1
|
Moya ND, Yan SM, McCoy RC, Andersen EC. The long and short of hyperdivergent regions. Trends Genet 2025; 41:303-314. [PMID: 39706705 PMCID: PMC11981857 DOI: 10.1016/j.tig.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive Conservation of Intron Number and Other Genetic Elements Revealed by a Chromosome-level Genome Assembly of the Hyper-polymorphic Nematode Caenorhabditis brenneri. Genome Biol Evol 2025; 17:evaf037. [PMID: 40037811 PMCID: PMC11925023 DOI: 10.1093/gbe/evaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
With within-species genetic diversity estimates that span the gamut of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and, notably, across Metazoa. Here, we present a high-quality, gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat-rich arms. A comparison of C. brenneri with other nematodes from the "Elegans" group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation of orthogroup size, indicative of high rates of gene turnover, consistent with previous studies. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. A comparison of gene structures revealed a strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Huang Y, Wang YA, van Sluijs L, Vogels DHJ, Chen Y, Tegelbeckers VIP, Schoonderwoerd S, Riksen JAG, Kammenga JE, Harvey SC, Sterken MG. eQTL mapping in transgenic alpha-synuclein carrying Caenorhabditis elegans recombinant inbred lines. Hum Mol Genet 2024; 33:2123-2132. [PMID: 39439404 PMCID: PMC11630767 DOI: 10.1093/hmg/ddae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Protein aggregation of α-synuclein (αS) is a genetic and neuropathological hallmark of Parkinson's disease (PD). Studies in the model nematode Caenorhabditis elegans suggested that variation of αS aggregation depends on the genetic background. However, which genes and genetic modifiers underlie individual differences in αS pathology remains unknown. To study the genotypic-phenotypic relationship of αS aggregation, we constructed a Recombinant Inbred Line (RIL) panel derived from a cross between genetically divergent strains C. elegans NL5901 and SCH4856, both harboring the human αS gene. As a first step to discover genetic modifiers 70 αS-RILs were measured for whole-genome gene expression and expression quantitative locus analysis (eQTL) were mapped. We detected multiple eQTL hot-spots, many of which were located on Chromosome V. To confirm a causal locus, we developed Introgression Lines (ILs) that contain SCH4856 introgressions on Chromosome V in an NL5901 background. We detected 74 genes with an interactive effect between αS and the genetic background, including the human p38 MAPK homologue pmk-1 that has previously been associated with PD. Together, we present a unique αS-RIL panel for defining effects of natural genetic variation on αS pathology, which contributes to finding genetic modifiers of PD.
Collapse
Affiliation(s)
- Yuqing Huang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Yiru A Wang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
- Faculty of Engineering and Science, University of Greenwich, Medway ME4 4TB, United Kingdom
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Demi H J Vogels
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Yuzhi Chen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Vivian I P Tegelbeckers
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Steven Schoonderwoerd
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Simon C Harvey
- Faculty of Engineering and Science, University of Greenwich, Medway ME4 4TB, United Kingdom
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
5
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Zeitler L, Gilbert KJ. Using Runs of Homozygosity and Machine Learning to Disentangle Sources of Inbreeding and Infer Self-Fertilization Rates. Genome Biol Evol 2024; 16:evae139. [PMID: 38935434 PMCID: PMC11245710 DOI: 10.1093/gbe/evae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Runs of homozygosity (ROHs) are indicative of elevated homozygosity and inbreeding due to mating of closely related individuals. Self-fertilization can be a major source of inbreeding which elevates genome-wide homozygosity and thus should also create long ROHs. While ROHs are frequently used to understand inbreeding in the context of conservation and selective breeding, as well as for consanguinity of populations and their demographic history, it remains unclear how ROH characteristics are altered by selfing and if this confounds expected signatures of inbreeding due to demographic change. Using simulations, we study the impact of the mode of reproduction and demographic history on ROHs. We apply random forests to identify unique characteristics of ROHs, indicative of different sources of inbreeding. We pinpoint distinct features of ROHs that can be used to better characterize the type of inbreeding the population was subjected to and to predict outcrossing rates and complex demographic histories. Using additional simulations and four empirical datasets, two from highly selfing species and two from mixed-maters, we predict the selfing rate and validate our estimations. We find that self-fertilization rates are successfully identified even with complex demography. Population genetic summary statistics improve algorithm accuracy particularly in the presence of additional inbreeding, e.g. from population bottlenecks. Our findings highlight the importance of ROHs in disentangling confounding factors related to various sources of inbreeding and demonstrate situations where such sources cannot be differentiated. Additionally, our random forest models provide a novel tool to the community for inferring selfing rates using genomic data.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Kimberly J Gilbert
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
8
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
9
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
10
|
Tintori SC, Çağlar D, Ortiz P, Chyzhevskyi I, Mousseau TA, Rockman MV. Environmental radiation exposure at Chornobyl has not systematically affected the genomes or chemical mutagen tolerance phenotypes of local worms. Proc Natl Acad Sci U S A 2024; 121:e2314793121. [PMID: 38442158 PMCID: PMC10945782 DOI: 10.1073/pnas.2314793121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Whether or not this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to mutagen exposure remains an open question. In this study, we collected, cultured, and cryopreserved 298 wild nematode isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oscheius tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field, and observed no evidence of an association between mutation and radioactivity at the sites of collection. Multigenerational exposure of each of these strains to several chemical mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites, and Chornobyl isolates were not systematically more resistant than strains from undisturbed habitats. In sum, the absence of mutational signatures does not reflect unique capacity for tolerating DNA damage.
