1
|
Thomas MS, Pillai GS, Butler MA, Fernandez J, LaRocque JR. The epistatic relationship of Drosophila melanogaster CtIP and Rif1 in homology-directed repair of DNA double-strand breaks. G3 (BETHESDA, MD.) 2024; 14:jkae210. [PMID: 39397376 PMCID: PMC11540315 DOI: 10.1093/g3journal/jkae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Double-strand breaks (DSBs) are genotoxic DNA lesions that pose significant threats to genomic stability, necessitating precise and efficient repair mechanisms to prevent cell death or mutations. DSBs are repaired through nonhomologous end-joining (NHEJ) or homology-directed repair (HDR), which includes homologous recombination (HR) and single-strand annealing (SSA). CtIP and Rif1 are conserved proteins implicated in DSB repair pathway choice, possibly through redundant roles in promoting DNA end-resection required for HDR. Although the roles of these proteins have been well-established in other organisms, the role of Rif1 and its potential redundancies with CtIP in Drosophila melanogaster remain elusive. To examine the roles of DmCtIP and DmRif1 in DSB repair, this study employed the direct repeat of white (DR-white) assay, tracking across indels by decomposition (TIDE) analysis, and P{wIw_2 kb 3'} assay to track repair outcomes in HR, NHEJ, and SSA, respectively. These experiments were performed in DmCtIPΔ/Δ single mutants, DmRif1Δ/Δ single mutants, and DmRif1Δ/Δ; DmCtIPΔ/Δ double mutants. This work demonstrates significant defects in both HR and SSA repair in DmCtIPΔ/Δ and DmRif1Δ/Δ single mutants. However, experiments in DmRif1Δ/Δ; DmCtIPΔ/Δ double mutants reveal that DmCtIP is epistatic to DmRif1 in promoting HDR. Overall, this study concludes that DmRif1 and DmCtIP do not perform their activities in a redundant pathway, but rather DmCtIP is the main driver in promoting HR and SSA, most likely through its role in end resection.
Collapse
Affiliation(s)
- Makenzie S Thomas
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Gautham S Pillai
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Margaret A Butler
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Joel Fernandez
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Jeannine R LaRocque
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, D.C. 20057, USA
| |
Collapse
|
2
|
Miller JM, Prange S, Ji H, Rau AR, Khodaverdian VY, Li X, Patel A, Butova N, Lutter A, Chung H, Merigliano C, Rawal CC, Hanscom T, McVey M, Chiolo I. Alternative end-joining results in smaller deletions in heterochromatin relative to euchromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531058. [PMID: 37645729 PMCID: PMC10461932 DOI: 10.1101/2023.03.03.531058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable 'safe' repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR- white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin.
Collapse
|
3
|
Dewey EB, Korda Holsclaw J, Saghaey K, Wittmer ME, Sekelsky J. The effect of repeat length on Marcal1-dependent single-strand annealing in Drosophila. Genetics 2023; 223:iyac164. [PMID: 36303322 PMCID: PMC9836020 DOI: 10.1093/genetics/iyac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 01/19/2023] Open
Abstract
Proper repair of DNA double-strand breaks is essential to the maintenance of genomic stability and avoidance of genetic disease. Organisms have many ways of repairing double-strand breaks, including the use of homologous sequences through homology-directed repair. While homology-directed repair is often error free, in single-strand annealing homologous repeats flanking a double-strand break are annealed to one another, leading to the deletion of one repeat and the intervening sequences. Studies in yeast have shown a relationship between the length of the repeat and single-strand annealing efficacy. We sought to determine the effects of homology length on single-strand annealing in Drosophila, as Drosophila uses a different annealing enzyme (Marcal1) than yeast. Using an in vivo single-strand annealing assay, we show that 50 base pairs are insufficient to promote single-strand annealing and that 500-2,000 base pairs are required for maximum efficiency. Loss of Marcal1 generally followed the same homology length trend as wild-type flies, with single-strand annealing frequencies reduced to about a third of wild-type frequencies regardless of homology length. Interestingly, we find a difference in single-strand annealing rates between 500-base pair homologies that align to the annealing target either nearer or further from the double-strand break, a phenomenon that may be explained by Marcal1 dynamics. This study gives insights into Marcal1 function and provides important information to guide the design of genome engineering strategies that use single-strand annealing to integrate linear DNA constructs into a chromosomal double-strand break.
Collapse
Affiliation(s)
- Evan B Dewey
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julie Korda Holsclaw
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kiyarash Saghaey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mackenzie E Wittmer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Chekunova AI, Sorokina SY, Sivoplyas EA, Bakhtoyarov GN, Proshakov PA, Fokin AV, Melnikov AI, Kulikov AM. Episodes of Rapid Recovery of the Functional Activity of the ras85D Gene in the Evolutionary History of Phylogenetically Distant Drosophila Species. Front Genet 2022; 12:807234. [PMID: 35096018 PMCID: PMC8790561 DOI: 10.3389/fgene.2021.807234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the ras85D gene in different lineages of the genus Drosophila, as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin. In the process, we substantiate hypotheses about the selection of promoter elements from a number of frequently repeated motifs with different degrees of degeneracy in the ancestral sequence, as well as about the restoration of the minimum required set of regulatory sequences using a conversion mechanism or similar.
Collapse
Affiliation(s)
- A I Chekunova
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S Yu Sorokina
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - E A Sivoplyas
- Department of Biochemistry, Molecular Biology and Genetics, Institute of Biology and Chemistry of Moscow Pedagogical State University (MPGU), Moscow, Russia
| | - G N Bakhtoyarov
- Laboratory of Genetics of DNA Containing Viruses, Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
| | - P A Proshakov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A V Fokin
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A I Melnikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kulikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Abstract
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. Nat Commun 2021; 12:7126. [PMID: 34880204 PMCID: PMC8654963 DOI: 10.1038/s41467-021-27408-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
DNA double-strand breaks are a major threat to cellular survival and genetic integrity. In addition to high fidelity repair, three intrinsically mutagenic DNA break repair routes have been described, i.e. single-strand annealing (SSA), polymerase theta-mediated end-joining (TMEJ) and residual ill-defined microhomology-mediated end-joining (MMEJ) activity. Here, we identify C. elegans Helicase Q (HELQ-1) as being essential for MMEJ as well as for SSA. We also find HELQ-1 to be crucial for the synthesis-dependent strand annealing (SDSA) mode of homologous recombination (HR). Loss of HELQ-1 leads to increased genome instability: patchwork insertions arise at deletion junctions due to abortive rounds of polymerase theta activity, and tandem duplications spontaneously accumulate in genomes of helq-1 mutant animals as a result of TMEJ of abrogated HR intermediates. Our work thus implicates HELQ activity for all DSB repair modes guided by complementary base pairs and provides mechanistic insight into mutational signatures common in HR-defective cancers.
