1
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
3
|
Nakai J, Namiki K, Fujimoto K, Hatakeyama D, Ito E. FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation. BIOLOGY 2023; 12:1201. [PMID: 37759600 PMCID: PMC10525164 DOI: 10.3390/biology12091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Food deprivation activates forkhead box O (FOXO), a transcription factor downstream of insulin receptors. In the pond snail Lymnaea stagnalis, insulin signaling and food deprivation improve memory consolidation following conditioned taste aversion (CTA) learning. We investigated the subcellular localization of FOXO in Lymnaea and changes in its expression levels following food deprivation, CTA learning, and insulin administration. Immunohistochemistry revealed that Lymnaea FOXO (LymFOXO) was located in the central nervous system (CNS) neuronal cytoplasm in food-satiated snails but was mainly in neuronal nuclei in food-deprived snails. Following CTA acquisition, LymFOXO translocated to the nuclei in food-satiated snails and remained in the nuclei in food-deprived snails. Contrary to our expectations, insulin administered to the CNS did not induce LymFOXO translocation into the nuclei in food-satiated snails. Real-time PCR was used to quantify LymFOXO mRNA levels, its target genes, and insulin signaling pathway genes and revealed that LymFOXO mRNA was upregulated in food-deprived snails compared to food-satiated snails. Insulin applied to isolated CNSs from food-satiated snails increased LymFOXO compared to vehicle-treated samples. Food deprivation prepares FOXO to function in the nucleus and enhances CTA learning in snails. Insulin application did not directly affect LymFOXO protein localization. Thus, insulin administration may stimulate pathways other than the LymFOXO cascade.
Collapse
Affiliation(s)
- Junko Nakai
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Kengo Namiki
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Kanta Fujimoto
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan;
| | - Etsuro Ito
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| |
Collapse
|
4
|
Saul N, Dhondt I, Kuokkanen M, Perola M, Verschuuren C, Wouters B, von Chrzanowski H, De Vos WH, Temmerman L, Luyten W, Zečić A, Loier T, Schmitz-Linneweber C, Braeckman BP. Identification of healthspan-promoting genes in Caenorhabditis elegans based on a human GWAS study. Biogerontology 2022; 23:431-452. [PMID: 35748965 PMCID: PMC9388463 DOI: 10.1007/s10522-022-09969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
To find drivers of healthy ageing, a genome-wide association study (GWAS) was performed in healthy and unhealthy older individuals. Healthy individuals were defined as free from cardiovascular disease, stroke, heart failure, major adverse cardiovascular event, diabetes, dementia, cancer, chronic obstructive pulmonary disease (COPD), asthma, rheumatism, Crohn’s disease, malabsorption or kidney disease. Six single nucleotide polymorphisms (SNPs) with unknown function associated with ten human genes were identified as candidate healthspan markers. Thirteen homologous or closely related genes were selected in the model organism C. elegans for evaluating healthspan after targeted RNAi-mediated knockdown using pathogen resistance, muscle integrity, chemotaxis index and the activity of known longevity and stress response pathways as healthspan reporters. In addition, lifespan was monitored in the RNAi-treated nematodes. RNAi knockdown of yap-1, wwp-1, paxt-1 and several acdh genes resulted in heterogeneous phenotypes regarding muscle integrity, pathogen resistance, chemotactic behaviour, and lifespan. Based on these observations, we hypothesize that their human homologues WWC2, CDKN2AIP and ACADS may play a role in health maintenance in the elderly.