Collapse
Affiliation(s)
- Sophia C. Tintori
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Derin Çağlar
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Patrick Ortiz
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| | - Ihor Chyzhevskyi
- Department of Coordination of International Projects of the State Specialized Enterprise “Ecocentre”, Kyiv01133, Ukraine
| | - Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY10003
| |
Collapse
|
11
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Furtado LFV, de Miranda RRC, Tennessen JA, Blouin MS, Rabelo ÉML. Molecular variability of the Ancylostoma secreted Protein-2 (Aca-asp-2) gene from Ancylostoma caninum contributes to expand information on population genetic studies of hookworms. Exp Parasitol 2023; 253:108590. [PMID: 37544398 DOI: 10.1016/j.exppara.2023.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Hookworm infection is a major public health problem in many regions of the world. Given the high levels of host morbidity and even mortality of the host caused by these infections, it is crucial to understand the genetic structure of hookworm populations. This understanding can provide insights into the ecology, transmission patterns, mechanisms of drug resistance, and the development of vaccines and immunotherapeutic strategies. Previously, we examined presumably neutral molecular markers, such as microsatellites and COI (Cytochrome C oxidase subunit 1) in Brazilian populations of Ancylostoma caninum. Here we analyze the molecular variability of a genomic fragment of the Aca-asp-2 (Ancylostoma secreted protein-2) gene from Ancylostoma caninum. This gene is a highly expressed and activated following the infection of the L3 larvae in the host. We obtained individuals of A. caninum from five different geographic locations in Brazil, sequenced and analyzed parts of the gene. The results revealed extensive polymorphism at this fragment, especially in the intronic region, indicating low selective pressure acting on these sequences. However, we also observed irregular distributions of nucleotides and polymorphisms in the coding region of this gene, resulting in the identification of 27 alleles. The data presented here contribute to expanding the understanding of population genetic studies of hookworms.
Collapse
Affiliation(s)
- Luis Fernando Viana Furtado
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodrigo Rodrigues Cambraia de Miranda
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Maranhão, 1783, Umuarama, CEP 38405-318, Uberlândia, Minas Gerais, Brazil
| | | | | | - Élida Mara Leite Rabelo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Hwang HY, Wang J. Effect of recombination on genetic diversity of Caenorhabditis elegans. Sci Rep 2023; 13:16425. [PMID: 37777524 PMCID: PMC10542817 DOI: 10.1038/s41598-023-42600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
Greater molecular divergence and genetic diversity are present in regions of high recombination in many species. Studies describing the correlation between variant abundance and recombination rate have long focused on recombination in the context of linked selection models, whereby interference between linked sites under positive or negative selection reduces genetic diversity in regions of low recombination. Here, we show that indels, especially those of intermediate sizes, are enriched relative to single nucleotide polymorphisms in regions of high recombination in C. elegans. To explain this phenomenon, we reintroduce an alternative model that emphasizes the mutagenic effect of recombination. To extend the analysis, we examine the variants with a phylogenetic context and discuss how different models could be examined together. The number of variants generated by recombination in natural populations could be substantial including possibly the majority of some indel subtypes. Our work highlights the potential importance of a mutagenic effect of recombination, which could have a significant role in the shaping of natural genetic diversity.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
15
|
Estes S, Dietz ZP, Katju V, Bergthorsson U. Evolutionary codependency: insights into the mitonuclear interaction landscape from experimental and wild Caenorhabditis nematodes. Curr Opin Genet Dev 2023; 81:102081. [PMID: 37421904 PMCID: PMC11684519 DOI: 10.1016/j.gde.2023.102081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Aided by new technologies, the upsurgence of research into mitochondrial genome biology during the past 15 years suggests that we have misunderstood, and perhaps dramatically underestimated, the ongoing biological and evolutionary significance of our long-time symbiotic partner. While we have begun to scratch the surface of several topics, many questions regarding the nature of mutation and selection in the mitochondrial genome, and the nature of its relationship to the nuclear genome, remain unanswered. Although best known for their contributions to studies of developmental and aging biology, Caenorhabditis nematodes are increasingly recognized as excellent model systems to advance understanding in these areas. We review recent discoveries with relevance to mitonuclear coevolution and conflict and offer several fertile areas for future work.
Collapse
Affiliation(s)
- Suzanne Estes
- Portland State University, Department of Biology, Portland, OR, USA.
| | - Zachary P Dietz
- Portland State University, Department of Biology, Portland, OR, USA
| | - Vaishali Katju
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| |
Collapse
|
16
|
Tintori SC, Çağlar D, Ortiz P, Chyzhevskyi I, Mousseau TA, Rockman MV. Environmental radiation exposure at Chornobyl has not systematically affected the genomes or mutagen tolerance phenotypes of local worms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542665. [PMID: 37398032 PMCID: PMC10312484 DOI: 10.1101/2023.05.28.542665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Questions remain regarding whether this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to radiation exposure. We collected, cultured, and cryopreserved 298 wild nematodes isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oschieus tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field and saw no evidence of an association between mutation and radiation level at the sites of collection. Multigenerational exposure of each of these strains to several mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites.
