1
|
Inagawa T, Ohkubo K, Watanabe M, Morita T, Higuchi Y, Maekawa H, Takegawa K. A DUF3844 domain-containing protein is required for vacuolar protein sorting in Schizosaccharomyces pombe. J GEN APPL MICROBIOL 2025; 70:n/a. [PMID: 39477503 DOI: 10.2323/jgam.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Protein trafficking to vacuoles in plants and fungi, and to lysosomes in animals, is essential for the maintenance of cellular homeostasis. In Saccharomyces cerevisiae, the vacuolar protein sorting (VPS) pathway has been well studied by using vacuolar carboxypeptidase Y (CPY) as a model, and many VPS genes have been identified. By contrast, the vacuolar protein trafficking pathway in Schizosaccharomyces pombe remains poorly understood. In this study, we identified a novel VPS gene (SPBC1709.03) in S. pombe that is broadly conserved in fungi, but not in S. cerevisiae. Owing to its DUF3844 domain of unknown function, the gene was named vps3844. Disruption mutants of vps3844 had defects in both CPY sorting and incorporation of FM4-64 dye into the vacuolar membrane. Partial deletion analysis of the Vps3844 protein revealed that, within the DUF3844 domain, the region comprising amino acids 354 to 380 is important for protein trafficking to the vacuole. Our findings represent the first report of a VPS gene involved in vacuolar transport that is conserved in fungi, particularly S. pombe, but lacks representation in S. cerevisiae.
Collapse
Affiliation(s)
- Tomoaki Inagawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Kazuma Ohkubo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Hiromi Maekawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
2
|
Dong G, Nakai T, Matsuzaki T. A novel plasmid-based experimental system in Saccharomyces cerevisiae that enables the introduction of 10 different plasmids into cells. FEBS Open Bio 2024. [PMID: 39387713 DOI: 10.1002/2211-5463.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
The budding yeast Saccharomyces cerevisiae is commonly used as an expression platform for the production of valuable compounds. Yeast-based genetic research can uniquely utilize auxotrophy in transformant selection: auxotrophic complementation by an auxotrophic marker gene on exogenous DNA (such as plasmids). However, the number of required auxotrophic nutrients restricts the number of plasmids maintained by the cells. We, therefore, developed novel Δ10 strains that are auxotrophic for 10 different nutrients and new plasmids with two multiple cloning sites and auxotrophic markers for use in Δ10 strains. We confirmed that Δ10 strains were able to maintain 10 types of plasmids. Using plasmids encoding model proteins, we detected the co-expression of 17 different genes in Δ10 cell lines. We also constructed Δ9 strains that exhibited auxotrophy for nine nutrients and increased growth compared to Δ10. This study opens a new avenue for the co-expression of a large number of genes in eukaryotic cells.
Collapse
Affiliation(s)
- Geyao Dong
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| | - Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
- Department of Pharmacotherapeutics and Informatics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuo Matsuzaki
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
3
|
Kato Y, Mioka T, Uemura S, Abe F. Role of a novel endoplasmic reticulum-resident glycoprotein Mtc6/Ehg2 in high-pressure growth: stability of tryptophan permease Tat2 in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2024; 88:1055-1063. [PMID: 38918055 DOI: 10.1093/bbb/zbae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Deep-sea organisms are subjected to extreme conditions; therefore, understanding their adaptive strategies is crucial. We utilize Saccharomyces cerevisiae as a model to investigate pressure-dependent protein regulation and piezo-adaptation. Using yeast deletion library analysis, we identified 6 poorly characterized genes that are crucial for high-pressure growth, forming novel functional modules associated with cell growth. In this study, we aimed to unravel the molecular mechanisms of high-pressure adaptation in S. cerevisiae, focusing on the role of MTC6. MTC6, the gene encoding the novel glycoprotein Mtc6/Ehg2, was found to stabilize tryptophan permease Tat2, ensuring efficient tryptophan uptake and growth under high pressure at 25 MPa. The loss of MTC6 led to promoted vacuolar degradation of Tat2, depending on the Rsp5-Bul1 ubiquitin ligase complex. These findings enhance our understanding of deep-sea adaptations and stress biology, with broad implications for biotechnology, environmental microbiology, and evolutionary insights across species.