Collapse
Affiliation(s)
- Nadine Saul
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Mikko Kuokkanen
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Clara Verschuuren
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Henrik von Chrzanowski
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | - Aleksandra Zečić
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Tim Loier
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
7
|
Yan F, Wang R, Li S, Zhao X, Jiang Y, Liu L, Fang J, Zhen X, Lazarovici P, Zheng W. FoxO3a suppresses neuropeptide W expression in neuronal cells and in rat hypothalamus and its implication in hypothalamic-pituitary-adrenal (HPA) axis. Int J Biol Sci 2020; 16:2775-2787. [PMID: 33061795 PMCID: PMC7545709 DOI: 10.7150/ijbs.45619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
FoxO3a, a forkhead family member of transcription factors, is involved in the regulation of cell metabolism, proliferation, differentiation and apoptosis. However, whether FoxO3a participates in the regulation of glucocorticoids induced-hypothalamic-pituitary-adrenal (HPA) dysfunction is still unknown. Our present results indicate that dexamethasone(DEX) increased FoxO3a expression in PC12 and hypothalamic neuronal cultures in correlation to reduced expression of NPW, a process that could be blocked by GR2 antagonist. DEX restrained the phosphorylation of Akt and FoxO3a, but not ERK1/2 phosphorylation, resulting with FoxO3a nuclear localization. Overexpression of FoxO3a inhibited NPW expression, while FoxO3a knockdown by siRNA had the opposite effect. The regulatory region of NPW promoter contains multiple FoxO3a binding sites, and FoxO3a bonding to these sites inhibited its transcriptional activity. In a rat model, chronic administration of corticosterone reduced animals' body weight and sucrose consumption and caused stress- depression like behavior. Corticosterone treatment induced a marked increase in FoxO3a levels, while decreased the expression of NPW protein in the hypothalamus. Immunofluorescent double labeling demonstrated that FoxO3a and NPW were collocated in the hypothalamus. Taken together, these data indicate that NPW is a new direct downstream target gene of FoxO3a. FoxO3a suppressed the transcription of NPW and modulated glucocorticoids-induced HPA dysfunction by directly regulating the expression of NPW. Thus, present findings suggest that FoxO3a and NPW may be potential therapeutic targets for endocrine and psychiatric disorders.
Collapse
Affiliation(s)
- Fengxia Yan
- School of Medical Science, Jinan University, Guangzhou, China
| | - Rikang Wang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Shuai Li
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xia Zhao
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yizhou Jiang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Linlin Liu
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jiankang Fang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
8
|
Iranon NN, Jochim BE, Miller DL. Fasting prevents hypoxia-induced defects of proteostasis in C. elegans. PLoS Genet 2019; 15:e1008242. [PMID: 31246952 PMCID: PMC6619831 DOI: 10.1371/journal.pgen.1008242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/10/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Low oxygen conditions (hypoxia) can impair essential physiological processes and cause cellular damage and death. We have shown that specific hypoxic conditions disrupt protein homeostasis in C. elegans, leading to protein aggregation and proteotoxicity. Here, we show that nutritional cues regulate this effect of hypoxia on proteostasis. Animals fasted prior to hypoxic exposure develop dramatically fewer polyglutamine protein aggregates compared to their fed counterparts, indicating that the effect of hypoxia is abrogated. Fasting also reduced the hypoxia-induced exaggeration of proteostasis defects in animals that express Aβ1–42 and in animals with a temperature-sensitive mutation in dyn-1, suggesting that this effect was not specific to polyglutamine proteins. Our data also demonstrate that the nutritional environment experienced at the onset of hypoxia dictates at least some aspects of the physiological response to hypoxia. We further demonstrate that the insulin/IGF-like signaling pathway plays a role in mediating the protective effects of fasting in hypoxia. Animals with mutations in daf-2, the C. elegans insulin-like receptor, display wild-type levels of hypoxia-induced protein aggregation upon exposure to hypoxia when fed, but are not protected by fasting. DAF-2 acts independently of the FOXO transcription factor, DAF-16, to mediate the protective effects of fasting. These results suggest a non-canonical role for the insulin/IGF-like signaling pathway in coordinating the effects of hypoxia and nutritional state on proteostasis. When blood flow to various parts of the body becomes restricted, those tissues suffer from a lack of oxygen, a condition called hypoxia. Hypoxia can cause cellular damage and death, as in stroke and cardiovascular disease. We have found that in the model organism C. elegans (a roundworm) specific concentrations of hypoxia cause aggregation of polyglutamine proteins–the same kind of proteins that are found in an aggregated state in the neurodegenerative disorder Huntington’s disease. Here, we show that that worms can be protected from hypoxia-induced protein aggregation if they are fasted (removed from their food source) prior to experiencing hypoxia. Furthermore, we show that the insulin receptor is required for this protection. The insulin receptor is responsible for detecting insulin, a hormone that is released after feeding. Worms with a nonfunctional version of the insulin receptor displayed hypoxia-induced protein aggregation despite being fasted before the hypoxic exposure. Our results highlight a new role for the insulin signaling pathway in coordinating the effects of both hypoxia and nutritional state on protein aggregation.