Collapse
|
7
|
Yannuzzi I, Butler MA, Fernandez J, LaRocque JR. The Role of Drosophila CtIP in Homology-Directed Repair of DNA Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091430. [PMID: 34573412 PMCID: PMC8468788 DOI: 10.3390/genes12091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a particularly genotoxic type of DNA damage that can result in chromosomal aberrations. Thus, proper repair of DSBs is essential to maintaining genome integrity. DSBs can be repaired by non-homologous end joining (NHEJ), where ends are processed before joining through ligation. Alternatively, DSBs can be repaired through homology-directed repair, either by homologous recombination (HR) or single-strand annealing (SSA). Both types of homology-directed repair are initiated by DNA end resection. In cultured human cells, the protein CtIP has been shown to play a role in DNA end resection through its interactions with CDK, BRCA1, DNA2, and the MRN complex. To elucidate the role of CtIP in a multicellular context, CRISPR/Cas9 genome editing was used to create a DmCtIPΔ allele in Drosophila melanogaster. Using the DSB repair reporter assay direct repeat of white (DR-white), a two-fold decrease in HR in DmCtIPΔ/Δ mutants was observed when compared to heterozygous controls. However, analysis of HR gene conversion tracts (GCTs) suggests DmCtIP plays a minimal role in determining GCT length. To assess the function of DmCtIP on both short (~550 bp) and long (~3.6 kb) end resection, modified homology-directed SSA repair assays were implemented, resulting in a two-fold decrease in SSA repair in both short and extensive end resection requirements in the DmCtIPΔ/Δ mutants compared to heterozygote controls. Through these analyses, we affirmed the importance of end resection on DSB repair pathway choice in multicellular systems, described the function of DmCtIP in short and extensive DNA end resection, and determined the impact of end resection on GCT length during HR.
Collapse
Affiliation(s)
- Ian Yannuzzi
- Biology Department, Georgetown College, Georgetown University, Washington, DC 20057, USA;
| | - Margaret A. Butler
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
| | - Joel Fernandez
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
| | - Jeannine R. LaRocque
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
- Correspondence:
| |
Collapse
|
8
|
Modeling Notch-Induced Tumor Cell Survival in the Drosophila Ovary Identifies Cellular and Transcriptional Response to Nuclear NICD Accumulation. Cells 2021; 10:cells10092222. [PMID: 34571871 PMCID: PMC8465586 DOI: 10.3390/cells10092222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Notch is a conserved developmental signaling pathway that is dysregulated in many cancer types, most often through constitutive activation. Tumor cells with nuclear accumulation of the active Notch receptor, NICD, generally exhibit enhanced survival while patients experience poorer outcomes. To understand the impact of NICD accumulation during tumorigenesis, we developed a tumor model using the Drosophila ovarian follicular epithelium. Using this system we demonstrated that NICD accumulation contributed to larger tumor growth, reduced apoptosis, increased nuclear size, and fewer incidents of DNA damage without altering ploidy. Using bulk RNA sequencing we identified key genes involved in both a pre- and post- tumor response to NICD accumulation. Among these are genes involved in regulating double-strand break repair, chromosome organization, metabolism, like raptor, which we experimentally validated contributes to early Notch-induced tumor growth. Finally, using single-cell RNA sequencing we identified follicle cell-specific targets in NICD-overexpressing cells which contribute to DNA repair and negative regulation of apoptosis. This valuable tumor model for nuclear NICD accumulation in adult Drosophila follicle cells has allowed us to better understand the specific contribution of nuclear NICD accumulation to cell survival in tumorigenesis and tumor progression.
Collapse
|
9
|
Alexandrov ID, Alexandrova MV. The dose-, LET-, and gene-dependent patterns of DNA changes underlying the point mutations in spermatozoa of Drosophila melanogaster. I. Autosomal gene black. Mutat Res 2021; 823:111755. [PMID: 34217017 DOI: 10.1016/j.mrfmmm.2021.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Sequence analysis of 7 spontaneous, 27 γ-ray- and 20 neutron/neutron+γ-ray-induced black (b) point mutants was carried out. All these mutants were isolated as non-mosaic transmissible recessive visibles in the progeny of irradiated males from the wild-type high-inbred laboratory D32 strain of Drosophila melanogaster. Among spontaneous mutants, there were two (28.5 %) mutants with copia insertion in intron 1 and exon 2, three (42.8 %) with replacement of b+D32 paternal sequence with maternal b1 sequence (gene conversion), one (14.3 %) with 142-bp-long insertion in exon 2, and one (14.3 %) with a short deletion and two single-base substitutions in exon 3. Among γ-ray-induced mutants, there were 1 (3.7 %) with copia insertion in intron 2, 6 (22.2 %) with gene conversion, and the remaining 20 (74.1 %) mutants had 37 different small-scale DNA changes. There were 20 (54.1 %) single- or double-base substitutions, 7 (18.9 %) frameshifts (indels), 9 (24.3 %) extended deletions or insertions, and 1(2.7 %) mutant with a short insertion instead of a short deletion. Remarkably, clusters of independent small-scale changes inside the gene or within one DNA helical turn were recovered. The spectrum of DNA changes in 20 neutron/ neutron+γ-ray-induced mutants was drastically different from that induced by γ-rays in that 18 (90.0 %) mutants had the b1sequence. In addition, 2 (10.0 %) with gene conversion had 600- or 19-bp-long deletion in exon 3 and 1 (5.0 %) mutant with a short insertion instead of a short deletion. Analysis of all 27 mutants with gene conversion events shows that 20 (74.1 %) had full b1 sequence whereas 7 others (25.9 %) contained a partial b1 sequence. These data are the first experimental evidence for gene conversion in the early stages of animal embryogenesis in the first diploid cleavage nucleus after male and female pronuclei have united. The gene conversion, frameshifts (indels), and deletions between short repeats were considered as products of a relevant DNA repair pathways described in the literature. As the first step, the gametic doubling doses for phenotypic black point mutations and for intragenic base substitution mutations in mature sperm cells irradiated by 40 Gy of γ-rays were estimated as 5.8 and 1.2 Gy, respectively, showing that doubling dose for mutations at the molecular level is about 5 times lower than that at the phenotypic level.
Collapse
Affiliation(s)
- I D Alexandrov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia.
| | - M V Alexandrova
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia
| |
Collapse
|
10
|
Li Z, Marcel N, Devkota S, Auradkar A, Hedrick SM, Gantz VM, Bier E. CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nat Commun 2021; 12:2625. [PMID: 33976171 PMCID: PMC8113449 DOI: 10.1038/s41467-021-22927-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
CRISPR-based active genetic elements, or gene-drives, copied via homology-directed repair (HDR) in the germline, are transmitted to progeny at super-Mendelian frequencies. Active genetic elements also can generate widespread somatic mutations, but the genetic basis for such phenotypes remains uncertain. It is generally assumed that such somatic mutations are generated by non-homologous end-joining (NHEJ), the predominant double stranded break repair pathway active in somatic cells. Here, we develop CopyCatcher systems in Drosophila to detect and quantify somatic gene conversion (SGC) events. CopyCatchers inserted into two independent genetic loci reveal unexpectedly high rates of SGC in the Drosophila eye and thoracic epidermis. Focused RNAi-based genetic screens identify several unanticipated loci altering SGC efficiency, one of which (c-MYC), when downregulated, promotes SGC mediated by both plasmid and homologous chromosome-templates in human HEK293T cells. Collectively, these studies suggest that CopyCatchers can serve as effective discovery platforms to inform potential gene therapy strategies.
