1
|
Schember I, Reid W, Sterling-Lentsch G, Halfon MS. Conserved and novel enhancers in the Aedes aegypti single-minded locus recapitulate embryonic ventral midline gene expression. PLoS Genet 2024; 20:e1010891. [PMID: 38683842 PMCID: PMC11081499 DOI: 10.1371/journal.pgen.1010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A. aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - William Reid
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Geyenna Sterling-Lentsch
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York, United States of America
| |
Collapse
|
2
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
3
|
Vivekanand P. Lessons from Drosophila Pointed, an ETS family transcription factor and key nuclear effector of the RTK signaling pathway. Genesis 2018; 56:e23257. [PMID: 30318758 DOI: 10.1002/dvg.23257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022]
Abstract
The ETS family of transcription factors are evolutionarily conserved throughout the metazoan lineage and are critical for regulating cellular processes such as proliferation, differentiation, apoptosis, angiogenesis, and migration. All members have an ETS DNA binding domain, while a subset also has a protein-protein interaction domain called the SAM domain. Pointed (Pnt), an ETS transcriptional activator functions downstream of the receptor tyrosine kinase (RTK) signaling pathway to regulate diverse processes during the development of Drosophila. This review highlights the indispensable role that Pnt plays in regulating normal development and how continued investigation into its function and regulation will provide key mechanistic insight into understanding why the de-regulation of its vertebrate orthologs, ETS1 and ETS2 results in cancer.
Collapse
|
4
|
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression. Dev Biol 2014; 392:466-82. [PMID: 24854999 DOI: 10.1016/j.ydbio.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
Abstract
Transcriptional enhancers integrate information derived from transcription factor binding to control gene expression. One key question concerns the extent of trans- and cis-regulatory variation in how co-expressed genes are controlled. The Drosophila CNS midline cells constitute a group of neurons and glia in which expression changes can be readily characterized during specification and differentiation. Using a transgenic approach, we compare the cis-regulation of multiple genes expressed in the Drosophila CNS midline primordium cells, and show that while the expression patterns may appear alike, the target genes are not equivalent in how these common expression patterns are achieved. Some genes utilize a single enhancer that promotes expression in all midline cells, while others utilize multiple enhancers with distinct spatial, temporal, and quantitative contributions. Two regulators, Single-minded and Notch, play key roles in controlling early midline gene expression. While Single-minded is expected to control expression of most, if not all, midline primordium-expressed genes, the role of Notch in directly controlling midline transcription is unknown. Midline primordium expression of the rhomboid gene is dependent on cell signaling by the Notch signaling pathway. Mutational analysis of a rhomboid enhancer reveals at least 5 distinct types of functional cis-control elements, including a binding site for the Notch effector, Suppressor of Hairless. The results suggest a model in which Notch/Suppressor of Hairless levels are insufficient to activate rhomboid expression by itself, but does so in conjunction with additional factors, some of which, including Single-minded, provide midline specificity to Notch activation. Similarly, a midline glial enhancer from the argos gene, which is dependent on EGF/Spitz signaling, is directly regulated by contributions from both Pointed, the EGF transcriptional effector, and Single-minded. In contrast, midline primordium expression of other genes shows a strong dependence on Single-minded and varying combinations of additional transcription factors. Thus, Single-minded directly regulates midline primordium-expressed genes, but in some cases plays a primary role in directing target gene midline expression, and in others provides midline specificity to cell signaling inputs.
Collapse
|
5
|
A comparison of midline and tracheal gene regulation during Drosophila development. PLoS One 2014; 9:e85518. [PMID: 24465586 PMCID: PMC3896416 DOI: 10.1371/journal.pone.0085518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
Within the Drosophila embryo, two related bHLH-PAS proteins, Single-minded and Trachealess, control development of the central nervous system midline and the trachea, respectively. These two proteins are bHLH-PAS transcription factors and independently form heterodimers with another bHLH-PAS protein, Tango. During early embryogenesis, expression of Single-minded is restricted to the midline and Trachealess to the trachea and salivary glands, whereas Tango is ubiquitously expressed. Both Single-minded/Tango and Trachealess/Tango heterodimers bind to the same DNA sequence, called the CNS midline element (CME) within cis-regulatory sequences of downstream target genes. While Single-minded/Tango and Trachealess/Tango activate some of the same genes in their respective tissues during embryogenesis, they also activate a number of different genes restricted to only certain tissues. The goal of this research is to understand how these two related heterodimers bind different enhancers to activate different genes, thereby regulating the development of functionally diverse tissues. Existing data indicates that Single-minded and Trachealess may bind to different co-factors restricted to various tissues, causing them to interact with the CME only within certain sequence contexts. This would lead to the activation of different target genes in different cell types. To understand how the context surrounding the CME is recognized by different bHLH-PAS heterodimers and their co-factors, we identified and analyzed novel enhancers that drive midline and/or tracheal expression and compared them to previously characterized enhancers. In addition, we tested expression of synthetic reporter genes containing the CME flanked by different sequences. Taken together, these experiments identify elements overrepresented within midline and tracheal enhancers and suggest that sequences immediately surrounding a CME help dictate whether a gene is expressed in the midline or trachea.