Collapse
Affiliation(s)
- Yusuke Kato
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
4
|
Uemura S, Mochizuki T, Kato Y, Mioka T, Watanabe R, Fuchita M, Yamada M, Noda Y, Moriguchi T, Abe F. Mtc6/Ehg2 is a novel endoplasmic reticulum-resident glycoprotein essential for high-pressure tolerance. J Biochem 2024; 176:155-166. [PMID: 38621657 DOI: 10.1093/jb/mvae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrostatic pressure is a common mechanical stressor that modulates metabolism and reduces cell viability. Eukaryotic cells have genetic programs to cope with hydrostatic pressure stress and maintain intracellular homeostasis. However, the mechanism underlying hydrostatic pressure tolerance remains largely unknown. We have recently demonstrated that maintenance of telomere capping protein 6 (Mtc6) plays a protective role in the survival of the budding yeast Saccharomyces cerevisiae under hydrostatic pressure stress by supporting the integrity of nutrient permeases. The current study demonstrates that Mtc6 acts as an endoplasmic reticulum (ER) membrane protein. Mtc6 comprises two transmembrane domains, a C-terminal cytoplasmic domain and a luminal region with 12 Asn (N)-linked glycans attached to it. Serial mutational analyses showed that the cytoplasmic C-terminal amino acid residues GVPS Mtc6 activity. Multiple N-linked glycans in the luminal region are involved in the structural conformation of Mtc6. Moreover, deletion of MTC6 led to increased degradation of the leucine permease Bap2 under hydrostatic pressure, suggesting that Mtc6 facilitates the proper folding of nutrient permeases in the ER under stress conditions. We propose a novel model of molecular function in which the glycosylated luminal domain and cytoplasmic GVPS sequences of Mtc6 cooperatively support the nutrient permease activity.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Riseko Watanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Mai Fuchita
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Mao Yamada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yoichi Noda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,113-8657, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
5
|
Mochizuki T, Tanigawa T, Shindo S, Suematsu M, Oguchi Y, Mioka T, Kato Y, Fujiyama M, Hatano E, Yamaguchi M, Chibana H, Abe F. Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar92. [PMID: 37379203 PMCID: PMC10398897 DOI: 10.1091/mbc.e23-03-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.
Collapse
Affiliation(s)
- Takahiro Mochizuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Toshiki Tanigawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Seiya Shindo
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Momoka Suematsu
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuki Oguchi
- Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Mina Fujiyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Eri Hatano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
6
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
7
|
Mendaluk A, Caussinus E, Boutros M, Lehner CF. A genome-wide RNAi screen for genes important for proliferation of cultured Drosophila cells at low temperature identifies the Ball/VRK protein kinase. Chromosoma 2023; 132:31-53. [PMID: 36746786 PMCID: PMC9981717 DOI: 10.1007/s00412-023-00787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R + cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.
Collapse
Affiliation(s)
- Anna Mendaluk
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, BioQuant, Heidelberg, Germany
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
9
|
Ishii R, Fukui A, Sakihama Y, Kitsukawa S, Futami A, Mochizuki T, Nagano M, Toshima J, Abe F. Substrate-induced differential degradation and partitioning of the two tryptophan permeases Tat1 and Tat2 into eisosomes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183858. [PMID: 35031272 DOI: 10.1016/j.bbamem.2021.183858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Tryptophan is a relatively rare amino acid whose influx is strictly controlled to meet cellular demands. The yeast Saccharomyces cerevisiae has two tryptophan permeases, namely Tat1 (low-affinity type) and Tat2 (high-affinity type). These permeases are differentially regulated through ubiquitination based on inducible conditions and dependence on arrestin-related trafficking adaptors, although the physiological significance of their degradation remain unclear. Here, we demonstrated that Tat2 was rapidly degraded in an Rsp5-Bul1-dependent manner upon the addition of tryptophan, phenylalanine, or tyrosine, whereas Tat1 was unaffected. The expression of the ubiquitination-deficient variant Tat25K>R led to a reduction in cell yield at 4 μg/mL tryptophan, suggesting the occurrence of an uncontrolled, excessive consumption of tryptophan at low tryptophan concentrations. Eisosomes are membrane furrows that are thought to be storage compartments for some nutrient permeases. Tryptophan addition caused rapid Tat2 dissociation from eisosomes, whereas Tat1 distribution was unaffected. The 5 K > R mutation had no marked effect on Tat2 dissociation, suggesting that dissociation is independent of ubiquitination. Interestingly, the D74R mutation, which was created within the N-terminal acidic patch, stabilized Tat2 while reducing the degree of partitioning into eisosomes. Moreover, the hyperactive I285V mutation in Tat2, which increases Vmax/Km for tryptophan import by 2-fold, reduced the degree of segregation into eisosomes. Our findings illustrate the coordinated activity of Tat1 and Tat2 in the regulation of tryptophan transport at various tryptophan concentrations and suggest the positive role of substrates in inducing a conformational transition in Tat2, resulting in its dissociation from eisosomes and subsequent ubiquitination-dependent degradation.
