1
|
Padhiar NH, Katneni U, Komar AA, Motorin Y, Kimchi-Sarfaty C. Advances in methods for tRNA sequencing and quantification. Trends Genet 2024; 40:276-290. [PMID: 38123442 DOI: 10.1016/j.tig.2023.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification.
Collapse
Affiliation(s)
- Nigam H Padhiar
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Anton A Komar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Yuri Motorin
- CNRS-Université de Lorraine, UAR 2008, IBSLor UMR 7365 IMoPA, Nancy, France.
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
2
|
Whittle CA, Kulkarni A, Chung N, Extavour CG. Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes. BMC Genomics 2021; 22:234. [PMID: 33823803 PMCID: PMC8022432 DOI: 10.1186/s12864-021-07411-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For multicellular organisms, much remains unknown about the dynamics of synonymous codon and amino acid use in highly expressed genes, including whether their use varies with expression in different tissue types and sexes. Moreover, specific codons and amino acids may have translational functions in highly transcribed genes, that largely depend on their relationships to tRNA gene copies in the genome. However, these relationships and putative functions are poorly understood, particularly in multicellular systems. RESULTS Here, we studied codon and amino acid use in highly expressed genes from reproductive and nervous system tissues (male and female gonad, somatic reproductive system, brain and ventral nerve cord, and male accessory glands) in the cricket Gryllus bimaculatus. We report an optimal codon, defined as the codon preferentially used in highly expressed genes, for each of the 18 amino acids with synonymous codons in this organism. The optimal codons were mostly shared among tissue types and both sexes. However, the frequency of optimal codons was highest in gonadal genes. Concordant with translational selection, a majority of the optimal codons had abundant matching tRNA gene copies in the genome, but sometimes obligately required wobble tRNAs. We suggest the latter may comprise a mechanism for slowing translation of abundant transcripts, particularly for cell-cycle genes. Non-optimal codons, defined as those least commonly used in highly transcribed genes, intriguingly often had abundant tRNAs, and had elevated use in a subset of genes with specialized functions (gametic and apoptosis genes), suggesting their use promotes the translational upregulation of particular mRNAs. In terms of amino acids, we found evidence suggesting that amino acid frequency, tRNA gene copy number, and amino acid biosynthetic costs (size/complexity) had all interdependently evolved in this insect model, potentially for translational optimization. CONCLUSIONS Collectively, the results suggest a model whereby codon use in highly expressed genes, including optimal, wobble, and non-optimal codons, and their tRNA abundances, as well as amino acid use, have been influenced by adaptation for various functional roles in translation within this cricket. The effects of expression in different tissue types and the two sexes are discussed.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Nina Chung
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, 02138, MA, USA.
| |
Collapse
|
3
|
Vinogradova E, Salinas T, Cognat V, Remacle C, Maréchal-Drouard L. Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are correlated with both cytosolic and mitochondrial codon usages. Nucleic Acids Res 2020; 48:8808-8809. [PMID: 32735644 PMCID: PMC7470968 DOI: 10.1093/nar/gkaa649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elizaveta Vinogradova
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, associated with Université Louis Pasteur, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 199991, Russia
| | - Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, associated with Université Louis Pasteur, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
- Génétique des microorganismes, Institut de Botanique B22, Université de Liège, B-4000 Liège, Belgium
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, associated with Université Louis Pasteur, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Claire Remacle
- Génétique des microorganismes, Institut de Botanique B22, Université de Liège, B-4000 Liège, Belgium
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, associated with Université Louis Pasteur, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
4
|
Whittle CA, Kulkarni A, Extavour CG. Evidence of multifaceted functions of codon usage in translation within the model beetle Tribolium castaneum. DNA Res 2020; 26:473-484. [PMID: 31922535 PMCID: PMC6993815 DOI: 10.1093/dnares/dsz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon use is non-random. Codons most used in highly transcribed genes, often called optimal codons, typically have high gene counts of matching tRNA genes (tRNA abundance) and promote accurate and/or efficient translation. Non-optimal codons, those least used in highly expressed genes, may also affect translation. In multicellular organisms, codon optimality may vary among tissues. At present, however, tissue specificity of codon use remains poorly understood. Here, we studied codon usage of genes highly transcribed in germ line (testis and ovary) and somatic tissues (gonadectomized males and females) of the beetle Tribolium castaneum. The results demonstrate that: (i) the majority of optimal codons were organism-wide, the same in all tissues, and had numerous matching tRNA gene copies (Opt-codon↑tRNAs), consistent with translational selection; (ii) some optimal codons varied among tissues, suggesting tissue-specific tRNA populations; (iii) wobble tRNA were required for translation of certain optimal codons (Opt-codonwobble), possibly allowing precise translation and/or protein folding; and (iv) remarkably, some non-optimal codons had abundant tRNA genes (Nonopt-codon↑tRNAs), and genes using those codons were tightly linked to ribosomal and stress-response functions. Thus, Nonopt-codon↑tRNAs codons may regulate translation of specific genes. Together, the evidence suggests that codon use and tRNA genes regulate multiple translational processes in T. castaneum.
