1
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
2
|
Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci 2024; 11:1492212. [PMID: 39606030 PMCID: PMC11599741 DOI: 10.3389/fmolb.2024.1492212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Protein lysine crotonylation is a novel acylation modification discovered in 2011, which plays a key role in the regulation of various biological processes. Thousands of crotonylation sites have been identified in histone and non-histone proteins over the past decades. Crotonylation is conserved and is regulated by a series of enzymes including "writer", "eraser", and "reader". In recent years, crotonylation has received extensive attention due to its breakthrough progress in reproduction, development and pathogenesis of diseases. Here we brief the crotonylation-related enzyme systems, biological functions, and diseases caused by abnormal crotonylation, which provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
| | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Li T, Petreaca RC, Forsburg SL. Chromodomain mutation in S. pombe Kat5/Mst1 affects centromere dynamics and DNA repair. PLoS One 2024; 19:e0300732. [PMID: 38662722 PMCID: PMC11045136 DOI: 10.1371/journal.pone.0300732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that is involved in multiple cellular activities. This family is characterized in part by containing a chromodomain, a motif associated with binding methylated histones. We show that a chromodomain mutation in the S. pombe Kat5, mst1-W66R, has defects in pericentromere silencing. mst1-W66R is sensitive to camptothecin (CPT) but only at an increased temperature of 36°C, although it is proficient for growth at this temperature. We also describe a de-silencing effect at the pericentromere by CPT that is independent of RNAi and methylation machinery. We also show that mst1-W66R disrupts recruitment of proteins to repair foci in response to camptothecin-induced DNA damage. Our data suggest a function of Mst1 chromodomain in centromere heterochromatin formation and a separate role in genome-wide damage repair in CPT.
Collapse
Affiliation(s)
- Tingting Li
- Program in Molecular & Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Ruben C. Petreaca
- Program in Molecular & Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Susan L. Forsburg
- Program in Molecular & Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
4
|
Wang Y, Fan J, Zhou Z, Goldman GH, Lu L, Zhang Y. Histone acetyltransferase Sas3 contributes to fungal development, cell wall integrity, and virulence in Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0188523. [PMID: 38451077 PMCID: PMC11022558 DOI: 10.1128/aem.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Histone acetyltransferase (HAT)-mediated epigenetic modification is essential for diverse cellular processes in eukaryotes. However, the functions of HATs in the human pathogen Aspergillus fumigatus remain poorly understood. In this study, we characterized the functions of MOZ, Ybf2/Sas3, Sas2, and Tip60 (MYST)-family histone acetyltransferase something about silencing (Sas3) in A. fumigatus. Phenotypic analysis revealed that loss of Sas3 results in significant impairments in colony growth, conidiation, and virulence in the Galleria mellonella model. Subcellular localization and Western blot analysis demonstrated that Sas3 localizes to nuclei and is capable of acetylating lysine 9 and 14 of histone H3 in vivo. Importantly, we found that Sas3 is critical for the cell wall integrity (CWI) pathway in A. fumigatus as evidenced by hypersensitivity to cell wall-perturbing agents, altered cell wall thickness, and abnormal phosphorylation levels of CWI protein kinase MpkA. Furthermore, site-directed mutagenesis studies revealed that the conserved glycine residues G641 and G643 and glutamate residue E664 are crucial for the acetylation activity of Sas3. Unexpectedly, only triple mutations of Sas3 (G641A/G643A/E664A) displayed defective phenotypes similar to the Δsas3 mutant, while double or single mutations did not. This result implies that the role of Sas3 may extend beyond histone acetylation. Collectively, our findings demonstrate that MYST-family HAT Sas3 plays an important role in the fungal development, virulence, and cell wall integrity in A. fumigatus. IMPORTANCE Epigenetic modification governed by HATs is indispensable for various cellular processes in eukaryotes. Nonetheless, the precise functions of HATs in the human pathogen Aspergillus fumigatus remain elusive. In this study, we unveil the roles of MYST-family HAT Sas3 in colony growth, conidiation, virulence, and cell wall stress response in A. fumigatus. Particularly, our findings demonstrate that Sas3 can function through mechanisms unrelated to histone acetylation, as evidenced by site-directed mutagenesis experiments. Overall, this study broadens our understanding of the regulatory mechanism of HATs in fungal pathogens.