Collapse
Affiliation(s)
- Nicole N. Iranon
- Graduate Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States of America
| | - Bailey E. Jochim
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States of America
| | - Dana L. Miller
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lim JP, Fehlauer H, Das A, Saro G, Glauser DA, Brunet A, Goodman MB. Loss of CaMKI Function Disrupts Salt Aversive Learning in C. elegans. J Neurosci 2018; 38:6114-6129. [PMID: 29875264 PMCID: PMC6031575 DOI: 10.1523/jneurosci.1611-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. Although some genes have been implicated in this salt-aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt-aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegansSIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. In addition to its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt-aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt-sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity.
Collapse
Affiliation(s)
- Jana P Lim
- Neurosciences Graduate Program
- Department of Genetics
- Department of Molecular and Cellular Physiology
| | | | | | - Gabriella Saro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Anne Brunet
- Neurosciences Graduate Program,
- Department of Genetics
- Glenn Center for the Biology of Aging at Stanford University, Stanford, California 94305, and
| | - Miriam B Goodman
- Neurosciences Graduate Program,
- Department of Molecular and Cellular Physiology
| |
Collapse
|
10
|
Hotzi B, Kosztelnik M, Hargitai B, Takács‐Vellai K, Barna J, Bördén K, Málnási‐Csizmadia A, Lippai M, Ortutay C, Bacquet C, Pasparaki A, Arányi T, Tavernarakis N, Vellai T. Sex-specific regulation of aging in Caenorhabditis elegans. Aging Cell 2018; 17:e12724. [PMID: 29493066 PMCID: PMC5946081 DOI: 10.1111/acel.12724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.
Collapse
Affiliation(s)
| | | | - Balázs Hargitai
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | | | - János Barna
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | - Kincső Bördén
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | | | - Mónika Lippai
- Department of Anatomy, Cell‐ and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Caroline Bacquet
- Institute of EnzymologyResearch Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Angela Pasparaki
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Tamás Arányi
- Institute of EnzymologyResearch Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
- BNMI (INSERM 1083/CNRS 6214)Université d'AngersAngersFrance
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Tibor Vellai
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
- MTA‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
11
|
Ardiel EL, Yu AJ, Giles AC, Rankin CH. Habituation as an adaptive shift in response strategy mediated by neuropeptides. NPJ SCIENCE OF LEARNING 2017; 2:9. [PMID: 30631455 PMCID: PMC6161508 DOI: 10.1038/s41539-017-0011-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 06/09/2023]
Abstract
Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.
Collapse
Affiliation(s)
- Evan L. Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Alex J. Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Andrew C. Giles
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC Canada V6T 1Z4
| |
Collapse
|
12
|
Ancell H, Pires-daSilva A. Sex-specific lifespan and its evolution in nematodes. Semin Cell Dev Biol 2017; 70:122-129. [PMID: 28554570 DOI: 10.1016/j.semcdb.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Differences between sexes of the same species in lifespan and aging rate are widespread. While the proximal and evolutionary causes of aging are well researched, the factors that contribute to sex differences in these traits have been less studied. The striking diversity of nematodes provides ample opportunity to study variation in sex-specific lifespan patterns associated with shifts in life history and mating strategy. Although the plasticity of these sex differences will make it challenging to generalize from invertebrate to vertebrate systems, studies in nematodes have enabled empirical evaluation of predictions regarding the evolution of lifespan. These studies have highlighted how natural and sexual selection can generate divergent patterns of lifespan if the sexes are subject to different rates or sources of mortality, or if trade-offs between complex traits and longevity are resolved differently in each sex. Here, we integrate evidence derived mainly from nematodes that addresses the molecular and evolutionary basis of sex-specific aging and lifespan. Ultimately, we hope to generate a clearer picture of current knowledge in this area, and also highlight the limitations of our understanding.