Collapse
Affiliation(s)
- Ryoga Ishii
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ayu Fukui
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuri Sakihama
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Shoko Kitsukawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ayami Futami
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan; Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
10
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
11
|
Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. BIOLOGY 2021; 10:biology10121305. [PMID: 34943220 PMCID: PMC8698847 DOI: 10.3390/biology10121305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary High hydrostatic pressure generally has an adverse effect on the biological systems of organisms inhabiting lands or shallow sea regions. Deep-sea piezophiles that prefer high hydrostatic pressure for growth have garnered considerable scientific attention. However, the underlying molecular mechanisms of their adaptation to high pressure remains unclear owing to the challenges of culturing and manipulating the genome of piezophiles. Humans also experience high hydrostatic pressure during exercise. A long-term stay in space can cause muscle weakness in astronauts. Thus, the human body indubitably senses mechanical stresses such as hydrostatic pressure and gravity. Nonetheless, the mechanisms underlying biological responses to high pressures are not clearly understood. This review summarizes the occurrence and significance of high-pressure effects in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Abstract High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.
Collapse
|
12
|
Shigematsu T, Kaneko Y, Ikezaki M, Kataoka C, Nomura K, Nakano A, Aii J, Aoki T, Kuribayashi T, Kaneoke M, Hori S, Iguchi A. Genomic and Metabolomic Analyses of a Piezosensitive Mutant of Saccharomyces cerevisiae and Application for Generation of Piezosensitive Niigata- Sake Yeast Strains. Foods 2021; 10:foods10102247. [PMID: 34681296 PMCID: PMC8534807 DOI: 10.3390/foods10102247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
A sparkling-type draft cloudy sake (Japanese rice wine), AWANAMA, was recently developed using high hydrostatic pressure (HHP) treatment as a non-thermal pasteurization method. This prototype sake has a high potential market value, since it retains the fresh taste and flavor similar to draft sake while avoiding over-fermentation. From an economic point of view, a lower pressure level for HHP pasteurization is still required. In this study, we carried out a genome analysis of a pressure-sensitive (piezosensitive) mutant strain, a924E1, which was generated by UV mutagenesis from a laboratory haploid Saccharomyces cerevisiae strain, KA31a. This mutant strain had a deletion of the COX1 gene region in the mitochondrial DNA and had deficient aerobic respiration and mitochondrial functions. A metabolomic analysis revealed restricted flux in the TCA cycle of the strain. The results enabled us to use aerobic respiration deficiency as an indicator for screening a piezosensitive mutant. Thus, we generated piezosensitive mutants from a Niigata-sake yeast strain, S9arg, which produces high levels of ethyl caproate but does not produce urea and is consequently suitable for brewing a high-quality sake. The resultant piezosensitive mutants showed brewing characteristics similar to the S9arg strain. This study provides a screening method for generating a piezosensitive yeast mutant as well as insight on a new way of applying HHP pasteurization.
Collapse
Affiliation(s)
- Toru Shigematsu
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan;
- Correspondence: ; Tel.: +81-250-25-5144
| | - Yuta Kaneko
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
| | - Minami Ikezaki
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan;
| | - Chihiro Kataoka
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
| | - Kazuki Nomura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi 921-8501, Japan
| | - Ayana Nakano
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan;
| | - Jotaro Aii
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan;
| | - Toshio Aoki
- Niigata Prefectural Sake Research Institute, 2-5932-133 Suidocho, Chuo-ku, Niigata 951-8121, Japan; (T.A.); (T.K.); (M.K.)
| | - Takashi Kuribayashi
- Niigata Prefectural Sake Research Institute, 2-5932-133 Suidocho, Chuo-ku, Niigata 951-8121, Japan; (T.A.); (T.K.); (M.K.)
- Food Industry Department, Niigata Agro-Food University, 2416 Hiranedai, Tainai 959-2702, Japan
| | - Mitsuoki Kaneoke
- Niigata Prefectural Sake Research Institute, 2-5932-133 Suidocho, Chuo-ku, Niigata 951-8121, Japan; (T.A.); (T.K.); (M.K.)
| | - Saori Hori
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
| | - Akinori Iguchi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan; (Y.K.); (C.K.); (K.N.); (A.N.); (J.A.); (S.H.); (A.I.)
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan;
| |
Collapse
|
13
|
Lairón-Peris M, Castiglioni GL, Routledge SJ, Alonso-Del-Real J, Linney JA, Pitt AR, Melcr J, Goddard AD, Barrio E, Querol A. Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid. Microb Genom 2021; 7. [PMID: 34448691 PMCID: PMC8549368 DOI: 10.1099/mgen.0.000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethanol, which also contained metabisulfite, a preservative that is used during wine fermentation as it converts to sulfite. After the adaptation process under these selected stressful environmental conditions, the tolerance of the adapted strain (H14A7-etoh) to sulfite and ethanol was investigated, revealing that the adapted hybrid is more resistant to sulfite compared to the original H14A7 strain, whereas ethanol tolerance improvement was slight. However, a trade-off in the adapted hybrid was found, as it had a lower capacity to ferment glucose and fructose in comparison with H14A7. Hybrid genomes are almost always unstable, and different signals of adaptation on H14A7-etoh genome were detected. Each subgenome present in the adapted strain had adapted differently. Chromosome aneuploidies were present in S. cerevisiae chromosome III and in S. uvarum chromosome VII–XVI, which had been duplicated. Moreover, S. uvarum chromosome I was not present in H14A7-etoh and a loss of heterozygosity (LOH) event arose on S. cerevisiae chromosome I. RNA-sequencing analysis showed differential gene expression between H14A7-etoh and H14A7, which can be easily correlated with the signals of adaptation that were found on the H14A7-etoh genome. Finally, we report alterations in the lipid composition of the membrane, consistent with conserved tolerance mechanisms.