Collapse
Affiliation(s)
- Yamei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jialu Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhengyu Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Kwon JY, Choi YH, Lee MW, Yu JH, Shin KS. The MYST Family Histone Acetyltransferase SasC Governs Diverse Biological Processes in Aspergillus fumigatus. Cells 2023; 12:2642. [PMID: 37998377 PMCID: PMC10670148 DOI: 10.3390/cells12222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The conserved MYST proteins form the largest family of histone acetyltransferases (HATs) that acetylate lysines within the N-terminal tails of histone, enabling active gene transcription. Here, we have investigated the biological and regulatory functions of the MYST family HAT SasC in the opportunistic human pathogenic fungus Aspergillus fumigatus using a series of genetic, biochemical, pathogenic, and transcriptomic analyses. The deletion (Δ) of sasC results in a drastically reduced colony growth, asexual development, spore germination, response to stresses, and the fungal virulence. Genome-wide expression analyses have revealed that the ΔsasC mutant showed 2402 significant differentially expressed genes: 1147 upregulated and 1255 downregulated. The representative upregulated gene resulting from ΔsasC is hacA, predicted to encode a bZIP transcription factor, whereas the UV-endonuclease UVE-1 was significantly downregulated by ΔsasC. Furthermore, our Western blot analyses suggest that SasC likely catalyzes the acetylation of H3K9, K3K14, and H3K29 in A. fumigatus. In conclusion, SasC is associated with diverse biological processes and can be a potential target for controlling pathogenic fungi.
Collapse
Affiliation(s)
- Jae-Yoon Kwon
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Young-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| |
Collapse
|
6
|
Ji P, Zhang G, Guo Y, Song H, Yuan X, Hu X, Guo Z, Xia P, Shen R, Wang D. Protein crotonylation: An emerging regulator in DNA damage response. Life Sci 2023; 331:122059. [PMID: 37652154 DOI: 10.1016/j.lfs.2023.122059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DNA damage caused by internal or external factors lead to increased genomic instability and various diseases. The DNA damage response (DDR) is a crucial mechanism that maintaining genomic stability through detecting and repairing DNA damage timely. Post-translational modifications (PTMs) play significant roles in regulation of DDR. Among the present PTMs, crotonylation has emerged as a novel identified modification that is involved in a wide range of biological processes including gene expression, spermatogenesis, cell cycle, and the development of diverse diseases. In the past decade, numerous crotonylation sites have been identified in histone and non-histone proteins, leading to a more comprehensive and deep understanding of the function and mechanisms in protein crotonylation. This review provides a comprehensive overview of the regulatory mechanisms of protein crotonylation and the effect of crotonylation in DDR. Furthermore, the effect of protein crotonylation in tumor development and progression is presented, to inspire and explore the novel strategies for tumor therapy.
Collapse
Affiliation(s)
- Pengfei Ji
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xiaohui Hu
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zhao Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Peng Xia
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
7
|
Lemon LD, Kannan S, Mo KW, Adams M, Choi HG, Gulka AOD, Withers ES, Nurelegne HT, Gomez V, Ambrocio RE, Tumminkatti R, Lee RS, Wan M, Fasken MB, Spangle JM, Corbett AH. A Saccharomyces cerevisiae model and screen to define the functional consequences of oncogenic histone missense mutations. G3 GENES|GENOMES|GENETICS 2022; 12:6585874. [PMID: 35567477 PMCID: PMC9258546 DOI: 10.1093/g3journal/jkac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Somatic missense mutations in histone genes turn these essential proteins into oncohistones, which can drive oncogenesis. Understanding how missense mutations alter histone function is challenging in mammals as mutations occur in a single histone gene. For example, described oncohistone mutations predominantly occur in the histone H3.3 gene, despite the human genome encoding 15 H3 genes. To understand how oncogenic histone missense mutations alter histone function, we leveraged the budding yeast model, which contains only 2 H3 genes, to explore the functional consequences of oncohistones H3K36M, H3G34W, H3G34L, H3G34R, and H3G34V. Analysis of cells that express each of these variants as the sole copy of H3 reveals that H3K36 mutants show different drug sensitivities compared to H3G34 mutants. This finding suggests that changes to proximal amino acids in the H3 N-terminal tail alter distinct biological pathways. We exploited the caffeine-sensitive growth of H3K36-mutant cells to perform a high copy suppressor screen. This screen identified genes linked to histone function and transcriptional regulation, including Esa1, a histone H4/H2A acetyltransferase; Tos4, a forkhead-associated domain-containing gene expression regulator; Pho92, an N6-methyladenosine RNA-binding protein; and Sgv1/Bur1, a cyclin-dependent kinase. We show that the Esa1 lysine acetyltransferase activity is critical for suppression of the caffeine-sensitive growth of H3K36R-mutant cells while the previously characterized binding interactions of Tos4 and Pho92 are not required for suppression. This screen identifies pathways that could be altered by oncohistone mutations and highlights the value of yeast genetics to identify pathways altered by such mutations.
