. Molecular genetic analysis revealed that the gene, designated Cc.rmt1, is disrupted by REMI mutagenesis and is responsible for the phenotypes in both mutants. Cc.rmt1 is predicted to encode a putative protein arginine methyltransferase, some homologs of which have been shown to be involved in the regulation of gene expression in eukaryotes.
Collapse
|
36
|
Lee SH, Joh JH, Lee JS, Lim JH, Kim KY, Yoo YB, Lee CS, Kim BG. Isolation of Genes Specifically Expressed in Different Developmental Stages of Pleurotus ostreatus Using Macroarray Analysis. MYCOBIOLOGY 2009; 37:230-237. [PMID: 23983539 PMCID: PMC3749394 DOI: 10.4489/myco.2009.37.3.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/17/2009] [Indexed: 06/02/2023]
Abstract
The oyster mushroom (Pleurotus ostreatus) is one of the most important edible mushrooms worldwide. The mechanism of P. ostreatus fruiting body development has been of interest both for the basic understanding of the phenotypic change of the mycelium-fruiting body and to improve breeding of the mushrooms. Based on our previous publication of P. ostreatus expressed sequence tag database, 1,528 unigene clones were used in macroarray analysis of mycelium, fruiting body and basidiospore developmental stages of P. ostreatus. Gene expression profile databases generated by evaluating expression levels showed that 33, 10, and 94 genes were abundantly expressed in mycelium, fruiting body and basidiospore developmental stages, respectively. Among them, the genes specifically expressed in the fruiting body stage were further analyzed by reverse transcription-polymerase chain reaction and Northern blot to investigate temporal and spatial expression patterns. These results provide useful information for future studies of edible mushroom development.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Bio-crops Development Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Srivilai P, Loutchanwoot P. Coprinopsis cinerea as a model fungus to evaluate genes underlying sexual development in basidiomycetes. Pak J Biol Sci 2009; 12:821-835. [PMID: 19803116 DOI: 10.3923/pjbs.2009.821.835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Coprinopsis cinerea is an excellent model for study of sexual reproduction and development in basidiomycetes because of its short-life cycle, capability to grow and fruit on artificial media under laboratory conditions. Deepening the understanding of genes underlying sexual reproduction and development in this mushroom model is expected to help in the future the world mushroom cultivation of any other basidiomycetes concerning the potential agronomic, economic and environmental benefits. This study presents findings with clear statements from the literature as well as own results focusing on the genetic analysis of genes acting in sexual reproduction and development in C. cinerea. Sexual reproduction and development in C. cinerea are regulated by the A and B mating type genes that encode two types of homeodomain transcription factors, pheromones and pheromone receptors, respectively. Coprinopsis cinerea has two different mycelial stages defined as the monokaryotic-(primary) and dikaryotic-(secondary) mycelium. When two compatible haploid monokaryons with different mating type alleles at A and B loci are fused, the fertile dikaryons are formed and developed into fruiting bodies, indicating that mating type genes regulate sexual development in C. cinerea. Self-fertile homokaryon AmutBmut strain with mutations in the A and B mating loci is ideal for production of mutants in fruiting body formation. Co-isogenic strains were generated by the repeated back-crossing against AmutBmut to analyze the genetic background of such mutants and the functions of genes in the fruiting pathway. Genetic analysis of AmutBmut fruiting mutants that are blocked at different stages in fruiting pathway will be described.
Collapse
Affiliation(s)
- P Srivilai
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-District, Kuntarawichai District, Mahasarakham Province, 44150, Thailand
| | | |
Collapse
|
38
|
Srivilai P, Loutchanwoot P, Sukha J. Blue light signaling inactivates the mating type genes-mediated repression of asexual spore production in the higher basidiomycete Coprinopsis cinerea. Pak J Biol Sci 2009; 12:110-8. [PMID: 19579930 DOI: 10.3923/pjbs.2009.110.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monokaryotic mycelia of several wild-type strains of the homobasidiomycete Coprinopsis cinerea form abundant numbers of oidia both in the light and dark due to the regulation of oidia production by the A and B mating type genes. Nevertheless, little is known about whether and how the mating type loci and light signal regulate the oidiation in C. cinerea. Herein, the experimental results demonstrated that the self-compatible homokaryon AmutBmut strain, the mycelia whose nuclei carry mutations in both the A and B loci, can produce only a few oidia in the dark, whereas the formation of numerous numbers of oidia is induced by the light. The semi-compatible homokaryon AmutB, but not ABmut, has the production and behavior of oidia formation similar to those of AmutBmut. These findings indicated that in AmutBmut strain the mutation at the A locus results in repression of oidiation in the dark and the blue light alleviates this effect, whereas the mutated B genes function has no effects. Since, the oidia production relies on both A and light signal, it is possible that A locus might be linked to the blue light receptor genes. The present results demonstrated for the first time that the secondary hyphal knot formation (skn1), fruiting body maturation (mat) and basidiospore formation (bad) genes which are essential in the C. cinerea fruiting pathway are not involved in the regulation of asexual sporulation. In addition, the positive light effect on oidiation could also occur in C. cinerea dikaryons.
Collapse
Affiliation(s)
- Prayook Srivilai
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-District, Kuntarawichai District, Mahasarakham Province, 44150, Thailand
| | | | | |
Collapse
|
39
|
Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol 2008; 75:792-801. [PMID: 19047386 DOI: 10.1128/aem.01897-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiation.
Collapse
|