Collapse
Affiliation(s)
- María Lairón-Peris
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| | - Gabriel L Castiglioni
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| | - Sarah J Routledge
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| | - John A Linney
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Andrew R Pitt
- College of Health and Life Sciences, Aston University, Birmingham, UK.,Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands
| | - Alan D Goddard
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| |
Collapse
|
14
|
Uemura S, Mochizuki T, Amemiya K, Kurosaka G, Yazawa M, Nakamoto K, Ishikawa Y, Izawa S, Abe F. Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J Cell Sci 2020; 133:jcs245555. [PMID: 32801125 DOI: 10.1242/jcs.245555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanical stresses, including high hydrostatic pressure, elicit diverse physiological effects on organisms. Gtr1, Gtr2, Ego1 (also known as Meh1) and Ego3 (also known as Slm4), central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa (∼250 kg/cm2) stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1 and PIB2 with GLN3 These results suggest that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC-TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrate the regulatory circuit that maintains intracellular amino acid homeostasis and suggest critical roles for the EGOC-TORC1 and Pib2-TORC1 complexes in the growth of yeast under high hydrostatic pressure.
Collapse
Affiliation(s)
- Satoshi Uemura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kengo Amemiya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Goyu Kurosaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miho Yazawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Keiko Nakamoto
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Ishikawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
15
|
Okai H, Ikema R, Nakamura H, Kato M, Araki M, Mizuno A, Ikeda A, Renbaum P, Segel R, Funato K. Cold‐sensitive phenotypes of a yeast null mutant of ARV1 support its role as a GPI flippase. FEBS Lett 2020; 594:2431-2439. [DOI: 10.1002/1873-3468.13843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Haruka Okai
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Ryoko Ikema
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Hiroki Nakamura
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Mei Kato
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Ayumi Mizuno
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Atsuko Ikeda
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Paul Renbaum
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Reeval Segel
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Kouichi Funato
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
16
|
Lairón-Peris M, Pérez-Través L, Muñiz-Calvo S, Guillamón JM, Heras JM, Barrio E, Querol A. Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Front Bioeng Biotechnol 2020; 8:129. [PMID: 32195231 PMCID: PMC7062649 DOI: 10.3389/fbioe.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. Genomic sequencing analysis showed that the artificial spore-derivative hybrid is an allotriploid, which is very common among natural hybrids. Its genome contains one genome copy from the S. uvarum parental genome and two heterozygous copies of the S. cerevisiae parental genome, with the exception of a monosomic S. cerevisiae chromosome III, where the sex-determining MAT locus is located. This genome constitution supports that the original hybrid from which the spore was obtained likely originated by a rare-mating event between a mating-competent S. cerevisiae diploid cell and either a diploid or a haploid S. uvarum cell of the opposite mating type. Moreover, a comparative transcriptomic analysis reveals that each spore-derivative hybrid subgenome is regulating different processes during the fermentation, in which each parental species has demonstrated to be more efficient. Therefore, interactions between the two subgenomes in the spore-derivative hybrid improve those differential species-specific adaptations to the wine fermentation environments, already present in the parental species.
Collapse
Affiliation(s)
- María Lairón-Peris
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Laura Pérez-Través
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Sara Muñiz-Calvo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | | | - Eladio Barrio
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| |
Collapse
|
17
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
18
|
[Synthesis and regulation of flavor compounds derived from brewing yeast: fusel alcohols]. Rev Argent Microbiol 2019; 51:386-397. [PMID: 30712956 DOI: 10.1016/j.ram.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Among the main beer components, fusel alcohols are important because of their influence on the flavor of the final product, and therefore on its quality. During the production process, these compounds are generated by yeasts through the metabolism of amino acids. The yeasts, fermentation conditions and wort composition affect fusel alcohols profiles and their concentrations. In this review, we provide detailed information about the enzymes involved in fusel alcohols formation and their regulation. Moreover, we describe how the type of yeast used, the fermentation temperature and the composition of carbohydrates and nitrogen source in wort, among other fermentation parameters, affect the biosynthesis of these alcohols. Knowing how fusel alcohol levels vary during beer production provides a relevant tool for brewers to achieve the desired characteristics in the final product and at the same time highlights the aspects still unknown to science.
