1
|
Wu X, Liu H, Guo YR. Insights into Virus-Host Interactions: Lessons from Caenorhabditis elegans-Orsay Virus Model. Curr Med Sci 2025; 45:169-184. [PMID: 40029496 DOI: 10.1007/s11596-025-00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 03/05/2025]
Abstract
The study of virus-host interactions has been significantly advanced using model organisms, with nematodes being a prominent example. Caenorhabditis elegans (C. elegans) nematodes have provided valuable insights into the mechanisms of viral infections, host defense strategies, and the development of antiviral therapies. With the discovery of natural viral pathogens of nematodes, Orsay virus, Le Blanc virus, Santeuil virus, and Mělník virus, the exploration of the virus-host interaction model based on nematodes has entered a new era. The virus-host interaction network consists of viruses, hosts, and the antagonistic effects of viruses on host immunity. The nematode virus-host interaction model is a concrete manifestation used to study the complex relationships among these three elements. Previous studies have indicated that during the entire process of nematode infection by viruses, antiviral RNA interference (RNAi) plays a crucial role. Additionally, the host's innate immune responses, such as the antiviral-specific intracellular pathogen response (IPR) and certain signaling pathways homologous to those in humans, are particularly important in the natural immune and antiviral processes of nematodes. These processes are regulated by multiple genes in the host. The reverse genetics system for Orsay virus has been successfully developed to study viral gene function and virus-host interactions. Nematodes serve as simple host models for understanding RNA virus replication, related cellular components, and virus-host interaction mechanisms. These findings will likely contribute to the development of antiviral treatment strategies based on novel targets.
Collapse
Affiliation(s)
- Xun Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yusong R Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Jhaveri N, Bhullar H, Gupta B. A Comparative Study of Life History Traits in C. briggsae and C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001299. [PMID: 39554805 PMCID: PMC11565226 DOI: 10.17912/micropub.biology.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
The nematodes C. elegans and C. briggsae are key models for genetic studies. Despite their overall similar morphology, these two species exhibit notable differences. We used the isolates from tropical ( AF16 and QX1410 ) and temperate ( HK104 and VX34 ) regions to characterize the life history traits of C. briggsae . Our findings reveal significant variations in body dimensions, movement patterns, utse morphology, and lipid contents across isolates, highlighting species-level distinctions that further establish C. briggsae as a valuable comparative model for genetic research.
Collapse
Affiliation(s)
- Nikita Jhaveri
- Biology, McMaster University, Hamilton, Ontario, Canada
- Biology, Johns Hopkins University, Baltimore, Maryland, United States
| | | | | |
Collapse
|
3
|
Alkan C, Brésard G, Frézal L, Richaud A, Ruaud A, Zhang G, Félix MA. Natural variation in infection specificity of Caenorhabditis briggsae isolates by two RNA viruses. PLoS Pathog 2024; 20:e1012259. [PMID: 38861582 PMCID: PMC11195985 DOI: 10.1371/journal.ppat.1012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Antagonistic relationships such as host-virus interactions potentially lead to rapid evolution and specificity in interactions. The Orsay virus is so far the only horizontal virus naturally infecting the nematode C. elegans. In contrast, several related RNA viruses infect its congener C. briggsae, including Santeuil (SANTV) and Le Blanc (LEBV) viruses. Here we focus on the host's intraspecific variation in sensitivity to these two intestinal viruses. Many temperate-origin C. briggsae strains, including JU1264 and JU1498, are sensitive to both, while many tropical strains, such as AF16, are resistant to both. Interestingly, some C. briggsae strains exhibit a specific resistance, such as the HK104 strain, specifically resistant to LEBV. The viral sensitivity pattern matches the strains' geographic and genomic relationships. The heavily infected strains mount a seemingly normal small RNA response that is insufficient to suppress viral infection, while the resistant strains show no small RNA response, suggesting an early block in viral entry or replication. We use a genetic approach from the host side to map genomic regions participating in viral resistance polymorphisms. Using Advanced Intercrossed Recombinant Inbred Lines (RILs) between virus-resistant AF16 and SANTV-sensitive HK104, we detect Quantitative Trait Loci (QTLs) on chromosomes IV and III. Building RILs between virus-sensitive JU1498 and LEBV-resistant HK104 followed by bulk segregant analysis, we identify a chromosome II QTL. In both cases, further introgressions of the regions confirmed the QTLs. This diversity provides an avenue for studying virus entry, replication, and exit mechanisms, as well as host-virus specificity and the host response to a specific virus infection.