Collapse
Affiliation(s)
- Laramie D Lemon
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Sneha Kannan
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Kim Wai Mo
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Miranda Adams
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
- Graduate Program in Cancer Biology, Emory University , Atlanta, GA 30322, USA
| | - Haley G Choi
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
| | - Alexander O D Gulka
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University , Atlanta, GA 30322, USA
| | - Elise S Withers
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | | | - Valeria Gomez
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Reina E Ambrocio
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Rhea Tumminkatti
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Richard S Lee
- Department of Biology, Emory University , Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
| | - Morris Wan
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Emory University , Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University , Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Jiang G, Li C, Lu M, Lu K, Li H. Protein lysine crotonylation: past, present, perspective. Cell Death Dis 2021; 12:703. [PMID: 34262024 PMCID: PMC8280118 DOI: 10.1038/s41419-021-03987-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Lysine crotonylation has been discovered in histone and non-histone proteins and found to be involved in diverse diseases and biological processes, such as neuropsychiatric disease, carcinogenesis, spermatogenesis, tissue injury, and inflammation. The unique carbon–carbon π-bond structure indicates that lysine crotonylation may use distinct regulatory mechanisms from the widely studied other types of lysine acylation. In this review, we discussed the regulation of lysine crotonylation by enzymatic and non-enzymatic mechanisms, the recognition of substrate proteins, the physiological functions of lysine crotonylation and its cross-talk with other types of modification. The tools and methods for prediction and detection of lysine crotonylation were also described.
Collapse
Affiliation(s)
- Gaoyue Jiang
- West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Lim JY, Park YH, Pyon YH, Yang JM, Yoon JY, Park SJ, Lee H, Park HM. The LAMMER kinase is involved in morphogenesis and response to cell wall- and DNA-damaging stresses in Candida albicans. Med Mycol 2020; 58:240-247. [PMID: 31100152 DOI: 10.1093/mmy/myz049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Dual specificity LAMMER kinase has been reported to be conserved across species ranging from yeasts to animals and has multiple functions. Candida albicans undergoes dimorphic switching between yeast cells and hyphal growth forms as its key virulence factors. Deletion of KNS1, which encodes for LAMMER kinase in C. albicans, led to pseudohyphal growth on YPD media and defects in filamentous growth both on spider and YPD solid media containing 10% serum. These cells exhibited expanded central wrinkled regions and specifically reduced peripheral filaments. Among the several stresses tested, the kns1Δ strains showed sensitivity to cell-wall and DNA-replicative stress. Under fluorescent microscopy, an increase in chitin decomposition was observed near the bud necks and septa in kns1Δ cells. When the expression levels of genes for cell wall integrity (CWI) and the DNA repair mechanism were tested, the kns1 double-deletion cells showed abnormal patterns compared to wild-type cells; The transcript levels of genes for glycosylphosphatidylinositol (GPI)-anchored proteins were increased upon calcofluor white (CFW) treatment. Under DNA replicative stress, the expression of MluI-cell cycle box binding factor (MBF)-targeted genes, which are expressed during the G1/S transition in the cell cycle, was not increased in the kns1 double-deletion cells. This strain showed increased adhesion to the surface of an agar plate and zebrafish embryo. These results demonstrate that Kns1 is involved in dimorphic transition, cell wall integrity, response to DNA replicative stress, and adherence to the host cell surface in C. albicans.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Hee Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young-Hee Pyon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Min Yang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Ja-Young Yoon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Sun Joo Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Hak Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Kollenstart L, de Groot AJL, Janssen GMC, Cheng X, Vreeken K, Martino F, Côté J, van Veelen PA, van Attikum H. Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. J Biol Chem 2019; 294:20122-20134. [PMID: 31699900 PMCID: PMC6937567 DOI: 10.1074/jbc.ra119.010302] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Histone post-translational modifications (PTMs) are critical for processes such as transcription. The more notable among these are the nonacetyl histone lysine acylation modifications such as crotonylation, butyrylation, and succinylation. However, the biological relevance of these PTMs is not fully understood because their regulation is largely unknown. Here, we set out to investigate whether the main histone acetyltransferases in budding yeast, Gcn5 and Esa1, possess crotonyltransferase activity. In vitro studies revealed that the Gcn5-Ada2-Ada3 (ADA) and Esa1-Yng2-Epl1 (Piccolo NuA4) histone acetyltransferase complexes have the capacity to crotonylate histones. Mass spectrometry analysis revealed that ADA and Piccolo NuA4 crotonylate lysines in the N-terminal tails of histone H3 and H4, respectively. Functionally, we show that crotonylation selectively affects gene transcription in vivo in a manner dependent on Gcn5 and Esa1. Thus, we identify the Gcn5- and Esa1-containing ADA and Piccolo NuA4 complexes as bona fide crotonyltransferases that promote crotonylation-dependent transcription.