Collapse
|
19
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Chuartzman SG, Schuldiner M. Database for High Throughput Screening Hits (dHITS): a simple tool to retrieve gene specific phenotypes from systematic screens done in yeast. Yeast 2018; 35:477-483. [PMID: 29574976 PMCID: PMC6055851 DOI: 10.1002/yea.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022] Open
Abstract
In the last decade several collections of Saccharomyces cerevisiae yeast strains have been created. In these collections every gene is modified in a similar manner such as by a deletion or the addition of a protein tag. Such libraries have enabled a diversity of systematic screens, giving rise to large amounts of information regarding gene functions. However, often papers describing such screens focus on a single gene or a small set of genes and all other loci affecting the phenotype of choice (‘hits’) are only mentioned in tables that are provided as supplementary material and are often hard to retrieve or search. To help unify and make such data accessible, we have created a Database of High Throughput Screening Hits (dHITS). The dHITS database enables information to be obtained about screens in which genes of interest were found as well as the other genes that came up in that screen – all in a readily accessible and downloadable format. The ability to query large lists of genes at the same time provides a platform to easily analyse hits obtained from transcriptional analyses or other screens. We hope that this platform will serve as a tool to facilitate investigation of protein functions to the yeast community.
Collapse
Affiliation(s)
- Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
21
|
Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles 2018; 22:617-628. [DOI: 10.1007/s00792-018-1022-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/11/2018] [Indexed: 12/21/2022]
|
22
|
Peter JJ, Watson TL, Walker ME, Gardner JM, Lang TA, Borneman A, Forgan A, Tran T, Jiranek V. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions. FEMS Yeast Res 2018; 18:4841842. [DOI: 10.1093/femsyr/foy009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Josephine J Peter
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tom A Lang
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Angus Forgan
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tina Tran
- The Australian Wine Research Institute, Waite Campus, Urrbrae, SA 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
23
|
Heitmann M, Zannini E, Axel C, Arendt E. Correlation of Flavor Profile to Sensory Analysis of Bread Produced with DifferentSaccharomyces cerevisiaeOriginating from the Baking and Beverage Industry. Cereal Chem 2017. [DOI: 10.1094/cchem-03-17-0044-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mareile Heitmann
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Claudia Axel
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Nomura K, Kuwabara Y, Kuwabara W, Takahashi H, Nakajima K, Hayashi M, Iguchi A, Shigematsu T. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature. Biophys Chem 2017; 231:87-94. [PMID: 28578998 DOI: 10.1016/j.bpc.2017.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022]
Abstract
We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae.
Collapse
Affiliation(s)
- Kazuki Nomura
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan.
| | - Yuki Kuwabara
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| | - Wataru Kuwabara
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| | - Hiroyuki Takahashi
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| | - Kanako Nakajima
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| | - Mayumi Hayashi
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| | - Akinori Iguchi
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| | - Toru Shigematsu
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City 956-8603, Japan
| |
Collapse
|
25
|
Fernández PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, Mac Cormack WP. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 2017. [PMID: 28271165 DOI: 10.1007/s00792-017-0915-5/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.
Collapse
Affiliation(s)
- Pablo Marcelo Fernández
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | | | - Mariana G Blaser
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - Lucas Adolfo Mauro Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| | - Lucía Inés Castellanos de Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Walter Patricio Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Fernández PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, Mac Cormack WP. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 2017; 21:445-457. [PMID: 28271165 DOI: 10.1007/s00792-017-0915-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/22/2017] [Indexed: 11/26/2022]
Abstract
In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.
Collapse
Affiliation(s)
- Pablo Marcelo Fernández
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | | | - Mariana G Blaser
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - Lucas Adolfo Mauro Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| | - Lucía Inés Castellanos de Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Walter Patricio Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science 2017; 353:353/6306/aaf1420. [PMID: 27708008 DOI: 10.1126/science.aaf1420] [Citation(s) in RCA: 841] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.
Collapse
Affiliation(s)
- Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Julia Hanchard
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Susan D Lee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Erin B Styles
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Jolanda van Leeuwen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Nydia van Dyk
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Elena Kuzmin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jeff S Piotrowski
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Sondra Bahr
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yiqun Chen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Christoph F Kurat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Zhijian Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Natasha Pascoe
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sara Sharifpoor
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Emira Shuteriqi
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Scott W Simpkins
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Harsha Garadi Suresh
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yizhao Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hongwei Zhu
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Noel Malod-Dognin
- Computer Science Deptartment, University College London, London WC1E 6BT, UK
| | - Vuk Janjic
- Department of Computing, Imperial College London, UK
| | - Natasa Przulj
- Computer Science Deptartment, University College London, London WC1E 6BT, UK. School of Computing (RAF), Union University, Belgrade, Serbia
| | - Olga G Troyanskaya
- Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Igor Stagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tian Xia
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany. Department of Genetics, School of Medicine and Stanford Genome Technology Center Stanford University, Palo Alto, CA 94304, USA
| | - Claire L Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Adam P Rosebrock
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Amy A Caudy
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1.