Collapse
Affiliation(s)
- Cigdem Alkan
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gautier Brésard
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Lise Frézal
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques Paris, Paris, France
| | - Aurélien Richaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Albane Ruaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gaotian Zhang
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Marie-Anne Félix
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
4
|
The Alliance of Genome Resources Consortium, Aleksander SA, Anagnostopoulos AV, Antonazzo G, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Cherry JM, Cho J, Crosby MA, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, dos Santos G, Dyer S, Ebert D, Engel SR, Fashena D, Fisher M, Foley S, Gibson AC, Gollapally VR, Gramates LS, Grove CA, Hale P, Harris T, Hayman GT, Hu Y, James-Zorn C, Karimi K, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, Markarian N, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nash RS, Nuin P, Paddock H, Pells T, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schindelman G, Shaw DR, Sherlock G, Shrivatsav A, Singer A, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Tomczuk M, Trovisco V, Tutaj MA, Urbano JM, Van Auken K, Van Slyke CE, Vize PD, Wang Q, Weng S, Westerfield M, Wilming LG, Wong ED, Wright A, Yook K, Zhou P, et alThe Alliance of Genome Resources Consortium, Aleksander SA, Anagnostopoulos AV, Antonazzo G, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Cherry JM, Cho J, Crosby MA, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, dos Santos G, Dyer S, Ebert D, Engel SR, Fashena D, Fisher M, Foley S, Gibson AC, Gollapally VR, Gramates LS, Grove CA, Hale P, Harris T, Hayman GT, Hu Y, James-Zorn C, Karimi K, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, Markarian N, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nash RS, Nuin P, Paddock H, Pells T, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schindelman G, Shaw DR, Sherlock G, Shrivatsav A, Singer A, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Tomczuk M, Trovisco V, Tutaj MA, Urbano JM, Van Auken K, Van Slyke CE, Vize PD, Wang Q, Weng S, Westerfield M, Wilming LG, Wong ED, Wright A, Yook K, Zhou P, Zorn A, Zytkovicz M. Updates to the Alliance of Genome Resources central infrastructure. Genetics 2024; 227:iyae049. [PMID: 38552170 PMCID: PMC11075569 DOI: 10.1093/genetics/iyae049] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
The Alliance of Genome Resources (Alliance) is an extensible coalition of knowledgebases focused on the genetics and genomics of intensively studied model organisms. The Alliance is organized as individual knowledge centers with strong connections to their research communities and a centralized software infrastructure, discussed here. Model organisms currently represented in the Alliance are budding yeast, Caenorhabditis elegans, Drosophila, zebrafish, frog, laboratory mouse, laboratory rat, and the Gene Ontology Consortium. The project is in a rapid development phase to harmonize knowledge, store it, analyze it, and present it to the community through a web portal, direct downloads, and application programming interfaces (APIs). Here, we focus on developments over the last 2 years. Specifically, we added and enhanced tools for browsing the genome (JBrowse), downloading sequences, mining complex data (AllianceMine), visualizing pathways, full-text searching of the literature (Textpresso), and sequence similarity searching (SequenceServer). We enhanced existing interactive data tables and added an interactive table of paralogs to complement our representation of orthology. To support individual model organism communities, we implemented species-specific "landing pages" and will add disease-specific portals soon; in addition, we support a common community forum implemented in Discourse software. We describe our progress toward a central persistent database to support curation, the data modeling that underpins harmonization, and progress toward a state-of-the-art literature curation system with integrated artificial intelligence and machine learning (AI/ML).
Collapse
Affiliation(s)
| | | | | | - Giulia Antonazzo
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Valerio Arnaboldi
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Andrés Becerra
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Susan M Bello
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Olin Blodgett
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | | | - Carol J Bult
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Scott Cain
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Brian R Calvi
- Department of Biology, Indiana University , Bloomington, IN 47408 , USA
| | - Seth Carbon
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA
| | - Juancarlos Chan
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Wen J Chen
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - J Michael Cherry
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Jaehyoung Cho
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Madeline A Crosby
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Jeffrey L De Pons
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | | | - Stavros Diamantakis
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Mary E Dolan
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Gilberto dos Santos
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Sarah Dyer
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Dustin Ebert
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Stacia R Engel
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - David Fashena
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Malcolm Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center , 3333 Burnet Ave, Cincinnati, OH 45229 , USA
| | - Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University , 5000 Forbes Ave, Pittsburgh, PA 15203
| | - Adam C Gibson
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Varun R Gollapally
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - L Sian Gramates
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Christian A Grove
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Paul Hale
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Todd Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - G Thomas Hayman
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Yanhui Hu
- Department of Genetics, Howard Hughes Medical Institute , Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 , USA
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center , 3333 Burnet Ave, Cincinnati, OH 45229 , USA
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary , 507 Campus Dr NW, Calgary, AB T2N 4V8 , Canada
| | - Kalpana Karra
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Ranjana Kishore
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Anne E Kwitek
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Stanley J F Laulederkind
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Raymond Lee
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Ian Longden
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Manuel Luypaert
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Nicholas Markarian
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Steven J Marygold
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Beverley Matthews
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Monica S McAndrews
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Stuart Miyasato
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Howie Motenko
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Sierra Moxon