Collapse
Affiliation(s)
- Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anton J L de Groot
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC, Leiden, The Netherlands
| | - Xue Cheng
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Axe Oncologie, Québec City, QC G1R 3S3, Canada
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Fabrizio Martino
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (Spanish National Research Council), (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Axe Oncologie, Québec City, QC G1R 3S3, Canada
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC, Leiden, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
12
|
Hodges AJ, Plummer DA, Wyrick JJ. NuA4 acetyltransferase is required for efficient nucleotide excision repair in yeast. DNA Repair (Amst) 2018; 73:91-98. [PMID: 30473425 DOI: 10.1016/j.dnarep.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.
Collapse
Affiliation(s)
- Amelia J Hodges
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
13
|
Liu X, Wei W, Liu Y, Yang X, Wu J, Zhang Y, Zhang Q, Shi T, Du JX, Zhao Y, Lei M, Zhou JQ, Li J, Wong J. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discov 2017; 3:17016. [PMID: 28580166 PMCID: PMC5441097 DOI: 10.1038/celldisc.2017.16] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Recent studies indicate that histones are subjected to various types of acylation including acetylation, propionylation and crotonylation. CBP and p300 have been shown to catalyze multiple types of acylation but are not conserved in evolution, raising the question as to the existence of other enzymes for histone acylation and the functional relationship between well-characterized acetylation and other types of acylation. In this study, we focus on enzymes catalyzing histone crotonylation and demonstrate that among the known histone acetyltransferases, MOF, in addition to CBP and p300, also possesses histone crotonyltransferase (HCT) activity and this activity is conserved in evolution. We provide evidence that CBP and p300 are the major HCTs in mammalian cells. Furthermore, we have generated novel CBP/p300 mutants with deficient histone acetyltransferase but competent HCT activity. These CBP/p300 mutants can substitute the endogenous CBP/p300 to enhance transcriptional activation in the cell, which correlates with enhanced promoter crotonylation and recruitment of DPF2, a selective reader for crotonylated histones. Taken together, we have identified MOF as an evolutionarily conserved HCT and provide first cellular evidence that CBP/p300 can facilitate transcriptional activation through histone acylation other than acetylation, thus supporting an emerging role for the non-acetylation type of histone acylation in transcription and possibly other chromatin-based processes.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xueli Yang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Wu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiao Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Ming Lei
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Joint Research Center for Translational Medicine, East China Normal University and Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
14
|
Chromatin Regulation by the NuA4 Acetyltransferase Complex Is Mediated by Essential Interactions Between Enhancer of Polycomb (Epl1) and Esa1. Genetics 2017; 205:1125-1137. [PMID: 28108589 DOI: 10.1534/genetics.116.197830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Enzymes that modify and remodel chromatin act in broadly conserved macromolecular complexes. One key modification is the dynamic acetylation of histones and other chromatin proteins by opposing activities of acetyltransferase and deacetylase complexes. Among acetyltransferases, the NuA4 complex containing Tip60 or its Saccharomyces cerevisiae ortholog Esa1 is of particular significance because of its roles in crucial genomic processes including DNA damage repair and transcription. The catalytic subunit Esa1 is essential, as are five noncatalytic NuA4 subunits. We found that of the noncatalytic subunits, deletion of Enhancer of polycomb (Epl1), but not the others, can be bypassed by loss of a major deacetylase complex, a property shared by Esa1 Noncatalytic complex subunits can be critical for complex assembly, stability, genomic targeting, substrate specificity, and regulation. Understanding the essential role of Epl1 has been previously limited, a limitation now overcome by the discovery of its bypass suppression. Here, we present a comprehensive in vivo study of Epl1 using the powerful tool of suppression combined with transcriptional and mutational analyses. Our results highlight functional parallels between Epl1 and Esa1 and further illustrate that the structural role of Epl1 is important for promotion of Esa1 activity. This conclusion is strengthened by our dissection of Epl1 domains required in vivo for interaction with specific NuA4 subunits, histone acetylation, and chromatin targeting. These results provide new insights for the conserved, essential nature of Epl1 and its homologs, such as EPC1/2 in humans, which is frequently altered in cancers.