Collapse
Affiliation(s)
- Henry Ancell
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
13
|
Abstract
The FOXO family of transcription factors plays a conserved role in longevity and tissue homeostasis across species. In the mammalian nervous system, emerging evidence has implicated FOXOs in cognitive performance, stem cell maintenance, regeneration, and protection against stress. Much of what we know about neuronal functions of FOXO emerged from recent studies in C. elegans. Similar to mammalian FOXO, the worm FOXO ortholog, called DAF-16, regulates learning and memory, regeneration, and stress resistance in neurons. Here, we discuss the current state of our knowledge of FOXO’s functions in neurons in mammals and invertebrates, and highlight areas where our understanding is limited. Defining the function of FOXO factors in the healthy, aged, and diseased brain may have important implications for improving healthspan and treating neurodegenerative disease.
Collapse
Affiliation(s)
- Sun Y Kim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor. Immunobiology 2016; 222:684-692. [PMID: 28069295 DOI: 10.1016/j.imbio.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/24/2022]
Abstract
One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens.
Collapse
|
15
|
Sammut M, Cook SJ, Nguyen KCQ, Felton T, Hall DH, Emmons SW, Poole RJ, Barrios A. Glia-derived neurons are required for sex-specific learning in C. elegans. Nature 2015; 526:385-390. [PMID: 26469050 PMCID: PMC4650210 DOI: 10.1038/nature15700] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Sex differences in behaviour extend to cognitive-like processes such as learning, but the underlying dimorphisms in neural circuit development and organization that generate these behavioural differences are largely unknown. Here we define at the single-cell level-from development, through neural circuit connectivity, to function-the neural basis of a sex-specific learning in the nematode Caenorhabditis elegans. We show that sexual conditioning, a form of associative learning, requires a pair of male-specific interneurons whose progenitors are fully differentiated glia. These neurons are generated during sexual maturation and incorporated into pre-exisiting sex-shared circuits to couple chemotactic responses to reproductive priorities. Our findings reveal a general role for glia as neural progenitors across metazoan taxa and demonstrate that the addition of sex-specific neuron types to brain circuits during sexual maturation is an important mechanism for the generation of sexually dimorphic plasticity in learning.
Collapse
Affiliation(s)
- Michele Sammut
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ken C Q Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Terry Felton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Scott W Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT
| |
Collapse
|
16
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
17
|
The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One 2015; 10:e0125312. [PMID: 26020640 PMCID: PMC4447345 DOI: 10.1371/journal.pone.0125312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/16/2015] [Indexed: 01/12/2023] Open
Abstract
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan.
Collapse
|
18
|
McDiarmid TA, Ardiel EL, Rankin CH. The role of neuropeptides in learning and memory in Caenorhabditis elegans. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CMA, Vaccaro V, Vari S, Cognetti F, Ciuffreda L. PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol 2015; 5:24. [PMID: 25763354 PMCID: PMC4329810 DOI: 10.3389/fonc.2015.00024] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/22/2015] [Indexed: 12/16/2022] Open
Abstract
PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.
Collapse
Affiliation(s)
- Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Nicola Inzerilli
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Carmen M A Nuzzo
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
20
|
Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc Natl Acad Sci U S A 2015; 112:E277-86. [PMID: 25561524 DOI: 10.1073/pnas.1412192112] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging research has been very successful at identifying signaling pathways and evolutionarily conserved genes that extend lifespan with the assumption that an increase in lifespan will also increase healthspan. However, it is largely unknown whether we are extending the healthy time of life or simply prolonging a period of frailty with increased incidence of age-associated diseases. Here we use Caenorhabditis elegans, one of the premiere systems for lifespan studies, to determine whether lifespan and healthspan are intrinsically correlated. We conducted multiple cellular and organismal assays on wild type as well as four long-lived mutants (insulin/insulin-like growth factor-1, dietary restriction, protein translation, mitochondrial signaling) in a longitudinal manner to determine the health of the animals as they age. We find that some long-lived mutants performed better than wild type when measured chronologically (number of days). However, all long-lived mutants increased the proportion of time spent in a frail state. Together, these data suggest that lifespan can no longer be the sole parameter of interest and reveal the importance of evaluating multiple healthspan parameters for future studies on antiaging interventions.