Collapse
Affiliation(s)
- Zhiqian Li
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Stephen M Hedrick
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, USA.
| |
Collapse
|
11
|
Carvajal-Garcia J, Crown KN, Ramsden DA, Sekelsky J. DNA polymerase theta suppresses mitotic crossing over. PLoS Genet 2021; 17:e1009267. [PMID: 33750946 PMCID: PMC8016270 DOI: 10.1371/journal.pgen.1009267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerase theta-mediated end joining (TMEJ) is a chromosome break repair pathway that is able to rescue the lethality associated with the loss of proteins involved in early steps in homologous recombination (e.g., BRCA1/2). This is due to the ability of polymerase theta (Pol θ) to use resected, 3' single stranded DNA tails to repair chromosome breaks. These resected DNA tails are also the starting substrate for homologous recombination. However, it remains unknown if TMEJ can compensate for the loss of proteins involved in more downstream steps during homologous recombination. Here we show that the Holliday junction resolvases SLX4 and GEN1 are required for viability in the absence of Pol θ in Drosophila melanogaster, and lack of all three proteins results in high levels of apoptosis. Flies deficient in Pol θ and SLX4 are extremely sensitive to DNA damaging agents, and mammalian cells require either Pol θ or SLX4 to survive. Our results suggest that TMEJ and Holliday junction formation/resolution share a common DNA substrate, likely a homologous recombination intermediate, that when left unrepaired leads to cell death. One major consequence of Holliday junction resolution by SLX4 and GEN1 is cancer-causing loss of heterozygosity due to mitotic crossing over. We measured mitotic crossovers in flies after a Cas9-induced chromosome break, and observed that this mutagenic form of repair is increased in the absence of Pol θ. This demonstrates that TMEJ can function upstream of the Holiday junction resolvases to protect cells from loss of heterozygosity. Our work argues that Pol θ can thus compensate for the loss of the Holliday junction resolvases by using homologous recombination intermediates, suppressing mitotic crossing over and preserving the genomic stability of cells.
Collapse
Affiliation(s)
- Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - K. Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dale A. Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Khan C, Muliyil S, Ayyub C, Rao BJ. spn-A/rad51 mutant exhibits enhanced genomic damage, cell death and low temperature sensitivity in somatic tissues. Chromosoma 2020; 130:3-14. [PMID: 33222024 DOI: 10.1007/s00412-020-00746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
Homologous recombination (HR) is one of the key pathways to repair double-strand breaks (DSBs). Rad51 serves an important function of catalysing strand exchange between two homologous sequences in the HR pathway. In higher organisms, rad51 function is indispensable with its absence leading to early embryonic lethality, thus precluding any mechanistic probing of the system. In contrast, the absence of Drosophila rad51 (spn-A/rad51) has been associated with defects in the germline, without any reported detrimental consequences to Drosophila somatic tissues. In this study, we have performed a systematic analysis of developmental defects in somatic tissues of spn-A mutant flies by using genetic complementation between multiple spn-A alleles. Our current study, for the first time, uncovers a requirement for spn-A in somatic tissue maintenance during both larval and pupal stages. Also, we show that spn-A mutant exhibits patterning defects in abdominal cuticle in the stripes and bristles, while there appear to be only subtle defects in the adult wing and eye. Interestingly, spn-A mutant shows a discernible phenotype of low temperature sensitivity, suggesting a role of spn-A in temperature sensitive cellular processes. In summary, our study describes the important role played by spn-A/rad51 in Drosophila somatic tissues.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India. .,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India. .,Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus, Sree Rama Engineering College, Tirupati, India.
| |
Collapse
|
13
|
Xu XRS, Bulger EA, Gantz VM, Klanseck C, Heimler SR, Auradkar A, Bennett JB, Miller LA, Leahy S, Juste SS, Buchman A, Akbari OS, Marshall JM, Bier E. Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives. Mol Cell 2020; 80:246-262.e4. [PMID: 32949493 PMCID: PMC10962758 DOI: 10.1016/j.molcel.2020.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/03/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.
Collapse
Affiliation(s)
- Xiang-Ru Shannon Xu
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Emily A Bulger
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, and Gladstone Institutes, San Francisco, CA, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Carissa Klanseck
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie R Heimler
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lauren Ashley Miller
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Leahy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sara Sanz Juste
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, Berkeley, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Ji J, Tang X, Hu W, Maggert KA, Rong YS. The processivity factor Pol32 mediates nuclear localization of DNA polymerase delta and prevents chromosomal fragile site formation in Drosophila development. PLoS Genet 2019; 15:e1008169. [PMID: 31100062 PMCID: PMC6542543 DOI: 10.1371/journal.pgen.1008169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/30/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
The Pol32 protein is one of the universal subunits of DNA polymerase δ (Pol δ), which is responsible for genome replication in eukaryotic cells. Although the role of Pol32 in DNA repair has been well-characterized, its exact function in genome replication remains obscure as studies in single cell systems have not established an essential role for Pol32 in the process. Here we characterize Pol32 in the context of Drosophila melanogaster development. In the rapidly dividing embryonic cells, loss of Pol32 halts genome replication as it specifically disrupts Pol δ localization to the nucleus. This function of Pol32 in facilitating the nuclear import of Pol δ would be similar to that of accessory subunits of DNA polymerases from mammalian Herpes viruses. In post-embryonic cells, loss of Pol32 reveals mitotic fragile sites in the Drosophila genome, a defect more consistent with Pol32’s role as a polymerase processivity factor. Interestingly, these fragile sites do not favor repetitive sequences in heterochromatin, with the rDNA locus being a striking exception. Our study uncovers a possibly universal function for DNA polymerase ancillary factors and establishes a powerful system for the study of chromosomal fragile sites in a non-mammalian organism. Cancer etiological studies suggest that the majority of pathological mutations occurred under near normal DNA replication conditions, emphasizing the importance of understanding replication regulation under non-lethal conditions. To gain such a better understanding, we investigated the function of Pol32, a conserved ancillary subunit of the essential DNA polymerase Delta complex, through the development of the fruit fly Drosophila. We uncovered a previously unappreciated function of Pol32 in regulating the nuclear import of the polymerase complex, and this function is developmentally regulated. By utilizing mutations in pol32 and other replication factors, we have started to define basic features of Chromosome Fragile Sites (CFS) in Drosophila somatic cells. CFS is a major source of genome instability associated with replication stresses, and has been an important topic of cancer biology. We discovered that CFS formation does not favor genomic regions with repetitive sequences except the highly transcribed locus encoding ribosomal RNA. Our work lays the groundwork for future studies using Drosophila as an alternative system to uncover the most fundamental features of CFS.