Collapse
|
15
|
IIZUKA M, SUSA T, TAMAMORI-ADACHI M, OKINAGA H, OKAZAKI T. Intrinsic ubiquitin E3 ligase activity of histone acetyltransferase Hbo1 for estrogen receptor α. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:498-510. [PMID: 28769019 PMCID: PMC5713178 DOI: 10.2183/pjab.93.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Estrogen receptors (ER) are important transcription factors to relay signals from estrogen and to regulate proliferation of some of breast cancers. The cycling of estrogen-induced DNA binding and ubiquitin-linked proteolysis of ER potentiates ER-mediated transcription. Indeed, several transcriptional coactivators for ER-dependent transcription ubiquitinate ER. Histone acetyltransferase (HAT) Hbo1/KAT7/MYST2, involved in global histone acetylation, DNA replication, transcription, and cellular proliferation, promotes proteasome-dependent degradation of ERα through ubiquitination. However, molecular mechanism for ubiquitination of ERα by Hbo1 is unknown. Here we report the intrinsic ubiquitin E3 ligase activity of Hbo1 toward the ERα. The ligand, estradiol-17β, inhibited E3 ligase activity of Hbo1 for ERα in vitro, whereas hyperactive ERα mutants from metastatic breast cancers resistant to hormonal therapy, were better substrates for ERα ubiquitination by Hbo1. Hbo1 knock-down caused increase in ERα expression. Hbo1 is another ERα coactivator that ubiquitinates ERα.
Collapse
Affiliation(s)
- Masayoshi IIZUKA
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Takao SUSA
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Hiroko OKINAGA
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomoki OKAZAKI
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Salah Ud-Din AIM, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 2016; 17:E1018. [PMID: 27367672 PMCID: PMC4964394 DOI: 10.3390/ijms17071018] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Alexandra Tikhomirova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
17
|
Abstract
Histone acetylation is a key regulatory feature for chromatin that is established by opposing enzymatic activities of lysine acetyltransferases (KATs/HATs) and deacetylases (KDACs/HDACs). Esa1, like its human homolog Tip60, is an essential MYST family enzyme that acetylates histones H4 and H2A and other nonhistone substrates. Here we report that the essential requirement for ESA1 in Saccharomyces cerevisiae can be bypassed upon loss of Sds3, a noncatalytic subunit of the Rpd3L deacetylase complex. By studying the esa1∆ sds3∆ strain, we conclude that the essential function of Esa1 is in promoting the cellular balance of acetylation. We demonstrate this by fine-tuning acetylation through modulation of HDACs and the histone tails themselves. Functional interactions between Esa1 and HDACs of class I, class II, and the Sirtuin family define specific roles of these opposing activities in cellular viability, fitness, and response to stress. The fact that both increased and decreased expression of the ESA1 homolog TIP60 has cancer associations in humans underscores just how important the balance of its activity is likely to be for human well-being.
Collapse
|
18
|
The microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat Struct Mol Biol 2013; 20:756-62. [PMID: 23624859 DOI: 10.1038/nsmb.2555] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/11/2013] [Indexed: 12/20/2022]
Abstract
Tau proteins are the building blocks of neurofibrillary tangles (NFTs) found in a range of neurodegenerative tauopathies, including Alzheimer's disease. Recently, we demonstrated that tau is extensively post-translationally modified by lysine acetylation, which impairs normal tau function and promotes pathological aggregation. Identifying the enzymes that mediate tau acetylation could provide targets for future therapies aimed at reducing the burden of acetylated tau. Here, we report that mammalian tau proteins possess intrinsic enzymatic activity capable of catalyzing self-acetylation. Functional mapping of tau acetyltransferase activity followed by biochemical analysis revealed that tau uses catalytic cysteine residues in the microtubule-binding domain to facilitate tau lysine acetylation, thus suggesting a mechanism similar to that employed by MYST-family acetyltransferases. The identification of tau as an acetyltransferase provides a framework to further understand tau pathogenesis and highlights tau enzymatic activity as a potential therapeutic target.