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA
| | - Hans-Michael Muller
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA
| | - Anushya Muruganujan
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Tremayne Mushayahama
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Robert S Nash
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Paulo Nuin
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Holly Paddock
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Troy Pells
- Department of Biological Sciences, University of Calgary , 507 Campus Dr NW, Calgary, AB T2N 4V8 , Canada
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute , Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 , USA
| | - Christian Pich
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Mark Quinton-Tulloch
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Daniela Raciti
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | | | | | - Susan Russo Gelbart
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Leyla Ruzicka
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Gary Schindelman
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - David R Shaw
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Ajay Shrivatsav
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Amy Singer
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Constance M Smith
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Cynthia L Smith
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Jennifer R Smith
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Lincoln Stein
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Paul W Sternberg
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Christopher J Tabone
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Ketaki Thorat
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Jyothi Thota
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Monika Tomczuk
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Vitor Trovisco
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Marek A Tutaj
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Jose-Maria Urbano
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Kimberly Van Auken
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Ceri E Van Slyke
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary , 507 Campus Dr NW, Calgary, AB T2N 4V8 , Canada
| | - Qinghua Wang
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Shuai Weng
- Department of Genetics, Stanford University , Stanford, CA 94305
| | | | - Laurens G Wilming
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Edith D Wong
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Adam Wright
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Karen Yook
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Pinglei Zhou
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Aaron Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center , 3333 Burnet Ave, Cincinnati, OH 45229 , USA
| | - Mark Zytkovicz
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| |
Collapse
|
5
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Aleksander SA, Anagnostopoulos AV, Antonazzo G, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Michael Cherry J, Cho J, Crosby MA, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, Santos GD, Dyer S, Ebert D, Engel SR, Fashena D, Fisher M, Foley S, Gibson AC, Gollapally VR, Sian Gramates L, Grove CA, Hale P, Harris T, Thomas Hayman G, Hu Y, James-Zorn C, Karimi K, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, Markarian N, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nash RS, Nuin P, Paddock H, Pells T, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schindelman G, Shaw DR, Sherlock G, Shrivatsav A, Singer A, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Tomczuk M, Trovisco V, Tutaj MA, Urbano JM, Auken KV, Van Slyke CE, Vize PD, Wang Q, Weng S, Westerfield M, Wilming LG, Wong ED, Wright A, Yook K, Zhou P, Zorn A, et alAleksander SA, Anagnostopoulos AV, Antonazzo G, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Michael Cherry J, Cho J, Crosby MA, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, Santos GD, Dyer S, Ebert D, Engel SR, Fashena D, Fisher M, Foley S, Gibson AC, Gollapally VR, Sian Gramates L, Grove CA, Hale P, Harris T, Thomas Hayman G, Hu Y, James-Zorn C, Karimi K, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, Markarian N, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nash RS, Nuin P, Paddock H, Pells T, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schindelman G, Shaw DR, Sherlock G, Shrivatsav A, Singer A, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Tomczuk M, Trovisco V, Tutaj MA, Urbano JM, Auken KV, Van Slyke CE, Vize PD, Wang Q, Weng S, Westerfield M, Wilming LG, Wong ED, Wright A, Yook K, Zhou P, Zorn A, Zytkovicz M. Updates to the Alliance of Genome Resources Central Infrastructure Alliance of Genome Resources Consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567935. [PMID: 38045425 PMCID: PMC10690154 DOI: 10.1101/2023.11.20.567935] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Alliance of Genome Resources (Alliance) is an extensible coalition of knowledgebases focused on the genetics and genomics of intensively-studied model organisms. The Alliance is organized as individual knowledge centers with strong connections to their research communities and a centralized software infrastructure, discussed here. Model organisms currently represented in the Alliance are budding yeast, C. elegans, Drosophila, zebrafish, frog, laboratory mouse, laboratory rat, and the Gene Ontology Consortium. The project is in a rapid development phase to harmonize knowledge, store it, analyze it, and present it to the community through a web portal, direct downloads, and APIs. Here we focus on developments over the last two years. Specifically, we added and enhanced tools for browsing the genome (JBrowse), downloading sequences, mining complex data (AllianceMine), visualizing pathways, full-text searching of the literature (Textpresso), and sequence similarity searching (SequenceServer). We enhanced existing interactive data tables and added an interactive table of paralogs to complement our representation of orthology. To support individual model organism communities, we implemented species-specific "landing pages" and will add disease-specific portals soon; in addition, we support a common community forum implemented in Discourse. We describe our progress towards a central persistent database to support curation, the data modeling that underpins harmonization, and progress towards a state-of-the art literature curation system with integrated Artificial Intelligence and Machine Learning (AI/ML).
Collapse
|
7
|
Hammerschmith EW, Woodruff GC, Moser KA, Johnson E, Phillips PC. Opposing directions of stage-specific body shape change in a close relative of C. elegans. BMC ZOOL 2022; 7:38. [PMID: 37170380 PMCID: PMC10127021 DOI: 10.1186/s40850-022-00131-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Body size is a fundamental organismal trait. However, as body size and ecological contexts change across developmental time, evolutionary divergence may cause unexpected patterns of body size diversity among developmental stages. This may be particularly evident in polyphenic developmental stages specialized for dispersal. The dauer larva is such a stage in nematodes, and Caenorhabditis species disperse by traveling on invertebrate carriers. Here, we describe the morphology of a stress-resistant, dauer-like larval stage of the nematode Caenorhabditis inopinata, whose adults can grow to be nearly twice as long as its close relative, the model organism C. elegans.