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan.
| |
Collapse
|
28
|
Salvadó Z, Ramos-Alonso L, Tronchoni J, Penacho V, García-Ríos E, Morales P, Gonzalez R, Guillamón JM. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. Int J Food Microbiol 2016; 236:38-46. [PMID: 27442849 DOI: 10.1016/j.ijfoodmicro.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 07/09/2016] [Indexed: 01/17/2023]
Abstract
Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.
Collapse
Affiliation(s)
- Zoel Salvadó
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain; Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Vanessa Penacho
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Estéfani García-Ríos
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
29
|
García-Marqués S, Randez-Gil F, Dupont S, Garre E, Prieto JA. Sng1 associates with Nce102 to regulate the yeast Pkh-Ypk signalling module in response to sphingolipid status. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1319-33. [PMID: 27033517 DOI: 10.1016/j.bbamcr.2016.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the actors involved in Pkh/Ypk regulation remain poorly defined. Here, we demonstrate that Sng1, a transmembrane protein, is an effector of the Pkh/Ypk module and identify the phospholipid asymmetry as key for yeast cold adaptation. Overexpression of SNG1 impairs phospholipid flipping, reduces reactive oxygen species (ROS) and improves, in a Pkh-dependent manner, yeast growth in myriocin-treated cells, suggesting that excess Sng1p stimulates the Pkh/Ypk signalling. Furthermore, we link these effects to the association of Sng1p with Nce102p. Indeed, we found that Sng1p interacts with Nce102p both physically and genetically. Moreover, mutant nce102∆ sng1∆ cells show features of impaired Pkh/Ypk signalling, including increased ROS accumulation, reduced life span and defects in Pkh/Ypk-controlled regulatory pathways. Finally, myriocin-induced hyperphosphorylation of Ypk1p and Orm2p, which controls sphingolipid homeostasis, does not occur in nce102∆ sng1∆ cells. Hence, both Nce102p and Sng1p participate in a regulatory circuit that controls the activity of the Pkh/Ypk module and their function is required in response to sphingolipid status.
Collapse
Affiliation(s)
- Sara García-Marqués
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Sebastien Dupont
- UMR Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon/Université de Bourgogne 1, Esplanade Erasme, 21000, Dijon, France
| | - Elena Garre
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7. 46980, Paterna, Valencia, Spain.
| |
Collapse
|
30
|
Córcoles-Sáez I, Hernández ML, Martínez-Rivas JM, Prieto JA, Randez-Gil F. Characterization of the S. cerevisiae inp51 mutant links phosphatidylinositol 4,5-bisphosphate levels with lipid content, membrane fluidity and cold growth. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:213-26. [PMID: 26724696 DOI: 10.1016/j.bbalip.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its derivatives diphosphoinositol phosphates (DPIPs) play key signaling and regulatory roles. However, a direct function of these molecules in lipid and membrane homeostasis remains obscure. Here, we have studied the cold tolerance phenotype of yeast cells lacking the Inp51-mediated phosphoinositide-5-phosphatase. Genetic and biochemical approaches showed that increased metabolism of PI(4,5)P2 reduces the activity of the Pho85 kinase by increasing the levels of the DPIP isomer 1-IP7. This effect was key in the cold tolerance phenotype. Indeed, pho85 mutant cells grew better than the wild-type at 15 °C, and lack of this kinase abolished the inp51-mediated cold phenotype. Remarkably, reduced Pho85 function by loss of Inp51 affected the activity of the Pho85-regulated target Pah1, the yeast phosphatidate phosphatase. Cells lacking Inp51 showed reduced Pah1 abundance, derepression of an INO1-lacZ reporter, decreased content of triacylglycerides and elevated levels of phosphatidate, hallmarks of the pah1 mutant. However, the inp51 phenotype was not associated to low Pah1 activity since deletion of PAH1 caused cold sensitivity. In addition, the inp51 mutant exhibited features not shared by pah1, including a 40%-reduction in total lipid content and decreased membrane fluidity. These changes may influence the activity of membrane-anchored and/or associated proteins since deletion of INP51 slows down the transit to the vacuole of the fluorescent dye FM4-64. In conclusion, our work supports a model in which changes in the PI(4,5)P2 pool affect the 1-IP7 levels modulating the activity of Pho85, Pah1 and likely additional Pho85-controlled targets, and regulate lipid composition and membrane properties.