Collapse
Affiliation(s)
- Sophia C Tintori
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| | - Derin Çağlar
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| | - Patrick Ortiz
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| | - Ihor Chyzhevskyi
- Department of Coordination of International Projects of the State Specialized Enterprise "Ecocentre", Kyiv, Ukraine
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, NY, NY 10003
| |
Collapse
|
17
|
Mallard F, Noble L, Baer CF, Teotónio H. Variation in mutational (co)variances. G3 (BETHESDA, MD.) 2023; 13:jkac335. [PMID: 36548954 PMCID: PMC9911065 DOI: 10.1093/g3journal/jkac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Because of pleiotropy, mutations affect the expression and inheritance of multiple traits and, together with selection, are expected to shape standing genetic covariances between traits and eventual phenotypic divergence between populations. It is therefore important to find if the M matrix, describing mutational variances of each trait and covariances between traits, varies between genotypes. We here estimate the M matrix for six locomotion behavior traits in lines of two genotypes of the nematode Caenorhabditis elegans that accumulated mutations in a nearly neutral manner for 250 generations. We find significant mutational variance along at least one phenotypic dimension of the M matrices, but neither their size nor their orientation had detectable differences between genotypes. The number of generations of mutation accumulation, or the number of MA lines measured, was likely insufficient to sample enough mutations and detect potentially small differences between the two M matrices. We then tested if the M matrices were similar to one G matrix describing the standing genetic (co)variances of a population derived by the hybridization of several genotypes, including the two measured for M, and domesticated to a lab-defined environment for 140 generations. We found that the M and G were different because the genetic covariances caused by mutational pleiotropy in the two genotypes are smaller than those caused by linkage disequilibrium in the lab population. We further show that M matrices differed in their alignment with the lab population G matrix. If generalized to other founder genotypes of the lab population, these observations indicate that selection does not shape the evolution of the M matrix for locomotion behavior in the short-term of a few tens to hundreds of generations and suggests that the hybridization of C. elegans genotypes allows selection on new phenotypic dimensions of locomotion behavior.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, FL 32611, USA
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| |
Collapse
|
18
|
Petersen C, Krahn A, Leippe M. The nematode Caenorhabditis elegans and diverse potential invertebrate vectors predominantly interact opportunistically. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1069056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Some small animals migrate with the help of other, more mobile animals (phoresy) to leave short-lived and resource-poor habitats. The nematode Caenorhabditis elegans lives in ephemeral habitats such as compost, but has also been found associated with various potential invertebrate vectors. Little research has been done to determine if C. elegans is directly attracted to these invertebrates. To determine whether C. elegans is attracted to compounds and volatile odorants of invertebrates, we conducted chemotaxis experiments with the isopods Porcellio scaber, Oniscus asellus, and Armadillidium sp. and with Lithobius sp. myriapods, Drosophila melanogaster fruit flies, and Arion sp. slugs as representatives of natural vectors. Because phoresy is an important escape strategy in nature, especially for dauer larvae of C. elegans, we examined the attraction of the natural C. elegans isolate MY2079 in addition to the laboratory-adapted strain N2 at the dauer and L4 stage. We found that DMSO washing solution of Lithobius sp. and the odor of live D. melanogaster attracted C. elegans N2 L4 larvae. Surprisingly, the natural isolate MY2079 was not attracted to any invertebrate during either the dauer or L4 life stages and both C. elegans strains were repelled by various compounds from O. asellus, P. scaber, Armadillidium sp., Lithobius sp., and Arion sp. feces. We hypothesize that this is due to defense chemicals released by the invertebrates. Although compounds from Lithobius sp. and D. melanogaster odorants were mildly attractive, the lack of attraction to most invertebrates suggests a predominantly opportunistic association between C. elegans and invertebrate vectors.
Collapse
|
19
|
Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Diaz-Pacheco BN, Berson E, Colaiácovo MP. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genet 2023; 19:e1010627. [PMID: 36706157 PMCID: PMC9907818 DOI: 10.1371/journal.pgen.1010627] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N. Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Salas A, Rusconi JM, Rocca M, Lucas FD, Balcazar D, Achinelly MF. A new wild strain of Caenorhabditis elegans associated with Allograpta exotica (Syrphidae) in Argentina: an update of its ecological niche and worldwide distribution. AN ACAD BRAS CIENC 2022; 94:e20201440. [PMID: 35920483 DOI: 10.1590/0001-3765202220201440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Caenorhabditis elegans is a free-living nematode, belonging to the bacterivorous trophic group. Although it was cited in several countries, in different types of ecosystems and in associations with other organisms, the wild habitats of this nematode have not yet been precisely defined. In Argentina, C. elegans was recently isolated from the hoverfly Allograpta exotica, a voracious predator with potential biological control against aphids in horticultural crops. In this frame, the objectives of this study were (i) to characterize it molecularly and morphologically (ii) to report a wild strain of C. elegans for the first time from Argentina, (iii) to present a new ecological niche by associating it with A. exotica and (iv) to evaluate the pathogenicity against these insects. The results of the morphological and molecular analyses made it possible to determine that the isolated nematode was C. elegans, thus establishing the ARGLP1900 wild strain as the first record of this nematode for Argentina. A new association was described, since there are no records of interaction between C. elegans and A. exotica, providing information on a new ecological niche. The new wild strain found in this work, could be appropriate for comparative genomic studies with other C. elegans strains.