Collapse
|
21
|
Liu J, Chin-Sang ID. C. elegans as a model to study PTEN's regulation and function. Methods 2014; 77-78:180-90. [PMID: 25514044 DOI: 10.1016/j.ymeth.2014.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN. Thus C. elegans provides a valuable model to study PTEN. This review assesses current and emerging methods to study DAF-18's regulators and functions in C. elegans. We propose genetic modify screens to identify genes that interact with daf-18/PTEN. These genes are potential targets for anticancer drug therapies. We also provide a review on the roles DAF-18/PTEN has during C. elegans development and how studying these physiological roles can provide mechanistic insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
22
|
Kitagishi Y, Nakanishi A, Minami A, Asai Y, Yasui M, Iwaizako A, Suzuki M, Ono Y, Ogura Y, Matsuda S. Certain Diet and Lifestyle May Contribute to Islet β-cells Protection in Type-2 Diabetes via the Modulation of Cellular PI3K/AKT Pathway. Open Biochem J 2014; 8:74-82. [PMID: 25400709 PMCID: PMC4231374 DOI: 10.2174/1874091x01408010074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022] Open
Abstract
PI3K/AKT pathway has been shown to play a pivotal role on islet β-cell protection, enhancing β-cell survival by stimulating cell proliferation and inhibiting cell apoptosis. Accordingly, this pathway appears to be crucial in type-2 diabetes. Understanding the regulations of this pathway may provide a better efficacy of new therapeutic approaches. In this review, we summarize advances on the involvement of the PI3K/AKT pathway in hypothetical intra-cellular signaling of islet β-cells. As recent findings may show the nutritional regulation of the survival pathway in the islet β-cells through activation of the PI3K/AKT pathway, we also review studies on the features of several diets, correlated lifestyle, and its signaling pathway involved in type-2 diabetes. The molecular mechanisms contributing to the disease are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies against a condition of the disease.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yurina Asai
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mai Yasui
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akiko Iwaizako
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuna Ono
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
23
|
Gkikas I, Petratou D, Tavernarakis N. Longevity pathways and memory aging. Front Genet 2014; 5:155. [PMID: 24926313 PMCID: PMC4044971 DOI: 10.3389/fgene.2014.00155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/10/2014] [Indexed: 12/28/2022] Open
Abstract
The aging process has been associated with numerous pathologies at the cellular, tissue, and organ level. Decline or loss of brain functions, including learning and memory, is one of the most devastating and feared aspects of aging. Learning and memory are fundamental processes by which animals adjust to environmental changes, evaluate various sensory signals based on context and experience, and make decisions to generate adaptive behaviors. Age-related memory impairment is an important phenotype of brain aging. Understanding the molecular mechanisms underlying age-related memory impairment is crucial for the development of therapeutic strategies that may eventually lead to the development of drugs to combat memory loss. Studies in invertebrate animal models have taught us much about the physiology of aging and its effects on learning and memory. In this review we survey recent progress relevant to conserved molecular pathways implicated in both aging and memory formation and consolidation.