Collapse
Affiliation(s)
| | | | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life 2019; 71:1099-1108. [PMID: 31241827 DOI: 10.1002/iub.2097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jessica Warren
- Department of biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
6
|
Nishiyama E, Ohshima K. Cross-Kingdom Commonality of a Novel Insertion Signature of RTE-Related Short Retroposons. Genome Biol Evol 2018; 10:1471-1483. [PMID: 29850801 PMCID: PMC6007223 DOI: 10.1093/gbe/evy098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In multicellular organisms, such as vertebrates and flowering plants, horizontal transfer (HT) of genetic information is thought to be a rare event. However, recent findings unveiled unexpectedly frequent HT of RTE-clade LINEs. To elucidate the molecular footprints of the genomic integration machinery of RTE-related retroposons, the sequence patterns surrounding the insertion sites of plant Au-like SINE families were analyzed in the genomes of a wide variety of flowering plants. A novel and remarkable finding regarding target site duplications (TSDs) for SINEs was they start with thymine approximately one helical pitch (ten nucleotides) downstream of a thymine stretch. This TSD pattern was found in RTE-clade LINEs, which share the 3'-end sequence of these SINEs, in the genome of leguminous plants. These results demonstrably show that Au-like SINEs were mobilized by the enzymatic machinery of RTE-clade LINEs. Further, we discovered the same TSD pattern in animal SINEs from lizard and mammals, in which the RTE-clade LINEs sharing the 3'-end sequence with these animal SINEs showed a distinct TSD pattern. Moreover, a significant correlation was observed between the first nucleotide of TSDs and microsatellite-like sequences found at the 3'-ends of SINEs and LINEs. We propose that RTE-encoded protein could preferentially bind to a DNA region that contains a thymine stretch to cleave a phosphodiester bond downstream of the stretch. Further, determination of cleavage sites and/or efficiency of primer sites for reverse transcription may depend on microsatellite-like repeats in the RNA template. Such a unique mechanism may have enabled retroposons to successfully expand in frontier genomes after HT.
Collapse
Affiliation(s)
- Eri Nishiyama
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Kazuhiko Ohshima
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
7
|
Abrahams L, Hurst LD. Refining the Ambush Hypothesis: Evidence That GC- and AT-Rich Bacteria Employ Different Frameshift Defence Strategies. Genome Biol Evol 2018; 10:1153-1173. [PMID: 29617761 PMCID: PMC5909447 DOI: 10.1093/gbe/evy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Stop codons are frequently selected for beyond their regular termination function for error control. The “ambush hypothesis” proposes out-of-frame stop codons (OSCs) terminating frameshifted translations are selected for. Although early indirect evidence was partially supportive, recent evidence suggests OSC frequencies are not exceptional when considering underlying nucleotide content. However, prior null tests fail to control amino acid/codon usages or possible local mutational biases. We therefore return to the issue using bacterial genomes, considering several tests defining and testing against a null. We employ simulation approaches preserving amino acid order but shuffling synonymous codons or preserving codons while shuffling amino acid order. Additionally, we compare codon usage in amino acid pairs, where one codon can but the next, otherwise identical codon, cannot encode an OSC. OSC frequencies exceed expectations typically in AT-rich genomes, the +1 frame and for TGA/TAA but not TAG. With this complex evidence, simply rejecting or accepting the ambush hypothesis is not warranted. We propose a refined post hoc model, whereby AT-rich genomes have more accidental frameshifts, handled by RF2–RF3 complexes (associated with TGA/TAA) and are mostly +1 (or −2) slips. Supporting this, excesses positively correlate with in silico predicted frameshift probabilities. Thus, we propose a more viable framework, whereby genomes broadly adopt one of the two strategies to combat frameshifts: preventing frameshifting (GC-rich) or permitting frameshifts but minimizing impacts when most are caught early (AT-rich). Our refined framework holds promise yet some features, such as the bias of out-of-frame sense codons, remain unexplained.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| |