Collapse
Affiliation(s)
- Augusto Salas
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, L de la Torre, s/n, G lvez, G lvez, Argentina
| | - José M Rusconi
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT La Plata, CONICET/UNLP), Blvd. 120 1900, La Plata, Provincia de Buenos Aires, Argentina
| | - Margarita Rocca
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT La Plata, CONICET/UNLP), Blvd. 120 1900, La Plata, Provincia de Buenos Aires, Argentina
| | - Florencia D Lucas
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT La Plata, CONICET/UNLP), Blvd. 120 1900, La Plata, Provincia de Buenos Aires, Argentina
| | - Darío Balcazar
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT La Plata, CONICET/UNLP), Blvd. 120 1900, La Plata, Provincia de Buenos Aires, Argentina
| | - María Fernanda Achinelly
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT La Plata, CONICET/UNLP), Blvd. 120 1900, La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
21
|
Widmayer SJ, Evans KS, Zdraljevic S, Andersen EC. Evaluating the power and limitations of genome-wide association studies in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac114. [PMID: 35536194 PMCID: PMC9258552 DOI: 10.1093/g3journal/jkac114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Quantitative genetics in Caenorhabditis elegans seeks to identify naturally segregating genetic variants that underlie complex traits. Genome-wide association studies scan the genome for individual genetic variants that are significantly correlated with phenotypic variation in a population, or quantitative trait loci. Genome-wide association studies are a popular choice for quantitative genetic analyses because the quantitative trait loci that are discovered segregate in natural populations. Despite numerous successful mapping experiments, the empirical performance of genome-wide association study has not, to date, been formally evaluated in C. elegans. We developed an open-source genome-wide association study pipeline called NemaScan and used a simulation-based approach to provide benchmarks of mapping performance in collections of wild C. elegans strains. Simulated trait heritability and complexity determined the spectrum of quantitative trait loci detected by genome-wide association studies. Power to detect smaller-effect quantitative trait loci increased with the number of strains sampled from the C. elegans Natural Diversity Resource. Population structure was a major driver of variation in mapping performance, with populations shaped by recent selection exhibiting significantly lower false discovery rates than populations composed of more divergent strains. We also recapitulated previous genome-wide association studies of experimentally validated quantitative trait variants. Our simulation-based evaluation of performance provides the community with critical context to pursue quantitative genetic studies using the C. elegans Natural Diversity Resource to elucidate the genetic basis of complex traits in C. elegans natural populations.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Stefan Zdraljevic
- Department of Biological Chemistry, University of California—Los Angeles, Los Angeles, CA 90095, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits. Nat Commun 2022; 13:3462. [PMID: 35710766 PMCID: PMC9203580 DOI: 10.1038/s41467-022-31208-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Phenotypic variation in organism-level traits has been studied in Caenorhabditis elegans wild strains, but the impacts of differences in gene expression and the underlying regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal-level traits, including drug and toxicant responses. We perform transcriptomic analyses on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of gene expression. Using this massive dataset, we perform genome-wide association mappings to investigate the genetic basis underlying gene expression variation and reveal complex genetic architectures. We find a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further use mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of using gene expression variation to understand how phenotypic diversity is generated.
Collapse
|
23
|
Zhang G, Mostad JD, Andersen EC. Natural variation in fecundity is correlated with species-wide levels of divergence in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkab168. [PMID: 33983439 PMCID: PMC8496234 DOI: 10.1093/g3journal/jkab168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g., a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. In addition, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.
Collapse
Affiliation(s)
- Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jake D Mostad
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
24
|
Zou Z, Zhang J. Are Nonsynonymous Transversions Generally More Deleterious than Nonsynonymous Transitions? Mol Biol Evol 2021; 38:181-191. [PMID: 32805043 PMCID: PMC7783172 DOI: 10.1093/molbev/msaa200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that, due to the structure of the genetic code, nonsynonymous transitions are less likely than transversions to cause radical changes in amino acid physicochemical properties so are on average less deleterious. This view was supported by some but not all mutagenesis experiments. Because laboratory measures of fitness effects have limited sensitivities and relative frequencies of different mutations in mutagenesis studies may not match those in nature, we here revisit this issue using comparative genomics. We extend the standard codon model of sequence evolution by adding the parameter η that quantifies the ratio of the fixation probability of transitional nonsynonymous mutations to that of transversional nonsynonymous mutations. We then estimate η from the concatenated alignment of all protein-coding DNA sequences of two closely related genomes. Surprisingly, η ranges from 0.13 to 2.0 across 90 species pairs sampled from the tree of life, with 51 incidences of η < 1 and 30 incidences of η >1 that are statistically significant. Hence, whether nonsynonymous transversions are overall more deleterious than nonsynonymous transitions is species-dependent. Because the corresponding groups of amino acid replacements differ between nonsynonymous transitions and transversions, η is influenced by the relative exchangeabilities of amino acid pairs. Indeed, an extensive search reveals that the large variation in η is primarily explainable by the recently reported among-species disparity in amino acid exchangeabilities. These findings demonstrate that genome-wide nucleotide substitution patterns in coding sequences have species-specific features and are more variable among evolutionary lineages than are currently thought.
Collapse
Affiliation(s)
- Zhengting Zou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
- Corresponding author: E-mail: .Associate editor: Jeffrey Townsend
| |
Collapse
|
25
|
Sidorova A, Tverdislov V, Levashova N, Garaeva A. A model of autowave self-organization as a hierarchy of active media in the biological evolution. Biosystems 2020; 198:104234. [PMID: 32889101 DOI: 10.1016/j.biosystems.2020.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
Within the framework of the active media concept, we develop a biophysical model of autowave self-organization which is treated as a hierarchy of active media in the evolution of the biosphere. We also propose a mathematical model of the autowave process of speciation in a flow of mutations for the three main taxonometric groups (prokaryotes, unicellular and multicellular eukaryotes) with a naturally determined lower boundary of living matter (the appearance of prokaryotes) and an open upper boundary for the formation of new species. It is shown that the fluctuation-bifurcation description of the evolution for the formation of new taxonometric groups as a trajectory of transformation of small fluctuations into giant ones adequately reflects the process of self-organization during the formation of taxa. The major concepts of biological evolution, conditions of hierarchy formation as a fundamental manifestation of self-organization and complexity in the evolution of biological systems are considered.
Collapse
Affiliation(s)
- Alla Sidorova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vsevolod Tverdislov
- Head of the Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Natalia Levashova
- Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Anastasia Garaeva
- Postgraduate Student of the Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
26
|
Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, Evans KS, Hahnel S, Lee D, Rodriguez BC, Zhang G, van der Zwagg J, Kiontke K, Andersen EC. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. eLife 2019; 8:50465. [PMID: 31793880 PMCID: PMC6927746 DOI: 10.7554/elife.50465] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Collapse
Affiliation(s)
- Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Shannon C Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Steffen Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Briana C Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Joost van der Zwagg
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Karin Kiontke
- Department of Biology, New York University, New York, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
27
|
Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:24738-24747. [PMID: 31740606 PMCID: PMC6900638 DOI: 10.1073/pnas.1903903116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In organisms composed of a single cell, RNAs of viral origin may be transmitted to daughter cells at cell division without passing through an extracellular virion stage. These RNAs usually encode an RNA-dependent RNA polymerase that enables their replication. For some of these agents, such as Narnaviruses, no capsid protein is expressed, and thus, they are called capsidless viruses. Here, we identify putative capsidless viral RNAs in animals, in nematodes closely related to the model organism Caenorhabditis elegans. We show that these RNAs are transmitted vertically through the host germline. Our work provides evidence that animal cells harbor capsidless viruses. Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.