Collapse
Affiliation(s)
- Jingyun Ji
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaona Tang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wen Hu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keith A. Maggert
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Yikang S. Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
15
|
Guichard A, Haque T, Bobik M, Xu XRS, Klanseck C, Kushwah RBS, Berni M, Kaduskar B, Gantz VM, Bier E. Efficient allelic-drive in Drosophila. Nat Commun 2019; 10:1640. [PMID: 30967548 PMCID: PMC6456580 DOI: 10.1038/s41467-019-09694-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Tisha Haque
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Marketta Bobik
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Xiang-Ru S Xu
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Carissa Klanseck
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Raja Babu Singh Kushwah
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society-India (TIGS), TIGS Center at inStem, Bangalore, 560065, India
| | - Mateus Berni
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-902, RJ, Brazil
- Post-graduate Program in Morphological Sciences, Federal University of Rio de Janeiro (PCM/UFRJ), Rio de Janeiro, 21941-902, RJ, Brazil
| | - Bhagyashree Kaduskar
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society-India (TIGS), TIGS Center at inStem, Bangalore, 560065, India
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, 92093-0335, USA.
| |
Collapse
|
16
|
A new role for Drosophila Aurora-A in maintaining chromosome integrity. Chromosoma 2019; 128:41-52. [PMID: 30612150 DOI: 10.1007/s00412-018-00687-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Aurora-A is a conserved mitotic kinase overexpressed in many types of cancer. Growing evidence shows that Aurora-A plays a crucial role in DNA damage response (DDR) although this aspect has been less characterized. We isolated a new aur-A mutation, named aur-A949, in Drosophila, and we showed that it causes chromosome aberrations (CABs). In addition, aur-A949 mutants were sensitive to X-ray treatment and showed impaired γ-H2Av foci dissolution kinetics. To identify the pathway in which Aur-A works, we conducted an epistasis analysis by evaluating CAB frequencies in double mutants carrying aur-A949 mutation combined to mutations in genes related to DNA damage response (DDR). We found that mutations in tefu (ATM) and in the histone variant H2Av were epistatic over aur-A949 indicating that Aur-A works in DDR and that it is required for γ-H2Av foci dissolution. More interestingly, we found that a mutation in lig4, a gene belonging to the non-homologous end joining (NHEJ) repair pathway, was epistatic over aur-A949. Based on studies in other systems, which show that phosphorylation is important to target Lig4 for degradation, we hypothesized that in aur-A949 mutant cells, there is a persistence of Lig4 that could be, in the end, responsible for CABs. Finally, we observed a synergistic interaction between Aur-A and the homologous recombination (HR) repair system component Rad 51 in the process that converts chromatid deletions into isochromatid deletions. Altogether, these data indicate that Aur-A depletion can elicit chromosome damage. This conclusion should be taken into consideration, since some anticancer therapies are aimed at reducing Aurora-A expression.
Collapse
|
17
|
Khodaverdian VY, Hanscom T, Yu AM, Yu TL, Mak V, Brown AJ, Roberts SA, McVey M. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. Nucleic Acids Res 2018; 45:12848-12861. [PMID: 29121353 PMCID: PMC5728401 DOI: 10.1093/nar/gkx1056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Alternative end-joining (alt-EJ) repair of DNA double-strand breaks is associated with deletions, chromosome translocations, and genome instability. Alt-EJ frequently uses annealing of microhomologous sequences to tether broken ends. When accessible pre-existing microhomologies do not exist, we have postulated that new microhomologies can be created via limited DNA synthesis at secondary-structure forming sequences. This model, called synthesis-dependent microhomology-mediated end joining (SD-MMEJ), predicts that differences between DNA sequences near double-strand breaks should alter repair outcomes in predictable ways. To test this hypothesis, we injected plasmids with sequence variations flanking an I-SceI endonuclease recognition site into I-SceI expressing Drosophila embryos and used Illumina amplicon sequencing to compare repair junctions. As predicted by the model, we found that small changes in sequences near the I-SceI site had major impacts on the spectrum of repair junctions. Bioinformatic analyses suggest that these repair differences arise from transiently forming loops and hairpins within 30 nucleotides of the break. We also obtained evidence for ‘trans SD-MMEJ,’ involving at least two consecutive rounds of microhomology annealing and synthesis across the break site. These results highlight the importance of sequence context for alt-EJ repair and have important implications for genome editing and genome evolution.
Collapse
Affiliation(s)
- Varandt Y Khodaverdian
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Terrence Hanscom
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Amy Marie Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Taylor L Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Victoria Mak
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| |
Collapse
|
18
|
The Role of Blm Helicase in Homologous Recombination, Gene Conversion Tract Length, and Recombination Between Diverged Sequences in Drosophilamelanogaster. Genetics 2017; 207:923-933. [PMID: 28912341 DOI: 10.1534/genetics.117.300285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/10/2017] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a particularly deleterious class of DNA damage that threatens genome integrity. DSBs are repaired by three pathways: nonhomologous-end joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). Drosophila melanogaster Blm (DmBlm) is the ortholog of Saccharomyces cerevisiae SGS1 and human BLM, and has been shown to suppress crossovers in mitotic cells and repair mitotic DNA gaps via HR. To further elucidate the role of DmBlm in repair of a simple DSB, and in particular recombination mechanisms, we utilized the Direct Repeat of white (DR-white) and Direct Repeat of whitewith mutations (DR-white.mu) repair assays in multiple mutant allele backgrounds. DmBlm null and helicase-dead mutants both demonstrated a decrease in repair by noncrossover HR, and a concurrent increase in non-HR events, possibly including SSA, crossovers, deletions, and NHEJ, although detectable processing of the ends was not significantly impacted. Interestingly, gene conversion tract lengths of HR repair events were substantially shorter in DmBlm null but not helicase-dead mutants, compared to heterozygote controls. Using DR-white.mu, we found that, in contrast to Sgs1, DmBlm is not required for suppression of recombination between diverged sequences. Taken together, our data suggest that DmBlm helicase function plays a role in HR, and the steps that contribute to determining gene conversion tract length are helicase-independent.
Collapse
|
19
|
Delabaere L, Ertl HA, Massey DJ, Hofley CM, Sohail F, Bienenstock EJ, Sebastian H, Chiolo I, LaRocque JR. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells. Aging Cell 2017; 16:320-328. [PMID: 28000382 PMCID: PMC5334535 DOI: 10.1111/acel.12556] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/23/2022] Open
Abstract
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.