Collapse
|
8
|
Emetu S, Troiano M, Goldmintz J, Tomberlin J, Grelet S, Howe PH, Korey C, Geslain R. Metabolic Labeling and Profiling of Transfer RNAs Using Macroarrays. J Vis Exp 2018. [PMID: 29364226 PMCID: PMC5908660 DOI: 10.3791/56898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transfer RNAs (tRNA) are abundant short non-coding RNA species that are typically 76 to 90 nucleotides in length. tRNAs are directly responsible for protein synthesis by translating codons in mRNA into amino acid sequences. tRNAs were long considered as house-keeping molecules that lacked regulatory functions. However, a growing body of evidence indicates that cellular tRNA levels fluctuate in correspondence to varying conditions such as cell type, environment, and stress. The fluctuation of tRNA expression directly influences gene translation, favoring or repressing the expression of particular proteins. Ultimately comprehending the dynamic of protein synthesis requires the development of methods able to deliver high-quality tRNA profiles. The method that we present here is named SPOt, which stands for Streamlined Platform for Observing tRNA. SPOt consists of three steps starting with metabolic labeling of cell cultures with radioactive orthophosphate, followed by guanidinium thiocyanate-phenol-chloroform extraction of radioactive total RNAs and finally hybridization on in-house printed macroarrays. tRNA levels are estimated by quantifying the radioactivity intensities at each probe spot. In the protocol presented here we profile tRNAs in Mycobacterium smegmatis mc2155, a nonpathogenic bacterium often used as a model organism to study tuberculosis.
Collapse
Affiliation(s)
- Sophia Emetu
- Laboratory of tRNA Biology, Department of Biology, College of Charleston
| | - Morgan Troiano
- Laboratory of tRNA Biology, Department of Biology, College of Charleston
| | - Jacob Goldmintz
- Laboratory of tRNA Biology, Department of Biology, College of Charleston
| | - Jensen Tomberlin
- Laboratory of tRNA Biology, Department of Biology, College of Charleston
| | - Simon Grelet
- Department of Biochemistry and Molecular Biology, MUSC
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, MUSC
| | | | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston;
| |
Collapse
|
9
|
Vieira JP, Racle J, Hatzimanikatis V. Analysis of Translation Elongation Dynamics in the Context of an Escherichia coli Cell. Biophys J 2017; 110:2120-31. [PMID: 27166819 DOI: 10.1016/j.bpj.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/07/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the mechanisms behind translation and its rate-limiting steps is crucial for both the development of drug targets and improvement of heterologous protein production with many biotechnological applications, such as in pharmaceutical and biofuel industries. Despite many advances in the knowledge of the ribosome structure and function, there is still much discussion around the determinants of translation elongation with experiments and computational studies pointing in different directions. Here, we use a stochastic framework to simulate the process of translation in the context of an Escherichia coli cell by gathering the available biochemical data into a ribosome kinetics description. Our results from the study of translation in E. coli at different growth rates contradict the increase of mean elongation rate with growth rate established in the literature. We show that both the level of tRNA competition and the type of cognate binding interaction contribute to the modulation of elongation rate, and that optimization of a heterologous transcript for faster elongation rate is achieved by combining the two. We derive an equation that can accurately predict codon elongation rates based on the abundances of free tRNA in the cell, and can be used to assist transcript design. Finally, we show that non-cognate tRNA-ribosome binding has an important weight in translation, and plays an active role in the modulation of mean elongation rate as shown by our amino-acid starvation/surplus studies.