Collapse
|
6
|
Pearson JC, Watson JD, Crews ST. Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer. Dev Biol 2012; 366:420-32. [PMID: 22537497 DOI: 10.1016/j.ydbio.2012.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
The Drosophila Zelda transcription factor plays an important role in regulating transcription at the embryonic maternal-to-zygotic transition. However, expression of zelda continues throughout embryogenesis in cells including the developing CNS and trachea, but little is known about its post-blastoderm functions. In this paper, it is shown that zelda directly controls CNS midline and tracheal expression of the link (CG13333) gene, as well as link blastoderm expression. The link gene contains a 5' enhancer with multiple Zelda TAGteam binding sites that in vivo mutational studies show are required for link transcription. The link enhancer also has a binding site for the Single-minded:Tango and Trachealess:Tango bHLH-PAS proteins that also influences link midline and tracheal expression. These results provide an example of how a transcription factor (Single-minded or Trachealess) can interact with distinct co-regulatory proteins (Zelda or Sox/POU-homeodomain proteins) to control a similar pattern of expression of different target genes in a mechanistically different manner. While zelda and single-minded midline expression is well-conserved in Drosophila, midline expression of link is not well-conserved. Phylogenetic analysis of link expression suggests that ~60 million years ago, midline expression was nearly or completely absent, and first appeared in the melanogaster group (including D. melanogaster, D. yakuba, and D. erecta) >13 million years ago. The differences in expression are due, in part, to sequence polymorphisms in the link enhancer and likely due to altered binding of multiple transcription factors. Less than 6 million years ago, a second change occurred that resulted in high levels of expression in D. melanogaster. This change may be due to alterations in a putative Zelda binding site. Within the CNS, the zelda gene is alternatively spliced beginning at mid-embryogenesis into transcripts that encode a Zelda isoform missing three zinc fingers from the DNA binding domain. This may result in a protein with altered, possibly non-functional, DNA-binding properties. In summary, Zelda collaborates with bHLH-PAS proteins to directly regulate midline and tracheal expression of an evolutionary dynamic enhancer in the post-blastoderm embryo.
Collapse
Affiliation(s)
- Joseph C Pearson
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
7
|
Wheeler SR, Pearson JC, Crews ST. Time-lapse imaging reveals stereotypical patterns of Drosophila midline glial migration. Dev Biol 2012; 361:232-44. [PMID: 22061481 PMCID: PMC3246554 DOI: 10.1016/j.ydbio.2011.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/16/2011] [Accepted: 10/08/2011] [Indexed: 11/17/2022]
Abstract
The Drosophila CNS midline glia (MG) are multifunctional cells that ensheath and provide trophic support to commissural axons, and direct embryonic development by employing a variety of signaling molecules. These glia consist of two functionally distinct populations: the anterior MG (AMG) and posterior MG (PMG). Only the AMG ensheath axon commissures, whereas the function of the non-ensheathing PMG is unknown. The Drosophila MG have proven to be an excellent system for studying glial proliferation, cell fate, apoptosis, and axon-glial interactions. However, insight into how AMG migrate and acquire their specific positions within the axon-glial scaffold has been lacking. In this paper, we use time-lapse imaging, single-cell analysis, and embryo staining to comprehensively describe the proliferation, migration, and apoptosis of the Drosophila MG. We identified 3 groups of MG that differed in the trajectories of their initial inward migration: AMG that migrate inward and to the anterior before undergoing apoptosis, AMG that migrate inward and to the posterior to ensheath commissural axons, and PMG that migrate inward and to the anterior to contact the commissural axons before undergoing apoptosis. In a second phase of their migration, the surviving AMG stereotypically migrated posteriorly to specific positions surrounding the commissures, and their final position was correlated with their location prior to migration. Most noteworthy are AMG that migrated between the commissures from a ventral to a dorsal position. Single-cell analysis indicated that individual AMG possessed wide-ranging and elaborate membrane extensions that partially ensheathed both commissures. These results provide a strong foundation for future genetic experiments to identify mutants affecting MG development, particularly in guidance cues that may direct migration. Drosophila MG are homologous in structure and function to the glial-like cells that populate the vertebrate CNS floorplate, and study of Drosophila MG will provide useful insights into floorplate development and function.