Collapse
Affiliation(s)
- Laetitia Delabaere
- Molecular and Computational Biology Department; University of Southern California; Los Angeles CA 90089 USA
| | - Henry A. Ertl
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Dashiell J. Massey
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Carolyn M. Hofley
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Faraz Sohail
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Elisa J. Bienenstock
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
- College of Public Service & Community Solutions; Arizona State University; Phoenix AZ 85004 USA
| | - Hans Sebastian
- Molecular and Computational Biology Department; University of Southern California; Los Angeles CA 90089 USA
| | - Irene Chiolo
- Molecular and Computational Biology Department; University of Southern California; Los Angeles CA 90089 USA
| | - Jeannine R. LaRocque
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| |
Collapse
|
20
|
Merigliano C, Marzio A, Renda F, Somma MP, Gatti M, Vernì F. A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of Drosophila Genome Integrity. Genetics 2017; 205:1151-1167. [PMID: 28040742 PMCID: PMC5340330 DOI: 10.1534/genetics.116.192781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
The protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs). However, the mechanisms through which PP2A prevents DNA damage are still unclear. Here, we focus on the role of the Drosophila twins (tws) gene in the maintenance of chromosome integrity; tws encodes the B regulatory subunit (B/B55) of PP2A. Mutations in tws cause high frequencies of CABs (0.5 CABs/cell) in Drosophila larval brain cells and lead to an abnormal persistence of γ-H2Av repair foci. However, mutations that disrupt the PP4 phosphatase activity impair foci dissolution but do not cause CABs, suggesting that a delayed foci regression is not clastogenic. We also show that Tws is required for activation of the G2/M DNA damage checkpoint while PP4 is required for checkpoint recovery, a result that points to a conserved function of these phosphatases from flies to humans. Mutations in the ATM-coding gene tefu are strictly epistatic to tws mutations for the CAB phenotype, suggesting that failure to dephosphorylate an ATM substrate(s) impairs DNA DSBs repair. In addition, mutations in the Ku70 gene, which do not cause CABs, completely suppress CAB formation in tws Ku70 double mutants. These results suggest the hypothesis that an improperly phosphorylated Ku70 protein can lead to DNA damage and CABs.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Antonio Marzio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
21
|
Sekelsky J. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes. Genetics 2017; 205:471-490. [PMID: 28154196 PMCID: PMC5289830 DOI: 10.1534/genetics.116.186759] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations.
Collapse
Affiliation(s)
- Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
22
|
Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. mBio 2016; 7:mBio.01109-16. [PMID: 27729506 PMCID: PMC5061868 DOI: 10.1128/mbio.01109-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species. IMPORTANCE Recessive lethal alleles impose significant constraints on the biology of diploid organisms. Using a combination of an I-SceI meganuclease-mediated DNA DSB, a fluorescence-activated cell sorter (FACS)-optimized reporter of LOH, and a compendium of 155 genome sequences, we were able to unmask and identify recessive lethal and deleterious alleles in isolates of Candida albicans, a diploid yeast and the major fungal pathogen of humans. Accumulation of recessive deleterious mutations upon clonal reproduction of C. albicans could contribute to the maintenance of heterozygosity despite the high frequency of LOH events in this species.
Collapse
|
23
|
Overcash JM, Aryan A, Myles KM, Adelman ZN. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 2015; 23:31-42. [PMID: 25596822 DOI: 10.1007/s10577-014-9450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.
Collapse
Affiliation(s)
- Justin M Overcash
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, 305 Fralin Life Science Institute, 360 West Campus Dr., Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
24
|
The role of Drosophila mismatch repair in suppressing recombination between diverged sequences. Sci Rep 2015; 5:17601. [PMID: 26616528 PMCID: PMC4663472 DOI: 10.1038/srep17601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) must be accurately repaired to maintain genomic integrity. DSBs can be repaired by homologous recombination (HR), which uses an identical sequence as a template to restore the genetic information lost at the break. Suppression of recombination between diverged sequences is essential to the repair of DSBs without aberrant and potentially mutagenic recombination between non-identical sequences, such as Alu repeats in the human genome. The mismatch repair (MMR) machinery has been found to suppress recombination between diverged sequences in murine cells. To test if this phenomenon is conserved in whole organisms, two DSB repair systems were utilized in Drosophila melanogaster. The DR-white and DR-white.mu assays provide a method of measuring DSB repair outcomes between identical and diverged sequences respectively. msh6–/– flies, deficient in MMR, were not capable of suppressing recombination between sequences with 1.4% divergence, and the average gene conversion tract length did not differ between msh6–/+ and msh6–/–flies. These findings suggest that MMR has an early role in suppressing recombination between diverged sequences that is conserved in Drosophila.
Collapse
|
25
|
Lee HB, Sebo ZL, Peng Y, Guo Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. CELLULAR LOGISTICS 2015. [PMID: 26196022 PMCID: PMC4501208 DOI: 10.1080/21592799.2015.1023423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly.
Collapse
Key Words
- TALEN
- TALENs, Transcription activator-like effector nucleases; TALEs, TAL effectors; ZFNs, Zinc Finger Nucleases; CRISPR, Clustered Regularly Interspersed Short Palindromic Repeats; Cas9, CRISPR-associated; RVDs, repeat-variable diresidues; DSBs, double-stranded breaks; NHEJ, non-homologous end joining; HR, homologous recombination; RFLP, restriction fragment length polymorphism; HRMA, high resolution melt analysis.
- engineered endonuclease
- genome engineering
- mutagenesis
- screening
Collapse
Affiliation(s)
- Han B Lee
- Graduate Program in Neurobiology of Disease; Mayo Graduate School; Mayo Clinic ; Rochester, MN, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA ; Division of Gastroenterology and Hepatology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|
26
|
Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:425-32. [PMID: 24368780 PMCID: PMC3962482 DOI: 10.1534/g3.113.010074] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to determine the contributions of these repair pathways and to finely resolve repair event structures in Drosophila melanogaster. Rad51-dependent homologous recombination is the preferred DSB repair pathway in mitotically dividing cells, and the pathway choice between HR and SSA occurs after end resection and before Rad51-dependent strand invasion. HR events are associated with long gene conversion tracts and are both bidirectional and unidirectional, consistent with repair via the synthesis-dependent strand annealing pathway. Additionally, HR between diverged sequences is suppressed in Drosophila, similar to levels reported in human cells. Junction analyses of rare NHEJ events reveal that canonical NHEJ is utilized in this system.