Collapse
Affiliation(s)
- Joana Pinto Vieira
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Grelet S, McShane A, Hok E, Tomberlin J, Howe PH, Geslain R. SPOt: A novel and streamlined microarray platform for observing cellular tRNA levels. PLoS One 2017; 12:e0177939. [PMID: 28545122 PMCID: PMC5435355 DOI: 10.1371/journal.pone.0177939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 11/23/2022] Open
Abstract
Recent studies have placed transfer RNA (tRNA), a housekeeping molecule, in the heart of fundamental cellular processes such as embryonic development and tumor progression. Such discoveries were contingent on the concomitant development of methods able to deliver high-quality tRNA profiles. The present study describes the proof of concept obtained in Escherichia coli (E. coli) for an original tRNA analysis platform named SPOt (Streamlined Platform for Observing tRNA). This approach comprises three steps. First, E. coli cultures are spiked with radioactive orthophosphate; second, labeled total RNAs are trizol-extracted; third, RNA samples are hybridized on in-house printed microarrays and spot signals, the proxy for tRNA levels, are quantified by phosphorimaging. Features such as reproducibility and specificity were assessed using several tRNA subpopulations. Dynamic range and sensitivity were evaluated by overexpressing specific tRNA species. SPOt does not require any amplification or post-extraction labeling and can be adapted to any organism. It is modular and easily streamlined with popular techniques such as polysome fractionation to profile tRNAs interacting with ribosomes and actively engaged in translation. The biological relevance of these data is discussed in regards to codon usage, tRNA gene copy number, and position on the genome.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, United States of America
| | - Ariel McShane
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, United States of America
| | - Eveline Hok
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, United States of America
| | - Jensen Tomberlin
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, United States of America
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, United States of America
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
11
|
Conserved 3' UTR stem-loop structure in L1 and Alu transposons in human genome: possible role in retrotransposition. BMC Genomics 2016; 17:992. [PMID: 27914481 PMCID: PMC5135761 DOI: 10.1186/s12864-016-3344-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of retrotransposition LINEs use their own machinery for copying and inserting themselves into new genomic locations, while SINEs are parasitic and require the machinery of LINEs. The exact mechanism of how a LINE-encoded reverse transcriptase (RT) recognizes its own and SINE RNA remains unclear. However it was shown for the stringent-type LINEs that recognition of a stem-loop at the 3'UTR by RT is essential for retrotransposition. For the relaxed-type LINEs it is believed that the poly-A tail is a common recognition element between LINE and SINE RNA. However polyadenylation is a property of any messenger RNA, and how the LINE RT recognizes transposon and non-transposon RNAs remains an open question. It is likely that RNA secondary structures play an important role in RNA recognition by LINE encoded proteins. RESULTS Here we selected a set of L1 and Alu elements from the human genome and investigated their sequences for the presence of position-specific stem-loop structures. We found highly conserved stem-loop positions at the 3'UTR. Comparative structural analyses of a human L1 3'UTR stem-loop showed a similarity to 3'UTR stem-loops of the stringent-type LINEs, which were experimentally shown to be recognized by LINE RT. The consensus stem-loop structure consists of 5-7 bp loop, 8-10 bp stem with a bulge at a distance of 4-6 bp from the loop. The results show that a stem loop with a bulge exists at the 3'-end of Alu. We also found conserved stem-loop positions at 5'UTR and at the end of ORF2 and discuss their possible role. CONCLUSIONS Here we presented an evidence for the presence of a highly conserved 3'UTR stem-loop structure in L1 and Alu retrotransposons in the human genome. Both stem-loops show structural similarity to the stem-loops of the stringent-type LINEs experimentally confirmed as essential for retrotransposition. Here we hypothesize that both L1 and Alu RNA are recognized by L1 RT via the 3'-end RNA stem-loop structure. Other conserved stem-loop positions in L1 suggest their possible functions in protein-RNA interactions but to date no experimental evidence has been reported.