Collapse
Affiliation(s)
- Isaac Córcoles-Sáez
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Maria Luisa Hernández
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | | | - Jose A Prieto
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
31
|
Tun NM, O'Doherty PJ, Chen ZH, Wu XY, Bailey TD, Kersaitis C, Wu MJ. Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae. Metallomics 2015; 6:1558-64. [PMID: 24926745 DOI: 10.1039/c4mt00116h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genome-wide screening using gene deletion mutants has been widely carried out with numerous toxicants including oxidants and metal ions. The focus of such studies usually centres on identifying sensitive phenotypes against a given toxicant. Here, we screened the complete collection of yeast gene deletion mutants (5047) with increasing concentrations of aluminium sulphate (0.4, 0.8, 1.6 and 3.2 mM) in order to discover aluminium (Al(3+)) tolerant phenotypes. Fifteen genes were found to be associated with Al(3+) transport because their deletion mutants exhibited Al(3+) tolerance, including lem3Δ, hal5Δ and cka2Δ. Deletion of CKA2, a catalytic subunit of tetrameric protein kinase CK2, gives rise to the most pronounced resistance to Al(3+) by showing significantly higher growth compared to the wild type. Functional analysis revealed that both molecular regulation and endocytosis are involved in Al(3+) transport for yeast. Further investigations were extended to all the four subunits of CK2 (CKA1, CKA2, CKB1 and CKB2) and the other 14 identified mutants under a spectrum of metal ions, including Al(3+), Zn(2+), Mn(2+), Fe(2+), Fe(3+), Co(3+), Ga(3+), Cd(2+), In(3+), Ni(2+) and Cu(2+), as well as hydrogen peroxide and diamide, in order to unravel cross-tolerance amongst metal ions and the effect of the oxidants. Finally, the implication of the findings in Al(3+) transport for the other species like plants and humans is discussed.
Collapse
Affiliation(s)
- Nay M Tun
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Microbiol Biotechnol 2015; 31:517-26. [PMID: 25643668 PMCID: PMC4333312 DOI: 10.1007/s11274-015-1808-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| |
Collapse
|
33
|
Abe F. Effects of High Hydrostatic Pressure on Microbial Cell Membranes: Structural and Functional Perspectives. Subcell Biochem 2015; 72:371-381. [PMID: 26174391 DOI: 10.1007/978-94-017-9918-8_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological processes associated with dynamic structural features of membranes are highly sensitive to changes in hydrostatic pressure and temperature. Marine organisms potentially experience a broad range of pressure and temperature fluctuations. Hence, they have specialized cell membranes to perform membrane protein functions under various environmental conditions. Although the effects of high pressure on artificial lipid bilayers have been investigated in detail, little is known about how high pressure affects the structure of natural cell membranes and how organisms cope with pressure alterations. This review focused on the recent advances in research on the effects of high pressure on microbial membranes, particularly on the use of time-resolved fluorescence anisotropy measurement to determine membrane dynamics in deep-sea piezophiles.
Collapse
Affiliation(s)
- Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan,
| |
Collapse
|
34
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
35
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
36
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
37
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
38
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
39
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
40
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
41
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014; 15:552. [PMID: 24993029 PMCID: PMC4099481 DOI: 10.1186/1471-2164-15-552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
Background Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast’s adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L−1 total sugar. Results Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole’s role in ion homeostasis and pH regulation, through vacuole acidification. Conclusion We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, ‘stuck’ fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the ‘Fermentome’. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast’s response and adaptation to stresses imposed during high-sugar fermentations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-552) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vladimir Jiranek
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
42
|
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles. Appl Environ Microbiol 2014; 80:4433-49. [PMID: 24814792 DOI: 10.1128/aem.00785-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature.
Collapse
|
43
|
Black SL, Dawson A, Ward FB, Allen RJ. Genes required for growth at high hydrostatic pressure in Escherichia coli K-12 identified by genome-wide screening. PLoS One 2013; 8:e73995. [PMID: 24040140 PMCID: PMC3770679 DOI: 10.1371/journal.pone.0073995] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022] Open
Abstract
Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure.