Collapse
Affiliation(s)
- Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece ; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion Crete, Greece
| |
Collapse
|
24
|
Zwoinska MK, Kolm N, Maklakov AA. Sex differences in cognitive ageing: testing predictions derived from life-history theory in a dioecious nematode. Exp Gerontol 2013; 48:1469-72. [PMID: 24120565 DOI: 10.1016/j.exger.2013.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/05/2013] [Accepted: 09/30/2013] [Indexed: 11/16/2022]
Abstract
Life-history theory maintains that organisms allocate limited resources to different traits to maximize fitness. Learning ability and memory are costly and known to trade-off with longevity in invertebrates. However, since the relationship between longevity and fitness often differs between the sexes, it is likely that sexes will differentially resolve the trade-off between learning and longevity. We used an established associative learning paradigm in the dioecious nematode Caenorhabditis remanei, which is sexually dimorphic for lifespan, to study age-related learning ability in males and females. In particular, we tested the hypothesis that females (the shorter-lived sex) show higher learning ability than males early in life but senesce faster. Indeed, young females outperformed young males in learning a novel association between an odour (butanone) and food (bacteria). However, while learning ability and offspring production declined rapidly with age in females, males maintained high levels of these traits until mid-age. These results not only demonstrate sexual dimorphism in age-related learning ability but also suggest that it conforms to predictions derived from the life-history theory.
Collapse
Affiliation(s)
- Martyna K Zwoinska
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
25
|
Sakai N, Iwata R, Yokoi S, Butcher RA, Clardy J, Tomioka M, Iino Y. A sexually conditioned switch of chemosensory behavior in C. elegans. PLoS One 2013; 8:e68676. [PMID: 23861933 PMCID: PMC3701651 DOI: 10.1371/journal.pone.0068676] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, mating is essential for transmitting genetic information to the next generation and therefore animals have evolved mechanisms for optimizing the chance of successful mate location. In the soil nematode C. elegans, males approach hermaphrodites via the ascaroside pheromones, recognize hermaphrodites when their tails contact the hermaphrodites' body, and eventually mate with them. These processes are mediated by sensory signals specialized for sexual communication, but other mechanisms may also be used to optimize mate location. Here we describe associative learning whereby males use sodium chloride as a cue for hermaphrodite location. Both males and hermaphrodites normally avoid sodium chloride after associative conditioning with salt and starvation. However, we found that males become attracted to sodium chloride after conditioning with salt and starvation if hermaphrodites are present during conditioning. For this conditioning, which we call sexual conditioning, hermaphrodites are detected by males through pheromonal signaling and additional cue(s). Sex transformation experiments suggest that neuronal sex of males is essential for sexual conditioning. Altogether, these results suggest that C. elegans males integrate environmental, internal and social signals to determine the optimal strategy for mate location.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Iwata
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Saori Yokoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masahiro Tomioka
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Roles for PI3K/AKT/PTEN Pathway in Cell Signaling of Nonalcoholic Fatty Liver Disease. ISRN ENDOCRINOLOGY 2013; 2013:472432. [PMID: 23431468 PMCID: PMC3570922 DOI: 10.1155/2013/472432] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver pathologies and is associated with obesity and the metabolic syndrome, which represents a range of fatty liver diseases associated with an increased risk of type 2 diabetes. Molecular mechanisms underlying how to make transition from simple fatty liver to nonalcoholic steatohepatitis (NASH) are not well understood. However, accumulating evidence indicates that deregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in hepatocytes is a common molecular event associated with metabolic dysfunctions including obesity, metabolic syndrome, and the NAFLD. A tumor suppressor PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Molecular studies in the NAFLD support a key role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis, and fibrosis. We review recent studies on the features of the PTEN and the PI3K/AKT pathway and discuss the protein functions in the signaling pathways involved in the NAFLD. The molecular mechanisms contributing to the diseases are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies for a condition.