Collapse
|
12
|
Ou KC, Wang CY, Liu KT, Chen YL, Chen YC, Lai MD, Yen MC. Optimization protein productivity of human interleukin-2 through codon usage, gene copy number and intracellular tRNA concentration in CHO cells. Biochem Biophys Res Commun 2014; 454:347-52. [DOI: 10.1016/j.bbrc.2014.10.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 11/17/2022]
|
13
|
Michely S, Toulza E, Subirana L, John U, Cognat V, Maréchal-Drouard L, Grimsley N, Moreau H, Piganeau G. Evolution of codon usage in the smallest photosynthetic eukaryotes and their giant viruses. Genome Biol Evol 2013; 5:848-59. [PMID: 23563969 PMCID: PMC3673656 DOI: 10.1093/gbe/evt053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prasinoviruses are among the largest viruses (>200 kb) and encode several hundreds of
protein coding genes, including most genes of the DNA replication machinery and several
genes involved in transcription and translation, as well as transfer RNAs (tRNAs). They
can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting
global algal population dynamics. Here, we investigate the causes of codon usage bias
(CUB) in one prasinovirus, OtV5, and its host Ostreococcus tauri, during
a viral infection using microarray expression data. We show that 1) CUB in the host and in
the viral genes increases with expression levels and 2) optimal codons use those tRNAs
encoded by the most abundant host tRNA genes, supporting the notion of translational
optimization by natural selection. We find evidence that viral tRNA genes complement the
host tRNA pool for those viral amino acids whose host tRNAs are in short supply. We
further discuss the coevolution of CUB in hosts and prasinoviruses by comparing optimal
codons in three evolutionary diverged host–virus-specific pairs whose complete
genome sequences are known.
Collapse
Affiliation(s)
- Stephanie Michely
- UPMC Univ Paris 06, UMR7232, BIOM, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:424726. [PMID: 23984183 PMCID: PMC3747384 DOI: 10.1155/2013/424726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
Abstract
A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution.
Collapse
|
15
|
Cognat V, Pawlak G, Duchêne AM, Daujat M, Gigant A, Salinas T, Michaud M, Gutmann B, Giegé P, Gobert A, Maréchal-Drouard L. PlantRNA, a database for tRNAs of photosynthetic eukaryotes. Nucleic Acids Res 2013; 41:D273-9. [PMID: 23066098 PMCID: PMC3531208 DOI: 10.1093/nar/gks935] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/06/2012] [Accepted: 09/16/2012] [Indexed: 12/17/2022] Open
Abstract
PlantRNA database (http://plantrna.ibmp.cnrs.fr/) compiles transfer RNA (tRNA) gene sequences retrieved from fully annotated plant nuclear, plastidial and mitochondrial genomes. The set of annotated tRNA gene sequences has been manually curated for maximum quality and confidence. The novelty of this database resides in the inclusion of biological information relevant to the function of all the tRNAs entered in the library. This includes 5'- and 3'-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences, aminoacyl-tRNA synthetases and enzymes responsible for tRNA maturation and modification. Finally, data on mitochondrial import of nuclear-encoded tRNAs as well as the bibliome for the respective tRNAs and tRNA-binding proteins are also included. The current annotation concerns complete genomes from 11 organisms: five flowering plants (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Medicago truncatula and Brachypodium distachyon), a moss (Physcomitrella patens), two green algae (Chlamydomonas reinhardtii and Ostreococcus tauri), one glaucophyte (Cyanophora paradoxa), one brown alga (Ectocarpus siliculosus) and a pennate diatom (Phaeodactylum tricornutum). The database will be regularly updated and implemented with new plant genome annotations so as to provide extensive information on tRNA biology to the research community.