Collapse
|
27
|
Mishra M, Sharma A, Shukla AK, Kumar R, Dwivedi UN, Kar Chowdhuri D. Genotoxicity of dichlorvos in strains of Drosophila melanogaster defective in DNA repair. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 766:35-41. [PMID: 24614193 DOI: 10.1016/j.mrgentox.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 01/30/2023]
Abstract
Dichlorvos (DDVP), an organophosphate pesticide, is reported to be genotoxic at high concentrations. However, the roles of DNA damage repair pathways in DDVP genotoxicity are not well characterized. To test whether pre- and post-replication pathways are involved, we measured changes in DNA migration (Comet assay) in the midgut cells of Drosophila melanogaster Oregon R+ larvae and in some mutants of pre- (mei-9, mus201, and mus207) and post- (mei-41 and mus209)replication DNA repair pathways. Insects were exposed to environmentally relevant concentrations of DDVP (up to 15ng/ml) for 48h. After insect exposure to 0.15ng/ml DDVP, we observed greater DNA damage in pre-replication repair mutants; effects on Oregon R+ and post-replication repair mutants were insignificant. In contrast, significant DNA damage was observed in the post-replication repair mutants after their exposure to 1.5 and 15ng/ml DDVP. The pre-replication repair mutant mus207 showed maximum sensitivity to DDVP, suggestive of alkylation damage to DNA. We also examined mutants (SOD- and urate-null) that are sensitive to oxidative stress and the results indicate that significant oxidative DNA damage occurs in DDVP-exposed mutants. This study suggests involvement of both pre- and post-replication repair pathways against DDVP-induced DNA damage in Drosophila, with oxidative DNA damage leading to genotoxicity.
Collapse
Affiliation(s)
- Manish Mishra
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - A Sharma
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - A K Shukla
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - R Kumar
- Analytical Section and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - D Kar Chowdhuri
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
28
|
Gaivão I, Rodríguez R, Sierra LM. Use of the Comet Assay to Study DNA Repair in Drosophila melanogaster. GENOTOXICITY AND DNA REPAIR 2014. [DOI: 10.1007/978-1-4939-1068-7_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Cottarel J, Frit P, Bombarde O, Salles B, Négrel A, Bernard S, Jeggo PA, Lieber MR, Modesti M, Calsou P. A noncatalytic function of the ligation complex during nonhomologous end joining. ACTA ACUST UNITED AC 2013; 200:173-86. [PMID: 23337116 PMCID: PMC3549972 DOI: 10.1083/jcb.201203128] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ligase IV, but not its catalytic function, is required for DNA-PK–dependent end synapsis during nonhomologous end joining. Nonhomologous end joining is the primary deoxyribonucleic acid (DNA) double-strand break repair pathway in multicellular eukaryotes. To initiate repair, Ku binds DNA ends and recruits the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) forming the holoenzyme. Early end synapsis is associated with kinase autophosphorylation. The XRCC4 (X4)–DNA Ligase IV (LIG4) complex (X4LIG4) executes the final ligation promoted by Cernunnos (Cer)–X4-like factor (XLF). In this paper, using a cell-free system that recapitulates end synapsis and DNA-PKcs autophosphorylation, we found a defect in both activities in human cell extracts lacking LIG4. LIG4 also stimulated the DNA-PKcs autophosphorylation in a reconstitution assay with purified components. We additionally uncovered a kinase autophosphorylation defect in LIG4-defective cells that was corrected by ectopic expression of catalytically dead LIG4. Finally, our data support a contribution of Cer-XLF to this unexpected early role of the ligation complex in end joining. We propose that productive end joining occurs by early formation of a supramolecular entity containing both DNA-PK and X4LIG4–Cer-XLF complexes on DNA ends.
Collapse
Affiliation(s)
- Jessica Cottarel
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, Cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Long-range targeted manipulation of the Drosophila genome by site-specific integration and recombinational resolution. Genetics 2012; 193:411-9. [PMID: 23150601 DOI: 10.1534/genetics.112.145631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significant advances in genomics underscore the importance of targeted mutagenesis for gene function analysis. Here we have developed a scheme for long-range targeted manipulation of genes in the Drosophila genome. Utilizing an attP attachment site for the phiC31 integrase previously targeted to the nbs gene, we integrated an 80-kb genomic fragment at its endogenous locus to generate a tandem duplication of the region. We achieved reduction to a single copy by inducing recombination via a site-specific DNA break. We report that, despite the large size of the DNA fragment, both plasmid integration and duplication reduction can be accomplished efficiently. Importantly, the integrating genomic fragment can serve as a venue for introducing targeted modifications to the entire region. We successfully introduced a new attachment site 70 kb from the existing attP using this two-step scheme, making a new region susceptible to targeted mutagenesis. By experimenting with different placements of the future DNA break site in the integrating vector, we established a vector configuration that facilitates the recovery of desired modifications. We also show that reduction events can occur efficiently through unequal meiotic crossing over between the large duplications. Based on our results, we suggest that a collection of 1200 lines with attachment sites inserted every 140 kb throughout the genome would render all Drosophila genes amenable to targeted mutagenesis. Excitingly, all of the components involved are likely functional in other eukaryotes, making our scheme for long-range targeted manipulation readily applicable to other systems.
Collapse
|
31
|
Abstract
Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways that suppress telomere addition at DSBs, paving the way for future mechanistic studies.
Collapse
|
32
|
Loss of the bloom syndrome helicase increases DNA ligase 4-independent genome rearrangements and tumorigenesis in aging Drosophila. Genome Biol 2011; 12:R121. [PMID: 22183041 PMCID: PMC3334616 DOI: 10.1186/gb-2011-12-12-r121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/25/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
Background The BLM DNA helicase plays a vital role in maintaining genome stability. Mutations in BLM cause Bloom syndrome, a rare disorder associated with cancer predisposition and premature aging. Humans and mice with blm mutations have increased frequencies of spontaneous mutagenesis, but the molecular basis of this increase is not well understood. In addition, the effect of aging on spontaneous mutagenesis in blm mutants has not been characterized. To address this, we used a lacZ reporter system in wild-type and several mutant strains of Drosophila melanogaster to analyze mechanisms of mutagenesis throughout their lifespan. Results Our data show that Drosophila lacking BLM have an elevated frequency of spontaneous genome rearrangements that increases with age. Although in normal flies most genome rearrangements occur through DNA ligase 4-dependent classical end joining, most rearrangements that accumulate during aging in blm mutants do not require DNA ligase 4, suggesting the influence of an alternative end-joining mechanism. Adult blm mutants also display reduced lifespan and ligase 4-independent enhanced tumorigenesis in mitotically active tissues. Conclusions These results suggest that Drosophila BLM suppresses error-prone alternative end-joining repair of DNA double-strand breaks that can result in genome instability and tumor formation during aging. In addition, since loss of BLM significantly affects lifespan and tumorigenesis, the data provide a link between error-prone end joining, genome rearrangements, and tumor formation in a model metazoan.
Collapse
|
33
|
Chan SH, Yu AM, McVey M. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 2010; 6:e1001005. [PMID: 20617203 PMCID: PMC2895639 DOI: 10.1371/journal.pgen.1001005] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 05/27/2010] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. DNA double-strand breaks, in which both strands of the DNA double helix are cut, must be recognized and accurately repaired in order to promote cell survival and prevent the accumulation of mutations. However, error-prone repair occasionally occurs, even when accurate repair is possible. We have investigated the genetic requirements of an error-prone break-repair mechanism called alternative end joining. We have previously shown that alternative end joining is frequently used in the fruit fly, Drosophila melanogaster. Here, we demonstrate that a fruit fly protein named DNA polymerase theta is a key player in this inaccurate repair mechanism. Genetic analysis suggests that polymerase theta may be important for two processes associated with alternative end joining: (1) annealing at short, complementary DNA sequences, and (2) DNA synthesis that creates small insertions at break-repair sites. In the absence of polymerase theta, a backup repair mechanism that frequently results in large chromosome deletions is revealed. Because DNA polymerase theta is highly expressed in many types of human cancers, our findings lay the groundwork for further investigations into how polymerase theta is involved in repair processes that may promote the development of cancer.