Collapse
|
27
|
Miersch C, Döring F. Sex differences in carbohydrate metabolism are linked to gene expression in Caenorhabditis elegans. PLoS One 2012; 7:e44748. [PMID: 22984551 PMCID: PMC3439400 DOI: 10.1371/journal.pone.0044748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/06/2012] [Indexed: 11/18/2022] Open
Abstract
The male and the hermaphrodite forms of the nematode Caenorhabditis elegans (C. elegans) differ markedly in anatomy, nervous system and behavior at adulthood. Using the male mutants fog-2, him-5, and him-8, we compared body proportions and composition, and aspects of carbohydrate metabolism and gene expression between the C. elegans sexes in three adult stages. In all experiments, both sexes were grown on the same plate and separated using flow cytometry. The fat to fat-free mass ratio and the body volume-adjusted fat mass is similar between the sexes, although the body size is more than 50% smaller in adult males than in age-matched hermaphrodites. The volume-adjusted total RNA content is approximately 2-fold lower in males. Biochemical and NMR-based analyses reveal higher trehalose levels and much lower glucose levels in males than in hermaphrodites. The resulting trehalose-to-glucose ratio is 5.4-fold higher in males. These sex differences are reflected in gene expression data because the genes encoding key enzymes of the glycolysis and trehalose synthesis pathways are more highly expressed in males than in hermaphrodites. Notably, expression of the phosphofructokinase gene (C50F4.2) is 29-fold higher in males. Comparative analysis of gene expression data identifies 285 male-specific and 160 hermaphrodite-specific genes. These include transcription factor and C-type lectin-encoding genes. More than 35% of all C-type lectin genes are more highly expressed in males. The expression of many C-type lectin genes differs by a factor of >100 between the sexes. In conclusion, we found sex differences in carbohydrate metabolism that are linked to gene expression and identified certain lectin genes that are differentially expressed by the C. elegans sexes.
Collapse
Affiliation(s)
- Claudia Miersch
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frank Döring
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
28
|
Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval. J Neurosci 2010; 30:8001-11. [PMID: 20534848 DOI: 10.1523/jneurosci.4636-09.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insulin signaling plays a prominent role in regulation of dauer formation and longevity in Caenorhabditis elegans. Here, we show that insulin signaling also is required in benzaldehyde-starvation associative plasticity, in which worms pre-exposed to the odor attractant benzaldehyde in the absence of food subsequently demonstrate a conditioned aversion response toward the odorant. Animals with mutations in insulin-related 1 (ins-1), abnormal dauer formation 2 (daf-2), and aging alteration 1 (age-1), which encode the homolog of human insulin, insulin/IGF-1 receptor, and PIP3 kinase, respectively, demonstrated significant deficits in benzaldehyde-starvation associative plasticity. Using a conditional allele, we show that the behavioral roles of DAF-2 signaling in associative plasticity can be dissociated, with DAF-2 signaling playing a more significant role in the memory retrieval than in memory acquisition. We propose DAF-2 signaling acts as a learning-specific starvation signal in the memory acquisition phase of benzaldehyde-starvation associative plasticity but functions to switch benzaldehyde-sensing amphid wing C neurons into an avoidance signaling mode during memory retrieval.
Collapse
|
29
|
Burger JMS, Buechel SD, Kawecki TJ. Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 2010; 9:327-35. [PMID: 20156204 DOI: 10.1111/j.1474-9726.2010.00560.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dietary restriction extends lifespan in a wide variety of animals, including Drosophila, but its relationship to functional and cognitive aging is unclear. Here, we study the effects of dietary yeast content on fly performance in an aversive learning task (association between odor and mechanical shock). Learning performance declined at old age, but 50-day-old dietary-restricted flies learned as poorly as equal-aged flies maintained on yeast-rich diet, even though the former lived on average 9 days (14%) longer. Furthermore, at the middle age of 21 days, flies on low-yeast diets showed poorer short-term (5 min) memory than flies on rich diet. In contrast, dietary restriction enhanced 60-min memory of young (5 days old) flies. Thus, while dietary restriction had complex effects on learning performance in young to middle-aged flies, it did not attenuate aging-related decline of aversive learning performance. These results are consistent with the hypothesis that, in Drosophila, dietary restriction reduces mortality and thus leads to lifespan extension, but does not affect the rate with which somatic damage relevant for cognitive performance accumulates with age.