Collapse
MESH Headings
- Bryopsida/genetics
- Chlorophyta/genetics
- Cyanophora/genetics
- Databases, Nucleic Acid
- Diatoms/genetics
- Enzymes/genetics
- Enzymes/metabolism
- Genome, Mitochondrial
- Genome, Plant
- Genome, Plastid
- Internet
- Magnoliopsida/genetics
- Phaeophyceae/genetics
- Photosynthesis/genetics
- Plants/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Stramenopiles/genetics
- User-Computer Interface
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| |
Collapse
|
16
|
Salinas T, Duby F, Larosa V, Coosemans N, Bonnefoy N, Motte P, Maréchal-Drouard L, Remacle C. Co-evolution of mitochondrial tRNA import and codon usage determines translational efficiency in the green alga Chlamydomonas. PLoS Genet 2012; 8:e1002946. [PMID: 23028354 PMCID: PMC3447967 DOI: 10.1371/journal.pgen.1002946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/26/2012] [Indexed: 11/26/2022] Open
Abstract
Mitochondria from diverse phyla, including protozoa, fungi, higher plants, and humans, import tRNAs from the cytosol in order to ensure proper mitochondrial translation. Despite the broad occurrence of this process, our understanding of tRNA import mechanisms is fragmentary, and crucial questions about their regulation remain unanswered. In the unicellular green alga Chlamydomonas, a precise correlation was found between the mitochondrial codon usage and the nature and amount of imported tRNAs. This led to the hypothesis that tRNA import might be a dynamic process able to adapt to the mitochondrial genome content. By manipulating the Chlamydomonas mitochondrial genome, we introduced point mutations in order to modify its codon usage. We find that the codon usage modification results in reduced levels of mitochondrial translation as well as in subsequent decreased levels and activities of respiratory complexes. These effects are linked to the consequential limitations of the pool of tRNAs in mitochondria. This indicates that tRNA mitochondrial import cannot be rapidly regulated in response to a novel genetic context and thus does not appear to be a dynamic process. It rather suggests that the steady-state levels of imported tRNAs in mitochondria result from a co-evolutive adaptation between the tRNA import mechanism and the requirements of the mitochondrial translation machinery. Mitochondria are endosymbiotic organelles involved in diverse fundamental cellular processes. They contain their own genome that encodes a few but essential proteins (e.g. proteins of the respiratory chain complexes). Their synthesis requires functional mitochondrial translational machinery that necessitates a full set of transfer RNAs (tRNAs). As mitochondrial genomes of various organisms do not code for the complete set of tRNA genes, nucleus-encoded tRNAs have to be imported into mitochondria to compensate. Mitochondrial import of tRNAs is highly specific and tailored to the mitochondrial needs. Because transformation of the mitochondrial genome is possible in Chlamydomonas, we used this green alga as model to know if a fine regulation of the tRNA import process is possible so that the tRNA population can rapidly adapt to codon usage changes in mitochondria. Here we provide evidence that the regulation of tRNA mitochondrial import process is not dynamic but is rather the result of a co-evolutive process between the import and the mitochondrial codon bias in order to optimize the mitochondrial translation efficiency.
Collapse
Affiliation(s)
- Thalia Salinas
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Francéline Duby
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Véronique Larosa
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Nadine Coosemans
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, UPR3404, FRC3115, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
- * E-mail: (LM-D); (CR)
| | - Claire Remacle
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
- * E-mail: (LM-D); (CR)
| |
Collapse
|
17
|
Ohshima K. Parallel relaxation of stringent RNA recognition in plant and mammalian L1 retrotransposons. Mol Biol Evol 2012; 29:3255-9. [PMID: 22675029 PMCID: PMC3472496 DOI: 10.1093/molbev/mss147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
L1 elements are mammalian non-long terminal repeat retrotransposons, or long interspersed elements (LINEs), that significantly influence the dynamics and fluidity of the genome. A series of observations suggest that plant L1-clade LINEs, just as mammalian L1s, mobilize both short interspersed elements (SINEs) and certain messenger RNA by recognizing the 3'-poly(A) tail of RNA. However, one L1 lineage in monocots was shown to possess a conserved 3'-end sequence with a solid RNA structure also observed in maize and sorghum SINEs. This strongly suggests that plant LINEs require a particular 3'-end sequence during initiation of reverse transcription. As one L1-clade LINE was also found to share the 3'-end sequence with a SINE in a green algal genome, I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized the specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution.
Collapse
|
18
|
Rao Y, Wu G, Wang Z, Chai X, Nie Q, Zhang X. Mutation bias is the driving force of codon usage in the Gallus gallus genome. DNA Res 2011; 18:499-512. [PMID: 22039174 PMCID: PMC3223081 DOI: 10.1093/dnares/dsr035] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.