Results
We find that a dauer-like, stress-resistant larval stage in two isolates of C. inopinata is on average 13% shorter and 30% wider than the dauer larvae of C. elegans, despite its much longer adult stage. Additionally, many C. inopinata dauer-like larvae were ensheathed, a possible novelty in this lineage reminiscent of the infective juveniles of parasitic nematodes. Variation in dauer-like larva formation frequency among twenty-four wild isolates of C. inopinata was also observed, although frequencies were low across all isolates (< 2%), with many isolates unable to produce dauer-like larvae under conventional laboratory conditions.
Conclusion
Most Caenorhabditis species thrive on rotting plants and disperse on snails, slugs, or isopods (among others) whereas C. inopinata is ecologically divergent and thrives in fresh Ficus septica figs and disperses on their pollinating wasps. While there is some unknown factor of the fig environment that promotes elongated body size in C. inopinata adults, the small size or unique life history of its fig wasp carrier may be driving the divergent morphology of its stress-resistant larval stages. Further characterization of the behavior, development, and morphology of this stage will refine connections to homologous developmental stages in other species and determine whether ecological divergence across multiple developmental stages can promote unexpected and opposing changes in body size dimensions within a single species.
Collapse
|
8
|
Sloat SA, Noble LM, Paaby AB, Bernstein M, Chang A, Kaur T, Yuen J, Tintori SC, Jackson JL, Martel A, Salome Correa JA, Stevens L, Kiontke K, Blaxter M, Rockman MV. Caenorhabditis nematodes colonize ephemeral resource patches in neotropical forests. Ecol Evol 2022; 12:e9124. [PMID: 35898425 PMCID: PMC9309040 DOI: 10.1002/ece3.9124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.
Collapse
Affiliation(s)
- Solomon A. Sloat
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Luke M. Noble
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Annalise B. Paaby
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Max Bernstein
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Audrey Chang
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Taniya Kaur
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - John Yuen
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Sophia C. Tintori
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jacqueline L. Jackson
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Arielle Martel
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jose A. Salome Correa
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | - Karin Kiontke
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger InstituteHinxtonUK
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
9
|
Cohen SM, Wrobel CJJ, Prakash SJ, Schroeder FC, Sternberg PW. Formation and function of dauer ascarosides in the nematodes Caenorhabditis briggsae and Caenorhabditis elegans. G3 GENES|GENOMES|GENETICS 2022; 12:6517505. [PMID: 35094091 PMCID: PMC8895998 DOI: 10.1093/g3journal/jkac014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The biosynthetic pathways and functions of ascaroside signaling molecules in the nematode Caenorhabditis elegans have been studied to better understand complex, integrative developmental decision-making. Although it is known that ascarosides play multiple roles in the development and behavior of nematode species other than C. elegans, these parallel pheromone systems have not been well-studied. Here, we show that ascarosides in the nematode Caenorhabditis briggsae are biosynthesized in the same manner as C. elegans and act to induce the alternative developmental pathway that generates the stress-resistant dauer lifestage. We show that ascr#2 is the primary component of crude dauer pheromone in C. briggsae; in contrast, C. elegans dauer pheromone relies on a combination of ascr#2, ascr#3, and several other components. We further demonstrate that Cbr-daf-22, like its C. elegans ortholog Cel-daf-22, is necessary to produce short-chain ascarosides. Moreover, Cbr-daf-22 and Cel-daf-22 mutants produce an ascaroside-independent metabolite that acts antagonistically to crude dauer pheromone and inhibits dauer formation.