Collapse
Affiliation(s)
- Scott R. Wheeler
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Joseph C. Pearson
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Stephen T. Crews
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
8
|
Zhang Y, Wheatley R, Fulkerson E, Tapp A, Estes PA. Mastermind mutations generate a unique constellation of midline cells within the Drosophila CNS. PLoS One 2011; 6:e26197. [PMID: 22046261 PMCID: PMC3203113 DOI: 10.1371/journal.pone.0026197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023] Open
Abstract
Background The Notch pathway functions repeatedly during the development of the central nervous system in metazoan organisms to control cell fate and regulate cell proliferation and asymmetric cell divisions. Within the Drosophila midline cell lineage, which bisects the two symmetrical halves of the central nervous system, Notch is required for initial cell specification and subsequent differentiation of many midline lineages. Methodology/Principal Findings Here, we provide the first description of the role of the Notch co-factor, mastermind, in the central nervous system midline of Drosophila. Overall, zygotic mastermind mutations cause an increase in midline cell number and decrease in midline cell diversity. Compared to mutations in other components of the Notch signaling pathway, such as Notch itself and Delta, zygotic mutations in mastermind cause the production of a unique constellation of midline cell types. The major difference is that midline glia form normally in zygotic mastermind mutants, but not in Notch and Delta mutants. Moreover, during late embryogenesis, extra anterior midline glia survive in zygotic mastermind mutants compared to wild type embryos. Conclusions/Significance This is an example of a mutation in a signaling pathway cofactor producing a distinct central nervous system phenotype compared to mutations in major components of the pathway.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Randi Wheatley
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eric Fulkerson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Amanda Tapp
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Patricia A. Estes
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kuzin A, Kundu M, Brody T, Odenwald WF. Functional analysis of conserved sequences within a temporally restricted neural precursor cell enhancer. Mech Dev 2011; 128:165-77. [PMID: 21315151 PMCID: PMC3095431 DOI: 10.1016/j.mod.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/18/2022]
Abstract
Many of the key regulators of Drosophila CNS neural identity are expressed in defined temporal orders during neuroblast (NB) lineage development. To begin to understand the structural and functional complexity of enhancers that regulate ordered NB gene expression programs, we have undertaken the mutational analysis of the temporally restricted nerfin-1 NB enhancer. Our previous studies have localized the enhancer to a region just proximal to the nerfin-1 transcription start site. Analysis of this enhancer, using the phylogenetic footprint program EvoPrinter, reveals the presence of multiple sequence blocks that are conserved among drosophilids. cis-Decoder alignments of these conserved sequence blocks (CSBs) has identified shorter elements that are conserved in other Drosophila NB enhancers. Mutagenesis of the enhancer reveals that although each CSB is required for wild-type expression, neither position nor orientation of the CSBs within the enhancer is crucial for enhancer function; removal of less-conserved or non-conserved sequences flanking CSB clusters also does not significantly alter enhancer activity. While all three conserved E-box transcription factor (TF) binding sites (CAGCTG) are required for full function, adding an additional site at different locations within non-conserved sequences interferes with enhancer activity. Of particular note, none of the mutations resulted in ectopic reporter expression outside of the early NB expression window, suggesting that the temporally restricted pattern is defined by transcriptional activators and not by direct DNA binding repressors. Our work also points to an unexpectedly large number of TFs required for optimal enhancer function - mutant TF analysis has identified at least four that are required for full enhancer regulation.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| | - Mukta Kundu
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| | - Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| |
Collapse
|
10
|
Watson JD, Wheeler SR, Stagg SB, Crews ST. Drosophila hedgehog signaling and engrailed-runt mutual repression direct midline glia to alternative ensheathing and non-ensheathing fates. Development 2011; 138:1285-95. [PMID: 21350018 DOI: 10.1242/dev.056895] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Drosophila CNS contains a variety of glia, including highly specialized glia that reside at the CNS midline and functionally resemble the midline floor plate glia of the vertebrate spinal cord. Both insect and vertebrate midline glia play important roles in ensheathing axons that cross the midline and secreting signals that control a variety of developmental processes. The Drosophila midline glia consist of two spatially and functionally distinct populations. The anterior midline glia (AMG) are ensheathing glia that migrate, surround and send processes into the axon commissures. By contrast, the posterior midline glia (PMG) are non-ensheathing glia. Together, the Notch and hedgehog signaling pathways generate AMG and PMG from midline neural precursors. Notch signaling is required for midline glial formation and for transcription of a core set of midline glial-expressed genes. The Hedgehog morphogen is secreted from ectodermal cells adjacent to the CNS midline and directs a subset of midline glia to become PMG. Two transcription factor genes, runt and engrailed, play important roles in AMG and PMG development. The runt gene is expressed in AMG, represses engrailed and maintains AMG gene expression. The engrailed gene is expressed in PMG, represses runt and maintains PMG gene expression. In addition, engrailed can direct midline glia to a PMG-like non-ensheathing fate. Thus, two signaling pathways and runt-engrailed mutual repression initiate and maintain two distinct populations of midline glia that differ functionally in gene expression, glial migration, axon ensheathment, process extension and patterns of apoptosis.