Collapse
|
28
|
Ho EKH, Bartkowska M, Wright SI, Agrawal AF. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. THE NEW PHYTOLOGIST 2019; 224:1361-1371. [PMID: 31298732 DOI: 10.1111/nph.16056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Clonal propagation allows some plant species to achieve massive population sizes quickly but also reduces the evolutionary independence of different sites in the genome. We examine genome-wide genetic diversity in Spirodela polyrhiza, a duckweed that reproduces primarily asexually. We find that this geographically widespread and numerically abundant species has very low levels of genetic diversity. Diversity at nonsynonymous sites relative to synonymous sites is high, suggesting that purifying selection is weak. A potential explanation for this observation is that a very low frequency of sex renders selection ineffective. However, there is a pronounced decay in linkage disequilibrium over 40 kb, suggesting that though sex may be rare at the individual level it is not too infrequent at the population level. In addition, neutral diversity is affected by the physical proximity of selected sites, which would be unexpected if sex was exceedingly rare at the population level. The amount of genetic mixing as assessed by the decay in linkage disequilibrium is not dissimilar from selfing species such as Arabidopsis thaliana, yet selection appears to be much less effective in duckweed. We discuss alternative explanations for the signature of weak purifying selection.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Magdalena Bartkowska
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
29
|
Chelo IM, Afonso B, Carvalho S, Theologidis I, Goy C, Pino-Querido A, Proulx SR, Teotónio H. Partial Selfing Can Reduce Genetic Loads While Maintaining Diversity During Experimental Evolution. G3 (BETHESDA, MD.) 2019; 9:2811-2821. [PMID: 31278175 PMCID: PMC6723137 DOI: 10.1534/g3.119.400239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Partial selfing, whereby self- and cross- fertilization occur in populations at intermediate frequencies, is generally thought to be evolutionarily unstable. Yet, it is found in natural populations. This could be explained if populations with partial selfing are able to reduce genetic loads and the possibility for inbreeding depression while keeping genetic diversity that may be important for future adaptation. To address this hypothesis, we compare the experimental evolution of Caenorhabditis elegans populations under partial selfing, exclusive selfing or predominant outcrossing, while they adapt to osmotically challenging conditions. We find that the ancestral genetic load, as measured by the risk of extinction upon inbreeding by selfing, is maintained as long as outcrossing is the main reproductive mode, but becomes reduced otherwise. Analysis of genome-wide single-nucleotide polymorphisms (SNPs) during experimental evolution and among the inbred lines that survived enforced inbreeding indicates that populations with predominant outcrossing or partial selfing maintained more genetic diversity than expected with neutrality or purifying selection. We discuss the conditions under which this could be explained by the presence of recessive deleterious alleles and/or overdominant loci. Taken together, our observations suggest that populations evolving under partial selfing can gain some of the benefits of eliminating unlinked deleterious recessive alleles and also the benefits of maintaining genetic diversity at partially dominant or overdominant loci that become associated due to variance of inbreeding levels.
Collapse
Affiliation(s)
- Ivo M Chelo
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
- cE3c - Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Afonso
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
- Institut de Biologie de l'École Normale Supérieure (IBENS), Inserm U1024, CNRS UMR 8197, F-75005 Paris, France
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | - Ioannis Theologidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece
| | - Christine Goy
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany, and
| | - Ania Pino-Querido
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal
| | - Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, CA 93106
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Inserm U1024, CNRS UMR 8197, F-75005 Paris, France
| |
Collapse
|
30
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
31
|
Montarry J, Bardou-Valette S, Mabon R, Jan PL, Fournet S, Grenier E, Petit EJ. Exploring the causes of small effective population sizes in cyst nematodes using artificial Globodera pallida populations. Proc Biol Sci 2019; 286:20182359. [PMID: 30963865 PMCID: PMC6367184 DOI: 10.1098/rspb.2018.2359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
The effective size of a population is the size of an ideal population which would undergo genetic drift at the same rate as the real population. The balance between selection and genetic drift depends on the effective population size ( Ne), rather than the real numbers of individuals in the population ( N). The objectives of the present study were to estimate Ne in the potato cyst nematode Globodera pallida and to explore the causes of a low Ne/ N ratio in cyst nematodes using artificial populations. Using a temporal analysis of 24 independent populations, the median Ne was 58 individuals (min Ne = 25 and max Ne = 228). Ne is commonly lower than N but in the case of cyst nematodes, the Ne/ N ratio was extremely low. Using artificial populations showed that this low ratio did not result from migration, selection and overlapping generations, but could be explain by the fact that G. pallida populations deviate in structure from the assumptions of the ideal population by having unequal sex ratios, high levels of inbreeding and a high variance in family sizes. The consequences of a low Ne, resulting in a strong intensity of genetic drift, could be important for their control because G. pallida populations will have a low capacity to adapt to changing environments.