Collapse
Affiliation(s)
- Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sharan J Prakash
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Chai CM, Chen W, Wong WR, Park H, Cohen SM, Wan X, Sternberg PW. A conserved behavioral role for a nematode interneuron neuropeptide receptor. Genetics 2022; 220:iyab198. [PMID: 34741504 PMCID: PMC8733633 DOI: 10.1093/genetics/iyab198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Neuropeptides are evolutionarily conserved modulators of many aspects of animal behavior and physiology, and expand the repertoire of processes that can be controlled by a limited number of neurons. Deciphering the neuropeptidergic codes that govern distinct processes requires systematic functional analyses of neuropeptides and their cognate receptors. Even in well-studied model organisms like Caenorhabditis elegans, however, such efforts have been precluded by a lack of mutant reagents. Here, we generated and screened 21 C. elegans neuropeptide G-protein coupled receptor mutants with no pre-existing reagents for the touch-evoked escape response, and implicated six receptors expressed in diverse neuron classes representing multiple circuit levels in this behavior. We further characterized the mutant with the most severe phenotype, frpr-14, which was defective in multiple behavioral paradigms. We leveraged this range of phenotypes to reveal that FRPR-14 modulation of different precommand interneuron classes, AVH and AIB, can drive distinct behavioral subsets, demonstrating cellular context-dependent roles for FRPR-14 signaling. We then show that Caenorhabditis briggsae CBR-FRPR-14 modulates an AVH-like interneuron pair to regulate the same behaviors as C. elegans but to a smaller extent. Our results also suggest that differences in touch-evoked escape circuit architecture between closely related species results from changes in neuropeptide receptor expression pattern, as opposed to ligand-receptor pairing. This study provides insights into the principles utilized by a compact, multiplexed nervous system to generate intraspecific behavioral complexity and interspecific variation.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wen Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wan-Rong Wong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Le TS, Yang FJ, Lo YH, Chang TC, Hsu JC, Kao CY, Wang J. Non-Mendelian assortment of homologous autosomes of different sizes in males is the ancestral state in the Caenorhabditis lineage. Sci Rep 2017; 7:12819. [PMID: 28993668 PMCID: PMC5634442 DOI: 10.1038/s41598-017-13215-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/19/2017] [Indexed: 01/25/2023] Open
Abstract
Organismal genome sizes vary by six orders of magnitude and appear positively correlated with organismal size and complexity. Neutral models have been proposed to explain the broad patterns of genome size variation based on organism population sizes. In the Caenorhabditis genus, hermaphrodite genomes are smaller than those of gonochoristic species. One possible driving force for this genome size difference could be non-random chromosome segregation. In Caenorhabditis elegans, chromosome assortment is non-independent and violates Mendel's second law. In males, the shorter homologue of a heterozygous autosome pair preferentially co-segregates with the X chromosome while the longer one preferentially co-segregates with the nullo-X (O) chromosome in a process we call "skew". Since hermaphrodites preferentially receive the shorter chromosomes and can start populations independently, their genome size would be predicted to decrease over evolutionary time. If skew is an important driver for genome size reduction in hermaphroditic Caenorhabditis species, then it should be present in all congeneric species. In this study, we tested this hypothesis and found that skew is present in all eight examined species. Our results suggest that skew is likely the ancestral state in this genus. More speculatively, skew may drive genome size patterns in hermaphroditic species in other nematodes.
Collapse
Affiliation(s)
- Tho Son Le
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Department of Molecular Genetics and Gene Technology, College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Fang-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Hua Lo
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tiffany C Chang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Chen Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yi Kao
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
12
|
Somvanshi VS, Gahoi S, Banakar P, Thakur PK, Kumar M, Sajnani M, Pandey P, Rao U. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica. BMC Genomics 2016; 17:166. [PMID: 26931371 PMCID: PMC4774024 DOI: 10.1186/s12864-016-2510-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage, which remains in ‘arrested development’ till it finds and infects a new insect-host in the soil. H. indica is the most prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we sequenced the transcriptome of H. indica IJs. Results The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50 of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin, dafachronic acid and TGF-β were active in the IJ stage. Several other signaling pathways were highly represented in the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica, including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1 was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of important gene classes were identified. Conclusions We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a species to which H. indica is more closely related. The high representation of transcripts from several signaling pathways in the IJs indicates that despite being a developmentally arrested stage; IJs are a hotbed of signaling and are actively interacting with their environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2510-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Shachi Gahoi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prasoon Kumar Thakur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Kumar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Manisha Sajnani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Priyatama Pandey
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
13
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae. Cell Rep 2015; 10:647-653. [DOI: 10.1016/j.celrep.2015.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 12/29/2014] [Indexed: 01/08/2023] Open
|
15
|
Wei Q, Shen Y, Chen X, Shifman Y, Ellis RE. Rapid creation of forward-genetics tools for C. briggsae using TALENs: lessons for nonmodel organisms. Mol Biol Evol 2013; 31:468-73. [PMID: 24194560 PMCID: PMC3907053 DOI: 10.1093/molbev/mst213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although evolutionary studies of gene function often rely on RNA interference, the ideal approach would use reverse genetics to create null mutations for cross-species comparisons and forward genetics to identify novel genes in each species. We have used transcription activator-like effector nucleases (TALENs) to facilitate both approaches in Caenorhabditis nematodes. First, by combining golden gate cloning and TALEN technology, we can induce frameshifting mutations in any gene. Second, by combining this approach with bioinformatics we can predict and create the resources needed for forward genetic analysis in species like Caenorhabditis briggsae. Although developing genetic model organisms used to require years to isolate marker mutations, balancers, and tools, with TALENs, these reagents can now be produced in months. Furthermore, the analysis of nonsense mutants in related model organisms allows a directed approach for making these markers and tools. When used together, these methods could simplify the adaptation of other organisms for forward and reverse genetics.
Collapse
Affiliation(s)
- Qing Wei
- Graduate School of the Biomedical Sciences, Rowan University
| | | | | | | | | |
Collapse
|
16
|
Abstract
Transforming Growth Factor-β (TGF-β) superfamily ligands regulate many aspects of cell identity, function, and survival in multicellular animals. Genes encoding five TGF-β family members are present in the genome of C. elegans. Two of the ligands, DBL-1 and DAF-7, signal through a canonical receptor-Smad signaling pathway; while a third ligand, UNC-129, interacts with a noncanonical signaling pathway. No function has yet been associated with the remaining two ligands. Here we summarize these signaling pathways and their biological functions.