Collapse
|
19
|
mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci U S A 2013; 110:E1641-50. [PMID: 23572591 DOI: 10.1073/pnas.1218515110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent global proteomic and genomic studies have determined that lysine acetylation is a highly abundant posttranslational modification. The next challenge is connecting lysine acetyltransferases (KATs) to their cellular targets. We hypothesize that proteins that physically interact with KATs may not only predict the cellular function of the KATs but may be acetylation targets. We have developed a mass spectrometry-based method that generates a KAT protein interaction network from which we simultaneously identify both in vivo acetylation sites and in vitro acetylation sites. This modified chromatin-immunopurification coupled to an in vitro KAT assay with mass spectrometry (mChIP-KAT-MS) was applied to the Saccharomyces cerevisiae KAT nucleosome acetyltransferase of histone H4 (NuA4). Using mChIP-KAT-MS, we define the NuA4 interactome and in vitro-enriched acetylome, identifying over 70 previously undescribed physical interaction partners for the complex and over 150 acetyl lysine residues, of which 108 are NuA4-specific in vitro sites. Through this method we determine NuA4 acetylation of its own subunit Epl1 is a means of self-regulation and identify a unique link between NuA4 and the spindle pole body. Our work demonstrates that this methodology may serve as a valuable tool in connecting KATs with their cellular targets.
Collapse
|
20
|
Piccolo NuA4-catalyzed acetylation of nucleosomal histones: critical roles of an Esa1 Tudor/chromo barrel loop and an Epl1 enhancer of polycomb A (EPcA) basic region. Mol Cell Biol 2012; 33:159-69. [PMID: 23109429 DOI: 10.1128/mcb.01131-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Piccolo NuA4 is an essential yeast histone acetyltransferase (HAT) complex that targets histones H4 and H2A in nucleosome substrates. While Piccolo NuA4's catalytic subunit Esa1 alone is unable to acetylate nucleosomal histones, its accessory subunits, Yng2 and Epl1, enable Esa1 to bind to and to act on nucleosomes. We previously determined that the Tudor domain of Esa1 and the EPcA homology domain of Epl1 play critical roles in Piccolo NuA4's ability to act on the nucleosome. In this work, we pinpoint a loop within the Esa1 Tudor domain and a short basic region at the N terminus of the Epl1 EPcA domain as necessary for this nucleosomal HAT activity. We also show that this Esa1 Tudor domain loop region is positioned close to nucleosomal DNA and that the Epl1 EPcA basic region is in proximity to the N-terminal histone H2A tail, the globular region of histone H4, and also to nucleosomal DNA when Piccolo NuA4 interacts with the nucleosome. Since neither region identified is required for Piccolo NuA4 to bind to nucleosomes and yet both are needed to acetylate nucleosomes, these regions may function after the enzyme binds nucleosomes to disengage substrate histone tails from nucleosomal DNA.
Collapse
|
21
|
Abstract
New research characterizes a tubulin acetyltransferase that acts inside the microtubule lumen and has two separable activities that greatly affect microtubule architecture and functionality.
Collapse
|
22
|
Suppression analysis of esa1 mutants in Saccharomyces cerevisiae links NAB3 to transcriptional silencing and nucleolar functions. G3-GENES GENOMES GENETICS 2012; 2:1223-32. [PMID: 23050233 PMCID: PMC3464115 DOI: 10.1534/g3.112.003558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 11/21/2022]
Abstract
The acetyltransferase Esa1 is essential in the yeast Saccharomyces cerevisiae and plays a critical role in multiple cellular processes. The most well-defined targets for Esa1 are lysine residues on histones. However, an increasing number of nonhistone proteins have recently been identified as substrates of Esa1. In this study, four genes (LYS20, LEU2, VAP1, and NAB3) were identified in a genetic screen as high-copy suppressors of the conditional temperature-sensitive lethality of an esa1 mutant. When expressed from a high-copy plasmid, each of these suppressors rescued the temperature-sensitivity of an esa1 mutant. Only NAB3 overexpression also rescued the rDNA-silencing defects of an esa1 mutant. Strengthening the connections between NAB3 and ESA1, mutants of nab3 displayed several phenotypes similar to those of esa1 mutants, including increased sensitivity to the topoisomerase I inhibitor camptothecin and defects in rDNA silencing and cell-cycle progression. In addition, nuclear localization of Nab3 was altered in the esa1 mutant. Finally, posttranslational acetylation of Nab3 was detected in vivo and found to be influenced by ESA1.