Collapse
Affiliation(s)
- Josselin Montarry
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Sylvie Bardou-Valette
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Romain Mabon
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Pierre-Loup Jan
- INRA, Agrocampus-Ouest, UMR985 ESE, Ecology and Ecosystem Health, 35042 Rennes, France
| | - Sylvain Fournet
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Eric Grenier
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Eric J. Petit
- INRA, Agrocampus-Ouest, UMR985 ESE, Ecology and Ecosystem Health, 35042 Rennes, France
| |
Collapse
|
32
|
Campbell RF, McGrath PT, Paaby AB. Analysis of Epistasis in Natural Traits Using Model Organisms. Trends Genet 2018; 34:883-898. [PMID: 30166071 PMCID: PMC6541385 DOI: 10.1016/j.tig.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
The ability to detect and understand epistasis in natural populations is important for understanding how biological traits are influenced by genetic variation. However, identification and characterization of epistasis in natural populations remains difficult due to statistical issues that arise as a result of multiple comparisons, and the fact that most genetic variants segregate at low allele frequencies. In this review, we discuss how model organisms may be used to manipulate genotypic combinations to power the detection of epistasis as well as test interactions between specific genes. Findings from a number of species indicate that statistical epistasis is pervasive between natural genetic variants. However, the properties of experimental systems that enable analysis of epistasis also constrain extrapolation of these results back into natural populations.
Collapse
Affiliation(s)
- Richard F Campbell
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Patrick T McGrath
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA; Department of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA.
| | - Annalise B Paaby
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| |
Collapse
|
33
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|
34
|
Richaud A, Zhang G, Lee D, Lee J, Félix MA. The Local Coexistence Pattern of Selfing Genotypes in Caenorhabditis elegans Natural Metapopulations. Genetics 2018; 208:807-821. [PMID: 29242287 PMCID: PMC5788539 DOI: 10.1534/genetics.117.300564] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/09/2017] [Indexed: 02/08/2023] Open
Abstract
To study the interplay of rare outcrossing and metapopulation structure, we focus on the nematode Caenorhabditis elegans Its remarkably low outcrossing rate is at the extreme end of the spectrum for facultative selfing organisms. At the demographic level, C. elegans natural populations undergo boom and bust dynamics on ephemeral resources, with the dauer diapause larva acting as the dispersal form. Here we investigate the small-scale genetic structure of C. elegans populations in two localities over several years, using 2b restriction-associated DNA sequencing of nearly 1000 individuals. We find a remarkably small number of genome-wide haplotypes, almost exclusively in the homozygous state, confirming the low effective outcrossing rate. Most strikingly, the major haplotypes in a locality remain intact and do not effectively recombine over several years. From the spatial pattern of diversity, we estimate that each subpopulation or deme is seeded by a mean of 3-10 immigrating individuals. Populations are thus formed by clones that compete at two levels, within a subpopulation and at the metapopulation level. We test for the presence of local phenotypic variation in pathogen resistance and dauer larva nictation, which could possibly explain the maintenance of different genotypes by heterogeneous selection in different local environments or lifecycles. This study is the first to address the local spatiotemporal genetic structure of C. elegans on feeding substrates. We conclude that these animals coexist as competing homozygous clones at the smallest population scale as well as in the metapopulation.
Collapse
Affiliation(s)
- Aurélien Richaud
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Gaotian Zhang
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Daehan Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Marie-Anne Félix
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| |
Collapse
|
35
|
GIBSON AMANDAK, MORRAN LEVIT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2018. [DOI: 10.21307/jofnem-2017-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. ADVANCES IN PARASITOLOGY 2018; 100:155-208. [PMID: 29753338 DOI: 10.1016/bs.apar.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets.
Collapse
|
37
|
Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol 2017; 27:3925-3934. [PMID: 29134711 DOI: 10.1111/mec.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, Dayarian A, Carvalho S, Crist A, Pino-Querido A, Shraiman B, Rockman MV, Teotónio H. Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017; 207:1663-1685. [PMID: 29066469 PMCID: PMC5714472 DOI: 10.1534/genetics.117.300406] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/10/2017] [Indexed: 01/27/2023] Open
Abstract
Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor ([Formula: see text]), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.
Collapse
Affiliation(s)
- Luke M Noble
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Ivo Chelo
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Thiago Guzella
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - Bruno Afonso
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - David D Riccardi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Patrick Ammerman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Adel Dayarian
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Anna Crist
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | | | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
- Department of Physics, University of California, Santa Barbara, California 93106
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| |
Collapse
|
39
|
Gibson AK, Morran LT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2017; 49:357-372. [PMID: 29353923 PMCID: PMC5770282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 06/07/2023] Open
Abstract
Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host-parasite populations with experimental dissection of interactions in the field and the laboratory. The "rewilding" of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis-parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host-parasite systems can take on fundamental questions in evolutionary ecology of disease.
Collapse
Affiliation(s)
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
40
|
Inverse correlation between longevity and developmental rate among wild C. elegans strains. Aging (Albany NY) 2017; 8:986-99. [PMID: 27193830 PMCID: PMC4931849 DOI: 10.18632/aging.100960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
Genetic studies using model organisms have shown that many long-lived mutants display impaired fitness, such as reduced fecundity and delayed development. However, in several wild animals, the association between longevity and fitness does not seem to be inevitable. Thus, the relationship between longevity and fitness in wild organisms remains inconclusive. Here, we determined the correlation between lifespan and fitness, developmental rate and brood size, by using 16 wild-derived C. elegans strains originated from various geographic areas. We found a negative correlation between lifespan and developmental rate. In contrast, we did not find such negative correlation between longevity and developmental rate among the individuals of C. elegans strains. These data imply that polymorphic genetic variants among wild isolates determine resource allocation to longevity and developmental rate.