Collapse
Affiliation(s)
- Tina L Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA
| | | |
Collapse
|
17
|
Richards JL, Zacharias AL, Walton T, Burdick JT, Murray JI. A quantitative model of normal Caenorhabditis elegans embryogenesis and its disruption after stress. Dev Biol 2012; 374:12-23. [PMID: 23220655 DOI: 10.1016/j.ydbio.2012.11.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
The invariant lineage of Caenorhabditis elegans has powerful potential for quantifying developmental variability in normal and stressed embryos. Previous studies of division timing by automated lineage tracing suggested that variability in cell cycle timing is low in younger embryos, but manual lineage tracing of specific lineages suggested that variability may increase for later divisions. We developed improved automated lineage tracing methods that allowroutine lineage tracing through the last round of embryonic cell divisions and we applied these methods to trace the lineage of 18 wild-type embryos. Cell cycle lengths, division axes and cell positions are remarkably consistent among these embryos at all stages, with only slight increase in variability later in development. The resulting quantitative 4-dimensional model of embryogenesis provides a powerful reference dataset to identify defects in mutants or in embryos that have experienced environmental perturbations. We also traced the lineages of embryos imaged at higher temperatures to quantify the decay in developmental robustness under temperature stress. Developmental variability increases modestly at 25°C compared with 22°C and dramatically at 26°C, and we identify homeotic transformations in a subset of embryos grown at 26°C. The deep lineage tracing methods provide a powerful tool for analysis of normal development, gene expression and mutants and we provide a graphical user interface to allow other researchers to explore the average behavior of arbitrary cells in a reference embryo.
Collapse
Affiliation(s)
- Julia L Richards
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
18
|
Sharanya D, Thillainathan B, Marri S, Bojanala N, Taylor J, Flibotte S, Moerman DG, Waterston RH, Gupta BP. Genetic control of vulval development in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2012; 2:1625-41. [PMID: 23275885 PMCID: PMC3516484 DOI: 10.1534/g3.112.004598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/19/2012] [Indexed: 01/23/2023]
Abstract
The nematode Caenorhabditis briggsae is an excellent model organism for the comparative analysis of gene function and developmental mechanisms. To study the evolutionary conservation and divergence of genetic pathways mediating vulva formation, we screened for mutations in C. briggsae that cause the egg-laying defective (Egl) phenotype. Here, we report the characterization of 13 genes, including three that are orthologs of Caenorhabditis elegans unc-84 (SUN domain), lin-39 (Dfd/Scr-related homeobox), and lin-11 (LIM homeobox). Based on the morphology and cell fate changes, the mutants were placed into four different categories. Class 1 animals have normal-looking vulva and vulva-uterine connections, indicating defects in other components of the egg-laying system. Class 2 animals frequently lack some or all of the vulval precursor cells (VPCs) due to defects in the migration of P-cell nuclei into the ventral hypodermal region. Class 3 animals show inappropriate fusion of VPCs to the hypodermal syncytium, leading to a reduced number of vulval progeny. Finally, class 4 animals exhibit abnormal vulval invagination and morphology. Interestingly, we did not find mutations that affect VPC induction and fates. Our work is the first study involving the characterization of genes in C. briggsae vulva formation, and it offers a basis for future investigations of these genes in C. elegans.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Sujatha Marri
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Jon Taylor
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephane Flibotte
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
19
|
Félix MA, Duveau F. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 2012; 10:59. [PMID: 22731941 PMCID: PMC3414772 DOI: 10.1186/1741-7007-10-59] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. RESULTS C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. CONCLUSIONS C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures.
Collapse
|
20
|
Sinha A, Sommer RJ, Dieterich C. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans. BMC Genomics 2012; 13:254. [PMID: 22712530 PMCID: PMC3443458 DOI: 10.1186/1471-2164-13-254] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/12/2012] [Indexed: 11/20/2022] Open
Abstract
Background An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. Results We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Conclusion Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution.
Collapse
Affiliation(s)
- Amit Sinha
- Max-Planck Institute for Developmental Biology, Department for Evolutionary Biology, Tübingen, Germany
| | | | | |
Collapse
|
21
|
Brown FD, D'Anna I, Sommer RJ. Host-finding behaviour in the nematode Pristionchus pacificus. Proc Biol Sci 2011; 278:3260-9. [PMID: 21411455 PMCID: PMC3169022 DOI: 10.1098/rspb.2011.0129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 02/01/2023] Open
Abstract
Costs and benefits of foraging have been studied in predatory animals. In nematodes, ambushing or cruising behaviours represent adaptations that optimize foraging strategies for survival and host finding. A behaviour associated with host finding of ambushing nematode dauer juveniles is a sit-and-wait behaviour, otherwise known as nictation. Here, we test the function of nictation by relating occurrence of nictation in Pristionchus pacificus dauer juveniles to the ability to attach to laboratory host Galleria mellonella. We used populations of recently isolated and mutagenized laboratory strains. We found that nictation can be disrupted using a classical forward genetic approach and characterized two novel nictation-defective mutant strains. We identified two recently isolated strains from la Réunion island, one with a higher proportion of nictating individuals than the laboratory strain P. pacificus PS312. We found a positive correlation between nictation frequencies and host attachment in these strains. Taken together, our combination of genetic analyses with natural variation studies presents a new approach to the investigation of behavioural and ecological functionality. We show that nictation behaviour in P. pacificus nematodes serves as a host-finding behaviour. Our results suggest that nictation plays a role in the evolution of new life-history strategies, such as the evolution of parasitism.