Collapse
Affiliation(s)
- Joep M S Burger
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | | | | |
Collapse
|
30
|
Ardiel EL, Rankin CH. An elegant mind: Learning and memory in Caenorhabditis elegans. Learn Mem 2010; 17:191-201. [DOI: 10.1101/lm.960510] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Tazearslan Ç, Ayyadevara S, Bharill P, Shmookler Reis RJ. Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance. PLoS Genet 2009; 5:e1000452. [PMID: 19360094 PMCID: PMC2661368 DOI: 10.1371/journal.pgen.1000452] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP(2) to form PIP(3), a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust-implying that maternally contributed trace amounts of PI3K activity or of PIP(3) block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP(3)-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO-dependent and -independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode.
Collapse
Affiliation(s)
- Çagdaþ Tazearslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare Service, Little Rock, Arkansas, United States of America
| | - Puneet Bharill
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert J. Shmookler Reis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare Service, Little Rock, Arkansas, United States of America
| |
Collapse
|
32
|
Torayama I, Ishihara T, Katsura I. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci 2007; 27:741-50. [PMID: 17251413 PMCID: PMC6672901 DOI: 10.1523/jneurosci.4312-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/21/2022] Open
Abstract
Behavioral plasticity induced by the integration of two sensory signals, such as associative learning, is an important issue in neuroscience, but its evolutionary origin and diversity have not been explored sufficiently. We report here a new type of such behavioral plasticity, which we call butanone enhancement, in Caenorhabditis elegans adult hermaphrodites: C. elegans specifically enhances chemotaxis to butanone by preexposure to butanone and food. Mutant analysis revealed that this plasticity requires the AWC(ON) olfactory neuron, whose fate is known to be determined by the NSY-1/ASK1 MAPKKK (mitogen-activated protein kinase kinase kinase) cascade as well as the DAF-11 and ODR-1 guanylyl cyclases. These proteins also control many aspects of olfactory sensation/plasticity in AWC neurons and seem to provide appropriate cellular conditions for butanone enhancement in the AWC(ON) neuron. Butanone enhancement also required the functions of Bardet-Biedl syndrome genes in the AWC(ON) neuron but not other genes that control ciliary transport. Furthermore, preexposure to butanone and the odor of food was enough for the enhancement of butanone chemotaxis. These results suggest that the AWC(ON) olfactory neuron may conduct a behavioral plasticity resembling associative learning and that the functions of Bardet-Biedl syndrome genes in sensory cilia may play an important role in this plasticity.
Collapse
Affiliation(s)
- Ichiro Torayama
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | - Takeshi Ishihara
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | - Isao Katsura
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| |
Collapse
|
33
|
Portman DS. Genetic control of sex differences in C. elegans neurobiology and behavior. ADVANCES IN GENETICS 2007; 59:1-37. [PMID: 17888793 DOI: 10.1016/s0065-2660(07)59001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a well-characterized, genetically tractable animal, the nematode Caenorhabditis elegans is an ideal model to explore the connections between genes and the sexual regulation of the nervous system and behavior. The two sexes of C. elegans, males and hermaphrodites, have precisely defined differences in neuroanatomy: superimposed onto a "core" nervous system of exactly 294 neurons, hermaphrodites and males have 8 and 89 sex-specific neurons, respectively. These sex-specific neurons are essential for cognate sex-specific behaviors, including hermaphrodite egg-laying and male mating. In addition, regulated sex differences in the core nervous system itself may provide additional, though poorly understood, controls on behavior. These differences in the nervous system and behavior, like all known sex differences in the C. elegans soma, are controlled by the master regulator of C. elegans sex determination, tra-1. Downstream of tra-1 lie specific effectors of sex determination, including genes controlling sex-specific cell death and a family of regulators, the DM-domain genes, related to Drosophila doublesex and the vertebrate DMRT genes. There is no central (i.e., gonadal) regulator of sexual phenotype in the C. elegans nervous system; instead, tra-1 acts cell-autonomously in nearly all sexually dimorphic somatic cells. However, recent results suggest that the status of the gonad can be communicated to the nervous system to modulate sex-specific behaviors. Continuing research into the genetic control of neural sex differences in C. elegans is likely to yield insight into conserved mechanisms of cell-autonomous cross talk between cell fate patterning and sexual differentiation pathways.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics and Center for Aging and Developmental Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|