Collapse
|
41
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
42
|
Wang YA, Kammenga JE, Harvey SC. Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Hum Genomics 2017; 11:12. [PMID: 28545550 PMCID: PMC5445269 DOI: 10.1186/s40246-017-0108-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases (NGDs) such as Alzheimer's and Parkinson's are debilitating and largely untreatable conditions strongly linked to age. The clinical, neuropathological, and genetic components of NGDs indicate that neurodegeneration is a complex trait determined by multiple genes and by the environment. MAIN BODY The symptoms of NGDs differ among individuals due to their genetic background, and this variation affects the onset and progression of NGD and NGD-like states. Such genetic variation affects the molecular and cellular processes underlying NGDs, leading to differential clinical phenotypes. So far, we have a limited understanding of the mechanisms of individual background variation. Here, we consider how variation between genetic backgrounds affects the mechanisms of aging and proteostasis in NGD phenotypes. We discuss how the nematode Caenorhabditis elegans can be used to identify the role of variation between genetic backgrounds. Additionally, we review advances in C. elegans methods that can facilitate the identification of NGD regulators and/or networks. CONCLUSION Genetic variation both in disease genes and in regulatory factors that modulate onset and progression of NGDs are incompletely understood. The nematode C. elegans represents a valuable system in which to address such questions.
Collapse
Affiliation(s)
- Yiru Anning Wang
- Biomolecular Research Group, School of Human and Life Science, Canterbury Christ Church University, Canterbury, CT1 1QU UK
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan Edward Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon Crawford Harvey
- Biomolecular Research Group, School of Human and Life Science, Canterbury Christ Church University, Canterbury, CT1 1QU UK
| |
Collapse
|
43
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|
44
|
Morgan K, McGaughran A, Rödelsperger C, Sommer RJ. Variation in rates of spontaneous male production within the nematode species Pristionchus pacificus supports an adaptive role for males and outcrossing. BMC Evol Biol 2017; 17:57. [PMID: 28228092 PMCID: PMC5322664 DOI: 10.1186/s12862-017-0873-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background The nematode species Pristionchus pacificus has an androdioecious mating system in which populations consist of self-fertilizing hermaphrodites and relatively few males. The prevalence of males in such a system is likely to depend on the relative pros and cons of outcrossing. While outcrossing generates novel allelic combinations and can therefore increase adaptive potential, it may also disrupt the potentially beneficial consequences of repeated generations of selfing. These include purging of deleterious alleles, inheritance of co-adapted allele complexes, improved hermaphrodite fitness and increased population growth. Here we use experimental and population genetic approaches to test hypotheses relating to male production and outcrossing in laboratory and natural populations of P. pacificus sampled from the volcanic island of La Réunion. Results We find a significant interaction between sampling locality and temperature treatment influencing rates of spontaneous male production in the laboratory. While strains isolated at higher altitude, cooler localities produce a higher proportion of male offspring at 25 °C relative to 20 or 15 °C, the reverse pattern is seen in strains isolated from warmer, low altitude localities. Linkage disequilibrium extends across long physical distances, but fails to approach levels reported for the partially selfing nematode species Caenorhabditis elegans. Finally, we find evidence for admixture between divergent genetic lineages. Conclusions Elevated rates of laboratory male generation appear to occur under environmental conditions which differ from those experienced by populations in nature. Such elevated male generation may result in higher outcrossing rates, hence driving increased effective recombination and the creation of potentially adaptive novel allelic combinations. Patterns of linkage disequilibrium decay support selfing as the predominant reproductive strategy in P. pacificus. Finally, despite the potential for outcrossing depression, our results suggest admixture has occurred between distinct genetic lineages since their independent colonization of the island, suggesting outcrossing depression may not be uniform in this species. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0873-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katy Morgan
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany. .,Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA70148, USA.
| | - Angela McGaughran
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.,CSIRO Land & Water, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT 2601, Australia.,University of Melbourne, School of BioSciences, 30 Flemington Road, Melbourne, VIC, 3010, Australia
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| |
Collapse
|
45
|
Hwang HY, Wang J. Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans. PLoS Comput Biol 2017; 13:e1005369. [PMID: 28135268 PMCID: PMC5305269 DOI: 10.1371/journal.pcbi.1005369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/13/2017] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
Genetic diversity is maintained by continuing generation and removal of variants. While examining over 800,000 DNA variants in wild isolates of Caenorhabditis elegans, we made a discovery that the proportions of variant types are not constant across the C. elegans genome. The variant proportion is defined as the fraction of a specific variant type (e.g. single nucleotide polymorphism (SNP) or indel) within a broader set of variants (e.g. all variants or all non-SNPs). The proportions of most variant types show a correlation with the recombination rate. These correlations can be explained as a result of a concerted action of two mutation mechanisms, which we named Morgan and Sanger mechanisms. The two proposed mechanisms act according to the distinct components of the recombination rate, specifically the genetic and physical distance. Regression analysis was used to explore the characteristics and contributions of the two mutation mechanisms. According to our model, ~20-40% of all mutations in C. elegans wild populations are derived from programmed meiotic double strand breaks, which precede chromosomal crossovers and thus may be the point of origin for the Morgan mechanism. A substantial part of the known correlation between the recombination rate and variant distribution appears to be caused by the mutations generated by the Morgan mechanism. Mathematically integrating the mutation model with background selection model gives a more complete depiction of how the variant landscape is shaped in C. elegans. Similar analysis should be possible in other species by examining the correlation between the recombination rate and variant landscape within the context of our mutation model.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
46
|
Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 2016; 17:142-152. [PMID: 27860289 DOI: 10.1111/1755-0998.12635] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site-associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes and extents of linkage disequilibrium (length of haplotype blocks). Under the best-case modelling scenario, we found that RADseq using six- or eight-base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that the median density of markers across these studies was 4.08 RAD-tag markers per megabase (one marker per 245 kb). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation.