Collapse
Affiliation(s)
- Federico D Brown
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen 72076, Germany.
| | | | | |
Collapse
|
22
|
Sommer RJ, Streit A. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle. Annu Rev Genet 2011; 45:1-20. [PMID: 21721943 DOI: 10.1146/annurev-genet-110410-132417] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nematodes are found in virtually all habitats on earth. Many of them are parasites of plants and animals, including humans. The free-living nematode, Caenorhabditis elegans, is one of the genetically best-studied model organisms and was the first metazoan whose genome was fully sequenced. In recent years, the draft genome sequences of another six nematodes representing four of the five major clades of nematodes were published. Compared to mammalian genomes, all these genomes are very small. Nevertheless, they contain almost the same number of genes as the human genome. Nematodes are therefore a very attractive system for comparative genetic and genomic studies, with C. elegans as an excellent baseline. Here, we review the efforts that were made to extend genetic analysis to nematodes other than C. elegans, and we compare the seven available nematode genomes. One of the most striking findings is the unexpectedly high incidence of gene acquisition through horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Developmental Biology, D-72076 T?bingen, Germany.
| | | |
Collapse
|
23
|
Prasad A, Croydon-Sugarman MJF, Murray RL, Cutter AD. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae. Evolution 2010; 65:52-63. [PMID: 20731713 DOI: 10.1111/j.1558-5646.2010.01110.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations.
Collapse
Affiliation(s)
- Anisha Prasad
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | | | |
Collapse
|
24
|
Koboldt DC, Staisch J, Thillainathan B, Haines K, Baird SE, Chamberlin HM, Haag ES, Miller RD, Gupta BP. A toolkit for rapid gene mapping in the nematode Caenorhabditis briggsae. BMC Genomics 2010; 11:236. [PMID: 20385026 PMCID: PMC2864247 DOI: 10.1186/1471-2164-11-236] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode C. briggsae serves as a useful model organism for comparative analysis of developmental and behavioral processes. The amenability of C. briggsae to genetic manipulations and the availability of its genome sequence have prompted researchers to study evolutionary changes in gene function and signaling pathways. These studies rely on the availability of forward genetic tools such as mutants and mapping markers. RESULTS We have computationally identified more than 30,000 polymorphisms (SNPs and indels) in C. briggsae strains AF16 and HK104. These include 1,363 SNPs that change restriction enzyme recognition sites (snip-SNPs) and 638 indels that range between 7 bp and 2 kb. We established bulk segregant and single animal-based PCR assay conditions and used these to test 107 polymorphisms. A total of 75 polymorphisms, consisting of 14 snip-SNPs and 61 indels, were experimentally confirmed with an overall success rate of 83%. The utility of polymorphisms in genetic studies was demonstrated by successful mapping of 12 mutations, including 5 that were localized to sub-chromosomal regions. Our mapping experiments have also revealed one case of a misassembled contig on chromosome 3. CONCLUSIONS We report a comprehensive set of polymorphisms in C. briggsae wild-type strains and demonstrate their use in mapping mutations. We also show that molecular markers can be useful tools to improve the C. briggsae genome sequence assembly. Our polymorphism resource promises to accelerate genetic and functional studies of C. briggsae genes.
Collapse
Affiliation(s)
- Daniel C Koboldt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Julia Staisch
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Karen Haines
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Scott E Baird
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Raymond D Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
25
|
Amrit FRG, Boehnisch CML, May RC. Phenotypic covariance of longevity, immunity and stress resistance in the caenorhabditis nematodes. PLoS One 2010; 5:e9978. [PMID: 20369008 PMCID: PMC2848519 DOI: 10.1371/journal.pone.0009978] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/08/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin-like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. METHODOLOGY/PRINCIPAL FINDINGS We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. CONCLUSIONS The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants.