Collapse
Affiliation(s)
- Sze Ham Chan
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Amy Marie Yu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- Program in Genetics, Tufts Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Drosophila RecQ5 is required for efficient SSA repair and suppression of LOH in vivo. Protein Cell 2010; 1:478-90. [PMID: 21203963 DOI: 10.1007/s13238-010-0058-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/25/2010] [Indexed: 10/19/2022] Open
Abstract
RecQ5 in mammalian cells has been suggested to suppress inappropriate homologous recombination. However, the specific pathway(s) in which it is involved and the underlining mechanism(s) remain poorly understood. We took advantage of genetic tools in Drosophila to investigate how Drosophila RecQ5 (dRecQ5) functions in vivo in homologous recombination-mediated double strand break (DSB) repair. We generated null alleles of dRecQ5 using the targeted recombination technique. The mutant animals are homozygous viable, but with growth retardation during development. The mutants are sensitive to both exogenous DSB-inducing treatment, such as gamma-irradiation, and endogenously induced double strand breaks (DSBs) by I-Sce I endonuclease. In the absence of dRecQ5, single strand annealing (SSA)-mediated DSB repair is compromised with compensatory increases in either inter-homologous gene conversion, or non-homologous end joining (NHEJ) when inter-chromosomal homologous sequence is unavailable. Loss of function of dRecQ5 also leads to genome instability in loss of heterozygosity (LOH) assays. Together, our data demonstrate that dRecQ5 functions in SSA-mediated DSB repair to achieve its full efficiency and in suppression of LOH in Drosophila.
Collapse
|
35
|
Yu AM, McVey M. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 2010; 38:5706-17. [PMID: 20460465 PMCID: PMC2943611 DOI: 10.1093/nar/gkq379] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ku or DNA ligase 4-independent alternative end joining (alt-EJ) repair of DNA double-strand breaks (DSBs) frequently correlates with increased junctional microhomology. However, alt-EJ also produces junctions without microhomology (apparent blunt joins), and the exact role of microhomology in both alt-EJ and classical non-homologous end joining (NHEJ) remains unclear. To better understand the degree to which alt-EJ depends on annealing at pre-existing microhomologies, we examined inaccurate repair of an I-SceI DSB lacking nearby microhomologies of greater than four nucleotides in Drosophila. Lig4 deficiency affected neither frequency nor length of junctional microhomology, but significantly increased insertion frequency. Many insertions appeared to be templated. Based on sequence analysis of repair junctions, we propose a model of synthesis-dependent microhomology-mediated end joining (SD-MMEJ), in which de novo synthesis by an accurate non-processive DNA polymerase creates microhomology. Repair junctions with apparent blunt joins, junctional microhomologies and short indels (deletion with insertion) are often considered to reflect different repair mechanisms. However, a majority of each type had structures consistent with the predictions of our SD-MMEJ model. This suggests that a single underlying mechanism could be responsible for all three repair product types. Genetic analysis indicates that SD-MMEJ is Ku70, Lig4 and Rad51-independent but impaired in mus308 (POLQ) mutants.
Collapse
Affiliation(s)
- Amy Marie Yu
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
36
|
Abstract
Initial events in double-strand break repair by homologous recombination in vivo involve homology searching, 3' strand invasion, and new DNA synthesis. While studies in yeast have contributed much to our knowledge of these processes, in comparison, little is known of the early events in the integrated mammalian system. In this study, a sensitive PCR procedure was developed to detect the new DNA synthesis that accompanies mammalian homologous recombination. The test system exploits a well-characterized gene targeting assay in which the transfected vector bears a gap in the region of homology to the single-copy chromosomal immunoglobulin mu heavy chain gene in mouse hybridoma cells. New DNA synthesis primed by invading 3' vector ends copies chromosomal mu-gene template sequences excluded by the vector-borne double-stranded gap. Following electroporation, specific 3' extension products from each vector end are detected with rapid kinetics: they appear after 0.5 hr, peak at 3-6 hr, and then decline, likely as a result of the combined effects of susceptibility to degradation and cell division. New DNA synthesis from each vector 3' end extends at least approximately 1000 nucleotides into the gapped region, but the efficiency declines markedly within the first approximately 200 nucleotides. Over this short distance, an average frequency of 3' extension for the two invading vector ends is approximately 0.007 events/vector backbone. DNA sequencing reveals precise copying of the cognate chromosomal mu-gene template. In unsynchronized cells, 3' extension is sensitive to aphidicolin supporting involvement of a replicative polymerase. Analysis suggests that the vast majority of 3' extensions reside on linear plasmid molecules.
Collapse
|
37
|
Removal of the bloom syndrome DNA helicase extends the utility of imprecise transposon excision for making null mutations in Drosophila. Genetics 2009; 183:1187-93. [PMID: 19687136 DOI: 10.1534/genetics.109.108472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are frequently used in Drosophila melanogaster for imprecise excision screens to delete genes of interest. However, these screens are highly variable in the number and size of deletions that are recovered. Here, we show that conducting excision screens in mus309 mutant flies that lack DmBlm, the Drosophila ortholog of the Bloom syndrome protein, increases the percentage and overall size of flanking deletions recovered after excision of either P or Minos elements.
Collapse
|
38
|
Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 2009; 182:641-51. [PMID: 19380480 DOI: 10.1534/genetics.109.101329] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using zinc-finger nucleases (ZFNs) to cleave the chromosomal target, we have achieved high frequencies of gene targeting in the Drosophila germline. Both local mutagenesis through nonhomologous end joining (NHEJ) and gene replacement via homologous recombination (HR) are stimulated by target cleavage. In this study we investigated the mechanisms that underlie these processes, using materials for the rosy (ry) locus. The frequency of HR dropped significantly in flies homozygous for mutations in spnA (Rad51) or okr (Rad54), two components of the invasion-mediated synthesis-dependent strand annealing (SDSA) pathway. When single-strand annealing (SSA) was also blocked by the use of a circular donor DNA, HR was completely abolished. This indicates that the majority of HR proceeds via SDSA, with a minority mediated by SSA. In flies deficient in lig4 (DNA ligase IV), a component of the major NHEJ pathway, the proportion of HR products rose significantly. This indicates that most NHEJ products are produced in a lig4-dependent process. When both spnA and lig4 were mutated and a circular donor was provided, the frequency of ry mutations was still high and no HR products were recovered. The local mutations produced in these circumstances must have arisen through an alternative, lig4-independent end-joining mechanism. These results show what repair pathways operate on double-strand breaks in this gene targeting system. They also demonstrate that the outcome can be biased toward gene replacement by disabling the major NHEJ pathway and toward simple mutagenesis by interfering with the major HR process.