Collapse
Affiliation(s)
- David B Lowry
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Sean Hoban
- The Morton Arboretum, Lisle, IL, USA.,National Institute for Mathematical and Biological Synthesis (NIMBioS), Knoxville, TN, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35406, USA
| | - Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
47
|
Behringer MG, Hall DW. Selection on Position of Nonsense Codons in Introns. Genetics 2016; 204:1239-1248. [PMID: 27630196 PMCID: PMC5105854 DOI: 10.1534/genetics.116.189894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/09/2016] [Indexed: 02/04/2023] Open
Abstract
Introns occasionally remain in mature messenger RNAs (mRNAs) due to splicing errors and the translated, aberrant proteins that result represent a metabolic cost and may have other deleterious consequences. The nonsense-mediated decay (NMD) pathway degrades aberrant mRNAs, which it recognizes by the presence of an in-frame premature termination codon (PTC). We investigated whether selection has shaped the location of PTCs in introns to reduce waste and facilitate NMD. We found across seven model organisms, that in both first and last introns, PTCs occur earlier in introns than expected by chance, suggesting that selection favors earlier position. This pattern is more pronounced in species with larger effective population sizes. The pattern does not hold for last introns in the two mammal species, however, perhaps because in these species NMD is not initiated from 3'-terminal introns. We conclude that there is compelling evidence that the location of PTCs is shaped by selection for reduced waste and efficient degradation of aberrant mRNAs.
Collapse
Affiliation(s)
- Megan G Behringer
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
48
|
Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res 2016; 45:D650-D657. [PMID: 27701074 PMCID: PMC5210618 DOI: 10.1093/nar/gkw893] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Studies in model organisms have yielded considerable insights into the etiology of disease and our understanding of evolutionary processes. Caenorhabditis elegans is among the most powerful model organisms used to understand biology. However, C. elegans is not used as extensively as other model organisms to investigate how natural variation shapes traits, especially through the use of genome-wide association (GWA) analyses. Here, we introduce a new platform, the C. elegans Natural Diversity Resource (CeNDR) to enable statistical genetics and genomics studies of C. elegans and to connect the results to human disease. CeNDR provides the research community with wild strains, genome-wide sequence and variant data for every strain, and a GWA mapping portal for studying natural variation in C. elegans. Additionally, researchers outside of the C. elegans community can benefit from public mappings and integrated tools for comparative analyses. CeNDR uses several databases that are continually updated through the addition of new strains, sequencing data, and association mapping results. The CeNDR data are accessible through a freely available web portal located at http://www.elegansvariation.org or through an application programming interface.
Collapse
Affiliation(s)
- Daniel E Cook
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Stefan Zdraljevic
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joshua P Roberts
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
49
|
Jan P, Gracianne C, Fournet S, Olivier E, Arnaud J, Porte C, Bardou‐Valette S, Denis M, Petit EJ. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes. Evol Appl 2016; 9:489-501. [PMID: 26989440 PMCID: PMC4778111 DOI: 10.1111/eva.12352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 12/14/2015] [Indexed: 12/05/2022] Open
Abstract
The sustainability of modern agriculture relies on strategies that can control the ability of pathogens to overcome chemicals or genetic resistances through natural selection. This evolutionary potential, which depends partly on effective population size (N e ), is greatly influenced by human activities. In this context, wild pathogen populations can provide valuable information for assessing the long-term risk associated with crop pests. In this study, we estimated the effective population size of the beet cyst nematode, Heterodera schachtii, by sampling 34 populations infecting the sea beet Beta vulgaris spp. maritima twice within a one-year period. Only 20 populations produced enough generations to analyze the variation in allele frequencies, with the remaining populations showing a high mortality rate of the host plant after only 1 year. The 20 analyzed populations showed surprisingly low effective population sizes, with most having N e close to 85 individuals. We attribute these low values to the variation in population size through time, systematic inbreeding, and unbalanced sex-ratios. Our results suggest that H. schachtii has low evolutionary potential in natural environments. Pest control strategies in which populations on crops mimic wild populations may help prevent parasite adaptation to host resistance.
Collapse
Affiliation(s)
- Pierre‐Loup Jan
- INRAUMR1349 IGEPPF‐35653Le Rheu CedexFrance
- INRAUMR985 ESEF‐35042Rennes CedexFrance
| | | | | | | | - Jean‐François Arnaud
- UMR CNRS 8198 Évolution, Écologie et PaléontologieUniversité Lille 1 – Sciences et Technologies59655Villeneuve d'Ascq CedexFrance
| | | | | | | | | |
Collapse
|
50
|
Petersen C, Saebelfeld M, Barbosa C, Pees B, Hermann RJ, Schalkowski R, Strathmann EA, Dirksen P, Schulenburg H. Ten years of life in compost: temporal and spatial variation of North German Caenorhabditis elegans populations. Ecol Evol 2015; 5:3250-63. [PMID: 26380661 PMCID: PMC4569023 DOI: 10.1002/ece3.1605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/05/2023] Open
Abstract
The nematode Caenorhabditis elegans is a central laboratory model system in almost all biological disciplines, yet its natural life history and population biology are largely unexplored. Such information is essential for in-depth understanding of the nematode's biology because its natural ecology provides the context, in which its traits and the underlying molecular mechanisms evolved. We characterized natural phenotypic and genetic variation among North German C. elegans isolates. We used the unique opportunity to compare samples collected 10 years apart from the same compost heap and additionally included recent samples for this and a second site, collected across a 1.5-year period. Our analysis revealed significant population genetic differentiation between locations, across the 10-year time period, but for only one location a trend across the shorter time frame. Significant variation was similarly found for phenotypic traits of likely importance in nature, such as choice behavior and population growth in the presence of pathogens or naturally associated bacteria. Phenotypic variation was significantly influenced by C. elegans genotype, time of isolation, and sampling site. The here studied C. elegans isolates may provide a valuable, genetically variable resource for future dissection of naturally relevant gene functions.
Collapse
Affiliation(s)
- Carola Petersen
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Manja Saebelfeld
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Camilo Barbosa
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Barbara Pees
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Ruben Joseph Hermann
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Rebecca Schalkowski
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Eike Andreas Strathmann
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Philipp Dirksen
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|