Collapse
Affiliation(s)
- Francis R. G. Amrit
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Claudia M. L. Boehnisch
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Robin C. May
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
26
|
Cutter AD, Yan W, Tsvetkov N, Sunil S, Félix MA. Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode Caenorhabditis briggsae. Mol Ecol 2010; 19:798-809. [PMID: 20088888 DOI: 10.1111/j.1365-294x.2009.04491.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New genomic resources and genetic tools of the past few years have advanced the nematode genus Caenorhabditis as a model for comparative biology. However, understanding of natural genetic variation at molecular and phenotypic levels remains rudimentary for most species in this genus, and for C. briggsae in particular. Here we characterize phenotypic variation in C. briggsae's sensitivity to the potentially important and variable environmental toxin, ethanol, for globally diverse strains. We also quantify nucleotide variation in a new sample of 32 strains from four continents, including small islands, and for the closest-known relative of this species (C. sp. 9). We demonstrate that C. briggsae exhibits little heritable variation for the effects of ethanol on the norm of reaction for survival and reproduction. Moreover, C. briggsae does not differ significantly from C. elegans in our assays of its response to this substance that both species likely encounter regularly in habitats of rotting fruit and vegetation. However, we uncover drastically more molecular genetic variation than was known previously for this species, despite most strains, including all island strains, conforming to the broad biogeographic patterns described previously. Using patterns of sequence divergence between populations and between species, we estimate that the self-fertilizing mode of reproduction by hermaphrodites in C. briggsae likely evolved sometime between 0.9 and 10 million generations ago. These insights into C. briggsae's natural history and natural genetic variation greatly expand the potential of this organism as an emerging model for studies in molecular and quantitative genetics, the evolution of development, and ecological genetics.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, Canada M5S 3B2.
| | | | | | | | | |
Collapse
|
27
|
The significance of genome-wide transcriptional regulation in the evolution of stress tolerance. Evol Ecol 2010. [DOI: 10.1007/s10682-009-9345-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
New tools for investigating the comparative biology of Caenorhabditis briggsae and C. elegans. Genetics 2009; 184:853-63. [PMID: 20008572 DOI: 10.1534/genetics.109.110270] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself.
Collapse
|
29
|
Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis C, Heldin CH. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom. BMC Evol Biol 2009; 9:28. [PMID: 19192293 PMCID: PMC2657120 DOI: 10.1186/1471-2148-9-28] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
Background The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-β (TGF-β) pathway – one of the fundamental and versatile metazoan signal transduction engines. Results After an investigation of 33 genomes, we show that the emergence of the TGF-β pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-β pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-β pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Conclusion Our results challenge the view of well-conserved developmental pathways. The TGF-β signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Ogawa A, Streit A, Antebi A, Sommer RJ. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr Biol 2008; 19:67-71. [PMID: 19110431 DOI: 10.1016/j.cub.2008.11.063] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 11/27/2022]
Abstract
Under harsh environmental conditions, Caenorhabditis elegans larvae undergo arrest and form dauer larvae that can attach to other animals to facilitate dispersal. It has been argued that this phenomenon, called phoresy, represents an intermediate step toward parasitism. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage that shows striking morphological similarities to dauer larvae. Although the molecular regulation of dauer entry in C. elegans involves insulin and TGF-beta signaling, studies of TGF-beta orthologs in parasitic nematodes didn't provide evidence for a common origin of dauer and infective larvae. To identify conserved regulators between Caenorhabditis and parasitic nematodes, we used an evolutionary approach involving Pristionchus pacificus as an intermediate. We show by mutational and pharmacological analysis that Pristionchus and Caenorhabditis share the dafachronic acid-DAF-12 system as the core endocrine module for dauer formation. One dafachronic acid, Delta7-DA, has a conserved role in the mammalian parasite Strongyloides papillosus by controlling entry into the infective stage. Application of Delta7-DA blocks formation of infective larvae and results in free-living animals. Conservation of this small molecule ligand represents a fundamental link between dauer and infective larvae and might provide a general strategy for nematode parasitism.
Collapse
Affiliation(s)
- Akira Ogawa
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
31
|
Hakuna Nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity (Edinb) 2007; 100:304-15. [PMID: 18073782 DOI: 10.1038/sj.hdy.6801079] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caenorhabditis elegans and C. briggsae have many parallels in terms of morphology, life history and breeding system. Both species also share similar low levels of molecular diversity, although the global sampling of natural populations has been limited and geographically biased. In this study, we describe the first cultured isolates of C. elegans and C. briggsae from sub-Saharan Africa. We characterize these samples for patterns of nucleotide polymorphism and vulva precursor cell lineage, and conduct a series of hybrid crosses in C. briggsae to test for genetic incompatibilities. The distribution of genetic diversity confirms a lack of geographic structure to C. elegans sequences but shows genetic differentiation of C. briggsae into three distinct clades that may correspond to three latitudinal ranges. Despite low levels of molecular diversity, we find considerable variation in cell division frequency in African C. elegans for the P3.p vulva precursor cell, and in African C. briggsae for P4.p, a variation that was not previously observed in this species. Hybrid crosses did not reveal major incompatibilities between C. briggsae strains from Africa and elsewhere, and there was some evidence of inbreeding depression. These new African isolates suggest that important ecological factors may be shaping the patterns of diversity in C. briggsae, and that despite many similarities between C. elegans and C. briggsae, there may be more subtle differences in their natural histories than previously appreciated.
Collapse
|