Collapse
|
39
|
Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 2008; 105:19821-6. [PMID: 19064913 PMCID: PMC2604940 DOI: 10.1073/pnas.0810475105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 12/11/2022] Open
Abstract
We report very high gene targeting frequencies in Drosophila by direct embryo injection of mRNAs encoding specific zinc-finger nucleases (ZFNs). Both local mutagenesis via nonhomologous end joining (NHEJ) and targeted gene replacement via homologous recombination (HR) have been achieved in up to 10% of all targets at a given locus. In embryos that are wild type for DNA repair, the products are dominated by NHEJ mutations. In recipients deficient in the NHEJ component, DNA ligase IV, the majority of products arise by HR with a coinjected donor DNA, with no loss of overall efficiency in target modification. We describe the application of the ZFN injection procedure to mutagenesis by NHEJ of 2 new genes in Drosophila melanogaster: coil and pask. Pairs of novel ZFNs designed for targets within those genes led to the production of null mutations at each locus. The injection procedure is much more rapid than earlier approaches and makes possible the generation and recovery of targeted gene alterations at essentially any locus within 2 fly generations.
Collapse
Affiliation(s)
- Kelly J. Beumer
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Jonathan K. Trautman
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Ana Bozas
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Ji-Long Liu
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| |
Collapse
|
40
|
Yi X, de Vries HI, Siudeja K, Rana A, Lemstra W, Brunsting JF, Kok RM, Smulders YM, Schaefer M, Dijk F, Shang Y, Eggen BJL, Kampinga HH, Sibon OCM. Stwl modifies chromatin compaction and is required to maintain DNA integrity in the presence of perturbed DNA replication. Mol Biol Cell 2008; 20:983-94. [PMID: 19056684 DOI: 10.1091/mbc.e08-06-0639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent accumulation of this type of DNA damage that coincides with hampered DNA synthesis. Here, we report the identification of stonewall (stwl) as a novel hydroxyurea-hypersensitive mutant. We demonstrate that Stwl is required to prevent accumulation of DNA damage induced by hydroxyurea; yet, Stwl is not involved in S/M checkpoint regulation. We show that Stwl is a heterochromatin-associated protein with transcription-repressing capacities. In stwl mutants, levels of trimethylated H3K27 and H3K9 (two hallmarks of silent chromatin) are decreased. Our data provide evidence for a Stwl-dependent epigenetic mechanism that is involved in the maintenance of the normal balance between euchromatin and heterochromatin and that is required to prevent accumulation of DNA damage in the presence of DNA replication stress.
Collapse
Affiliation(s)
- Xia Yi
- Department of Radiation and Stress Cell Biology, Division of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kappeler M, Kranz E, Woolcock K, Georgiev O, Schaffner W. Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Res 2008; 36:6907-17. [PMID: 18978019 PMCID: PMC2588521 DOI: 10.1093/nar/gkn793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA double strand breaks (DSB) can be repaired either via a sequence independent joining of DNA ends or via homologous recombination. We established a detection system in Drosophila melanogaster to investigate the impact of sequence constraints on the usage of the homology based DSB repair via single strand annealing (SSA), which leads to recombination between direct repeats with concomitant loss of one repeat copy. First of all, we find the SSA frequency to be inversely proportional to the spacer length between the repeats, for spacers up to 2.4 kb in length. We further show that SSA between divergent repeats (homeologous SSA) is suppressed in cell cultures and in vivo in a sensitive manner, recognizing sequence divergences smaller than 0.5%. Finally, we demonstrate that the suppression of homeologous SSA depends on the Bloom helicase (Blm), encoded by the Drosophila gene mus309. Suppression of homeologous recombination is a novel function of Blm in ensuring genomic integrity, not described to date in mammalian systems. Unexpectedly, distinct from its function in Saccharomyces cerevisiae, the mismatch repair factor Msh2 encoded by spel1 does not suppress homeologous SSA in Drosophila.
Collapse
Affiliation(s)
- Michael Kappeler
- Insitut für Molekularbiologie der Universität Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Loss of the histone variant H2A.Z restores capping to checkpoint-defective telomeres in Drosophila. Genetics 2008; 180:1869-75. [PMID: 18845840 DOI: 10.1534/genetics.108.095547] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved histone variant H2A.Z fulfills many functions by being an integral part of the nucleosomes placed at specific regions of the genome. Telomeres cap natural ends of chromosomes to prevent their recognition as double-strand breaks. At yeast telomeres, H2A.Z prevents the spreading of silent chromatin into proximal euchromatin. A role for H2A.Z in capping, however, has not been reported in any organism. Here, I uncover such a role for Drosophila H2A.Z. Loss of H2A.Z, through mutations in either its gene or the domino gene for the Swr1 chromatin-remodeling protein, suppressed the fusion of telomeres that lacked the protection of checkpoint proteins: ATM, ATR, and the Mre11-Rad50-NBS complex. Loss of H2A.Z partially restores the loading of the HOAP capping protein, possibly accounting for the partial restoration in capping. I propose that, in the absence of H2A.Z, checkpoint-defective telomeres adopt alternative structures, which are permissive for the loading of the capping machinery at Drosophila telomeres.
Collapse
|
43
|
Brough R, Wei D, Leulier S, Lord CJ, Rong YS, Ashworth A. Functional analysis of Drosophila melanogaster BRCA2 in DNA repair. DNA Repair (Amst) 2008; 7:10-9. [PMID: 17822964 DOI: 10.1016/j.dnarep.2007.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 11/15/2022]
Abstract
The human BRCA2 cancer susceptibility protein functions in double-strand DNA break repair by homologous recombination and this pathway is conserved in the fly Drosophila melanogaster. Although a potential Drosophila melanogaster BRCA2 orthologue (dmbrca2; CG30169) has been identified by sequence similarity, no functional data addressing the role of this protein in DNA repair is available. Here, we demonstrate that depletion of dmbrca2 from Drosophila cells induces sensitivity to DNA damage induced by irradiation or treatment with hydroxyurea. Dmbrca2 physically interacts with dmrad51 (spnA) and the two proteins become recruited to nuclear foci after DNA damage. A functional assay for DNA repair demonstrated that in flies dmbrca2 plays a role in double-strand break repair by gene conversion. Finally, we show that depletion of dmbrca2 in cells is synthetically lethal with deficiency in other DNA repair proteins including dmparp. The conservation of the function of BRCA2 in Drosophila will allow the analysis of this key DNA repair protein in a genetically tractable organism potentially illuminating mechanisms of carcinogenesis and aiding the development of therapeutic agents.
Collapse
Affiliation(s)
- Rachel Brough
- CRUK Gene Function and Regulation Group, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|