Collapse
Affiliation(s)
- Joseph D Watson
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
11
|
Adhesion and signaling between neurons and glial cells in Drosophila. Curr Opin Neurobiol 2011; 21:11-6. [DOI: 10.1016/j.conb.2010.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/03/2010] [Accepted: 08/15/2010] [Indexed: 12/21/2022]
|
12
|
Morozova T, Hackett J, Sedaghat Y, Sonnenfeld M. The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway. Dev Genes Evol 2010; 220:191-206. [PMID: 21061019 DOI: 10.1007/s00427-010-0339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/08/2010] [Indexed: 11/28/2022]
Abstract
Primary branching in the Drosophila trachea is regulated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix-PAS (bHLH-PAS) heterodimers, the POU protein Drifter (Dfr)/Ventral Veinless (Vvl), and the Pointed (Pnt) ETS transcription factor. The jing gene encodes a zinc finger protein also required for tracheal development. Three Trh/Tgo DNA-binding sites, known as CNS midline elements, in 1.5 kb of jing 5′ cis-regulatory sequence (jing1.5) previously suggested a downstream role for jing in the pathway. Here, we show that jing is a direct downstream target of Trh/Tgo and that Vvl and Pnt are also involved in jing tracheal activation. In vivo lacZ enhancer detection assays were used to identify cis-regulatory elements mediating embryonic expression patterns of jing. A 2.8-kb jing enhancer (jing2.8) drove lacZ expression in all tracheal cell lineages, the CNS midline and Engrailed-positive segmental stripes, mimicking endogenous jing expression. A 1.3-kb element within jing2.8 drove expression that was restricted to Engrailed-positive CNS midline cells and segmental ectodermal stripes. Surprisingly, jing1.5-lacZ expression was restricted to tracheal fusion cells despite the presence of consensus DNA-binding sites for bHLH-PAS, ETS, and POU domain transcription factors. Given the absence of Trh/Tgo DNA-binding sites in the jing1.3 enhancer, these results are consistent with previous observations suggesting a combinatorial basis to Trh-/Tgo-mediated transcriptional regulation in the trachea.
Collapse
Affiliation(s)
- Tatiana Morozova
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
13
|
Fulkerson E, Estes PA. Common motifs shared by conserved enhancers of Drosophila midline glial genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316:61-75. [PMID: 21154525 DOI: 10.1002/jez.b.21382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
Coding sequences are usually the most highly conserved sectors of DNA, but genomic regions controlling the expression pattern of certain genes can also be conserved across diverse species. In this study, we identify five enhancers capable of activating transcription in the midline glia of Drosophila melanogaster and each contains sequences conserved across at least 11 Drosophila species. In addition, the conserved sequences contain reiterated motifs for binding sites of the known midline transcriptional activators, Single-minded, Tango, Dichaete, and Pointed. To understand the molecular basis for the highly conserved genomic subregions within enhancers of the midline genes, we tested the ability of various motifs to affect midline expression, both individually and in combination, within synthetic reporter constructs. Multiple copies of the binding site for the midline regulators Single-minded and Tango can drive expression in midline cells; however, small changes to the sequences flanking this transcription factor binding site can inactivate expression in midline cells and activate expression in tracheal cells instead. For the midline genes described in this study, the highly conserved sequences appear to juxtapose positive and negative regulatory factors in a configuration that activates genes specifically in the midline glia, while maintaining them inactive in other tissues, including midline neurons and tracheal cells.
Collapse
Affiliation(s)
- Eric Fulkerson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
14
|
Abstract
The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG-neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|