Collapse
|
23
|
Abstract
Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER) is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4) or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.
Collapse
|
24
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
25
|
Konarzewska P, Esposito M, Shen CH. INO1 induction requires chromatin remodelers Ino80p and Snf2p but not the histone acetylases. Biochem Biophys Res Commun 2012; 418:483-8. [PMID: 22281492 DOI: 10.1016/j.bbrc.2012.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/08/2012] [Indexed: 11/19/2022]
Abstract
Transcriptional co-activators contribute to gene expression through different mechanisms. We used various biochemical tools available for Saccharomyces cerevisiae to examine the mechanism of INO1 expression. INO1 encodes inositol-3-phosphate synthase, which catalyzes the rate-limiting step in the synthesis of inositol, a key player in phospholipid biosynthesis. Herein, we had demonstrated that the recruitment of histone acetylases Gcn5p and Esa1p mainly relied on the presence of transcriptional activator Ino2p during INO1 activation. However, the presence of the chromatin remodelers, Ino80p and Snf2p, may contribute to the additive effect of Gcn5p recruitment. We also showed that the recruitment of chromatin remodelers, Ino80p and Snf2p, is independent of the presence of histone acetylases. Furthermore, INO1 expression can be activated exclusively by the activator and chromatin remodelers, suggesting a dispensable role of histone acetylases in INO1 induction. Therefore, our data provide a mechanism for cross talk within transcriptional co-activators during INO1 activation.
Collapse
Affiliation(s)
- Paulina Konarzewska
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, United States
| | | | | |
Collapse
|
26
|
Genome-wide integration on transcription factors, histone acetylation and gene expression reveals genes co-regulated by histone modification patterns. PLoS One 2011; 6:e22281. [PMID: 21829453 PMCID: PMC3146477 DOI: 10.1371/journal.pone.0022281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 06/22/2011] [Indexed: 12/26/2022] Open
Abstract
N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms under control of histone modification are important but remain largely unclear, despite of emerging datasets for comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs), which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our method, which was implemented in MATLAB (http://www.mathworks.com/), is available from the supporting page for this paper: http://www.bic.kyoto-u.ac.jp/pathway/natsume/hm_detector.htm.
Collapse
|
27
|
Schiemann AH, Li F, Weake VM, Belikoff EJ, Klemmer KC, Moore SA, Scott MJ. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila. BMC Mol Biol 2010; 11:80. [PMID: 21062452 PMCID: PMC2988783 DOI: 10.1186/1471-2199-11-80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/09/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In male Drosophila melanogaster, the male specific lethal (MSL) complex is somehow responsible for a two-fold increase in transcription of most X-linked genes, which are enriched for histone H4 acetylated at lysine 16 (H4K16ac). This acetylation requires MOF, a histone acetyltransferase that is a component of the MSL complex. MOF also associates with the non-specific lethal or NSL complex. The MSL complex is bound within active genes on the male X chromosome with a 3' bias. In contrast, the NSL complex is enriched at promoter regions of many autosomal and X-linked genes in both sexes. In this study we have investigated the role of MOF as a transcriptional activator. RESULTS MOF was fused to the DNA binding domain of Gal4 and targeted to the promoter region of UAS-reporter genes in Drosophila. We found that expression of a UAS-red fluorescent protein (DsRed) reporter gene was strongly induced by Gal4-MOF. However, DsRed RNA levels were about seven times higher in female than male larvae. Immunostaining of polytene chromosomes showed that Gal4-MOF co-localized with MSL1 to many sites on the X chromosome in male but not female nuclei. However, in female nuclei that express MSL2, Gal4-MOF co-localized with MSL1 to many sites on polytene chromosomes but DsRed expression was reduced. Mutation of conserved active site residues in MOF (Glu714 and Cys680) reduced HAT activity in vitro and UAS-DsRed activation in Drosophila. In the presence of Gal4-MOF, H4K16ac levels were enriched over UAS-lacZ and UAS-arm-lacZ reporter genes. The latter utilizes the constitutive promoter from the arm gene to drive lacZ expression. In contrast to the strong induction of UAS-DsRed expression, UAS-arm-lacZ expression increased by about 2-fold in both sexes. CONCLUSIONS Targeting MOF to reporter genes led to transcription enhancement and acetylation of histone H4 at lysine 16. Histone acetyltransferase activity was required for the full transcriptional response. Incorporation of Gal4-MOF into the MSL complex in males led to a lower transcription enhancement of UAS-DsRed but not UAS-arm-lacZ genes. We discuss how association of Gal4-MOF with the MSL or NSL proteins could explain our results.