Collapse
Affiliation(s)
- S. Lucas Black
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Angela Dawson
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - F. Bruce Ward
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Rosalind J. Allen
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Singh P, Raghukumar C, Parvatkar RR, Mascarenhas-Pereira MBL. Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast 2013; 30:93-101. [PMID: 23456725 DOI: 10.1002/yea.2943] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/21/2013] [Indexed: 11/10/2022] Open
Abstract
A deep-sea isolate of the psychrotolerant yeast Cryptococcus sp. (NIOCC#PY13) obtained from polymetallic nodule-bearing sediments of the Central Indian Basin was examined for its capacity to grow in the presence of various concentrations of the heavy metal salts i.e., ZnSO4 , CuSO4 , Pb(CH3 COO)2 and CdCl2 . It demonstrated considerable growth in the presence of 100 mg/l concentrations of the above-mentioned four heavy metal salts both at 30°C and 15°C. This strain tolerated comparatively higher levels of these four metal salts than other deep-sea and terrestrial yeast isolates belonging to Cryptococcus, Rhodotorula, Rhodosporidium and Sporidiobolus spp. Optimum pH for growth of this isolate was in the range of 6-8 in the presence of heavy metal salts at these two temperatures. Scanning electron microscopic (SEM) studies exhibited altered cell surface morphology of the cells under the influence of heavy metals compared to that with control. The adsorption of heavy metals to the cells was demonstrated by FTIR and EDAX analysis. As evidenced by atomic absorption spectrophotometric (AAS) analysis, about 30-90% of the heavy metals were removed from the culture supernatant after 4 days of growth at 30°C. This deep-sea yeast isolate appears to be a potential candidate for bioremediation of metal-contaminated sites. Moreover, its metal tolerance properties provide a significant insight into its ecological role and adaptations to growth in such extreme conditions.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Oceanography, Council for Scientific and Industrial Research, Dona Paula, Goa, India
| | | | | | | |
Collapse
|
45
|
Tun NM, O'Doherty PJ, Perrone GG, Bailey TD, Kersaitis C, Wu MJ. Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 2013; 5:1068-75. [DOI: 10.1039/c3mt00083d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Singh P, Raghukumar C, Verma AK, Meena RM. Differentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCC#PY13. Extremophiles 2012; 16:777-85. [DOI: 10.1007/s00792-012-0474-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
|
47
|
Hasegawa T, Hayashi M, Nomura K, Hayashi M, Kido M, Ohmori T, Fukuda M, Iguchi A, Ueno S, Shigematsu T, Hirayama M, Fujii T. High-throughput method for a kinetics analysis of the high-pressure inactivation of microorganisms using microplates. J Biosci Bioeng 2012; 113:788-91. [PMID: 22382011 DOI: 10.1016/j.jbiosc.2012.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
Abstract
Using microplates as pressure and cultivation vessels, a high-throughput method was developed for analyzing the high-pressure inactivation kinetics of microorganisms. The loss of viability from a high-pressure treatment, measured based on the growth delay during microplate cultivation, showed reproducibility with the conventional agar plate method and was applicable for the kinetics analysis.
Collapse
Affiliation(s)
- Toshimi Hasegawa
- Department of Food Science, Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, Niigata 956-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Multicopy suppression screening of Saccharomyces cerevisiae Identifies the ubiquitination machinery as a main target for improving growth at low temperatures. Appl Environ Microbiol 2011; 77:7517-25. [PMID: 21908639 DOI: 10.1128/aem.00404-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A decrease in ambient temperature alters membrane functionality and impairs the proper interaction between the cell and its external milieu. Understanding how cells adapt membrane properties and modulate the activity of membrane-associated proteins is therefore of major interest from both the basic and the applied points of view. Here, we have isolated multicopy suppressors of the cold sensitivity phenotype of a trp1 strain of Saccharomyces cerevisiae. Three poorly characterized genes, namely, ALY2 encoding the endocytic adaptor, CAJ1 encoding the J protein, and UBP13 encoding the ubiquitin C-terminal hydrolase, were identified as mediating increased growth at 12°C of both Trp⁻ and Trp+ yeast strains. This effect was likely due to the downregulation of cold-instigated degradation of nutrient permeases, since it was missing from cells of the rsp5Δ mutant strain, which contains a point mutation in the gene encoding ubiquitin ligase. Indeed, we found that 12°C treatments reduced the level of several membrane transporters, including Tat1p and Tat2p, two yeast tryptophan transporters, and Gap1, the general amino acid permease. We also found that the lack of Rsp5p increased the steady state level of Tat1p and Tat2p and that ALY2-engineered cells grown at 12°C had higher Tat2p and Gap1p abundance. Nevertheless, the high copy number of ALY2 or UBP13 improved cold growth even in the absence of Tat2p. Consistent with this, ALY2- and UBP13-engineered cells of the industrial QA23 strain grew faster and produced more CO₂ at 12°C than did the parental when maltose was used as the sole carbon source. Hence, the multicopy suppressors isolated in this work appear to contribute to the correct control of the cell surface protein repertoire and their engineering might have potential biotechnological applications.
Collapse
|
49
|
Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1567-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Chang YJ, Shin CS, Han DH, Kim JY, Kim KI, Kwon YM, Huh WK. Genomewide Profiling of Rapamycin Sensitivity in Saccharomyces cerevisiae on Synthetic Medium. Genomics Inform 2010. [DOI: 10.5808/gi.2010.8.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|