Collapse
Affiliation(s)
- Anja H Schiemann
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
28
|
Scott EM, Pillus L. Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage. Genes Dev 2010; 24:1903-13. [PMID: 20810648 DOI: 10.1101/gad.1935910] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzyme homocitrate synthase (HCS) catalyzes the first step in lysine biosynthesis, and early biochemical data placed it in the cytoplasm or mitochondria, where most amino acid synthesis occurs. It was therefore surprising when refined fractionation techniques and specific immunoreagents clearly demonstrated its localization to the nucleus. These observations raised the question of whether HCS had a function within the nucleus independent of lysine synthesis. We demonstrate that HCS encoded by LYS20 in yeast is linked to the key process of DNA damage repair through the essential MYST family histone acetyltransferase Esa1 and the H2A.Z histone variant. This discovery indicates that HCS has a role in addition to amino acid synthesis, and that it functions in nuclear activities involving chromatin regulation that are distinct from its previously established role in lysine biosynthesis. The chromatin-linked roles are dependent on nuclear localization of Lys20, but are independent of HCS catalytic activity. Thus, Lys20 appears to have evolved as a bifunctional protein that connects cellular metabolism with chromatin functions.
Collapse
Affiliation(s)
- Erin M Scott
- Division of Biological Sciences, Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
29
|
Vonlaufen N, Naguleswaran A, Coppens I, Sullivan WJ. MYST family lysine acetyltransferase facilitates ataxia telangiectasia mutated (ATM) kinase-mediated DNA damage response in Toxoplasma gondii. J Biol Chem 2010; 285:11154-61. [PMID: 20159970 DOI: 10.1074/jbc.m109.066134] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MYST family of lysine acetyltransferases (KATs) function in a wide variety of cellular operations, including gene regulation and the DNA damage response. Here we report the characterization of the second MYST family KAT in the protozoan parasite Toxoplasma gondii (TgMYST-B). Toxoplasma causes birth defects and is an opportunistic pathogen in the immunocompromised, the latter due to its ability to convert into a latent cyst (bradyzoite). We demonstrate that TgMYST-B can gain access to the parasite nucleus and acetylate histones. Overexpression of recombinant, tagged TgMYST-B reduces growth rate in vitro and confers protection from a DNA-alkylating agent. Expression of mutant TgMYST-B produced no growth defect and failed to protect against DNA damage. We demonstrate that cells overexpressing TgMYST-B have increased levels of ataxia telangiectasia mutated (ATM) kinase and phosphorylated H2AX and that TgMYST-B localizes to the ATM kinase gene. Pharmacological inhibitors of ATM kinase or KATs reverse the slow growth phenotype seen in parasites overexpressing TgMYST-B. These studies are the first to show that a MYST KAT contributes to ATM kinase gene expression, further illuminating the mechanism of how ATM kinase is up-regulated to respond to DNA damage.
Collapse
Affiliation(s)
- Nathalie Vonlaufen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
30
|
Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae. Genetics 2009; 183:149-60. [PMID: 19596907 DOI: 10.1534/genetics.109.103846] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone modifications that regulate chromatin-dependent processes are catalyzed by multisubunit complexes. These can function in both targeting activities to specific genes and in regulating genomewide levels of modifications. In Saccharomyces cerevisiae, Esa1 and Rpd3 have opposing enzymatic activities and are catalytic subunits of multiple chromatin modifying complexes with key roles in processes such as transcriptional regulation and DNA repair. Esa1 is an essential histone acetyltransferase that belongs to the highly conserved MYST family. This study presents evidence that the yeast histone deacetylase gene, RPD3, when deleted, suppressed esa1 conditional mutant phenotypes. Deletion of RPD3 reversed rDNA and telomeric silencing defects and restored global H4 acetylation levels, in addition to rescuing the growth defect of a temperature-sensitive esa1 mutant. This functional genetic interaction between ESA1 and RPD3 was mediated through the Rpd3L complex. The suppression of esa1's growth defect by disruption of Rpd3L was dependent on lysine 12 of histone H4. We propose a model whereby Esa1 and Rpd3L act coordinately to control the acetylation of H4 lysine 12 to regulate transcription, thereby emphasizing the importance of dynamic acetylation and deacetylation of this particular histone residue in maintaining cell viability.
Collapse
|
31
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|