Collapse
Affiliation(s)
- Yousheng Rao
- Department of Biological Technology, Jiangxi Educational Institute, Nanchang, China.
| | | | | | | | | | | |
Collapse
|
19
|
RNA polymerase III transcription control elements: themes and variations. Gene 2011; 493:185-94. [PMID: 21712079 DOI: 10.1016/j.gene.2011.06.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022]
Abstract
Eukaryotic genomes are punctuated by a multitude of tiny genetic elements, that share the property of being recognized and transcribed by the RNA polymerase (Pol) III machinery to produce a variety of small, abundant non-protein-coding (nc) RNAs (tRNAs, 5S rRNA, U6 snRNA and many others). The highly selective, efficient and localized action of Pol III at its minute genomic targets is made possible by a handful of cis-acting regulatory elements, located within the transcribed region (where they are bound by the multisubunit assembly factor TFIIIC) and/or upstream of the transcription start site. Most of them participate directly or indirectly in the ultimate recruitment of TFIIIB, a key multiprotein initiation factor able to direct, once assembled, multiple transcription cycles by Pol III. But the peculiar efficiency and selectivity of Pol III transcription also depends on its ability to recognize very simple and precisely positioned termination signals. Studies in the last few years have significantly expanded the set of known Pol III-associated loci in genomes and, concomitantly, have revealed unexpected features of Pol III cis-regulatory elements in terms of variety, function, genomic location and potential contribution to transcriptome complexity. Here we review, in a historical perspective, well established and newly acquired knowledge about Pol III transcription control elements, with the aim of providing a useful reference for future studies of the Pol III system, which we anticipate will be numerous and intriguing for years to come.
Collapse
|
20
|
Behura SK, Severson DW. Coadaptation of isoacceptor tRNA genes and codon usage bias for translation efficiency in Aedes aegypti and Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2011; 20:177-87. [PMID: 21040044 PMCID: PMC3057532 DOI: 10.1111/j.1365-2583.2010.01055.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The transfer RNAs (tRNAs) are essential components of translational machinery. We determined that tRNA isoacceptors (tRNAs with different anticodons but incorporating the same amino acid in protein synthesis) show differential copy number abundance, genomic distribution patterns and sequence evolution between Aedes aegypti and Anopheles gambiae mosquitoes. The tRNA-Ala genes are present in unusually high copy number in the Ae. aegypti genome but not in An. gambiae. Many of the tRNA-Ala genes of Ae. aegypti are flanked by a highly conserved sequence that is not observed in An. gambiae. The relative abundance of tRNA isoacceptor genes is correlated with preferred (or optimal) and nonpreferred (or rare) codons for ∼2-4% of the predicted protein coding genes in both species. The majority (∼74-85%) of these genes are related to pathways involved with translation, energy metabolism and carbohydrate metabolism. Our results suggest that these genes and the related pathways may be under translational selection in these mosquitoes.
Collapse
Affiliation(s)
- Susanta K. Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - David W. Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
21
|
Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L. A global picture of tRNA genes in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:80-93. [PMID: 21443625 DOI: 10.1111/j.1365-313x.2011.04490.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although transfer RNA (tRNA) has a fundamental role in cell life, little is known about tRNA gene organization and expression on a genome-wide scale in eukaryotes, particularly plants. Here, we analyse the content and distribution of tRNA genes in five flowering plants and one green alga. The tRNA gene content is homogenous in plants, and is mostly correlated with genome size. The number of tRNA pseudogenes and organellar-like tRNA genes present in nuclear genomes varies greatly from one plant species to another. These pseudogenes or organellar-like genes appear to be generated or inserted randomly during evolution. Interestingly, we identified a new family of tRNA-related short interspersed nuclear elements (SINEs) in the Populus trichocarpa nuclear genome. In higher plants, intron-containing tRNA genes are rare, and correspond to genes coding for tRNA(Tyr) and tRNA(Mete) . By contrast, in green algae, more than half of the tRNA genes contain an intron. This suggests divergent means of intron acquisition and the splicing process between green algae and land plants. Numerous tRNAs are co-transcribed in Chlamydomonas, but they are mostly transcribed as a single unit in flowering plants. The only exceptions are tRNA(Gly) -snoRNA and tRNA(Mete) -snoRNA cotranscripts in dicots and monocots, respectively. The internal or external motifs required for efficient transcription of tRNA genes by RNA polymerase III are well conserved among angiosperms. A brief analysis of the mitochondrial and plastidial tRNA gene populations is also provided.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
22
|
Shah P, Gilchrist MA. Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLoS Genet 2010; 6:e1001128. [PMID: 20862306 PMCID: PMC2940732 DOI: 10.1371/journal.pgen.1001128] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/18/2010] [Indexed: 11/19/2022] Open
Abstract
Despite the fact that tRNA abundances are thought to play a major role in determining translation error rates, their distribution across the genetic code and the resulting implications have received little attention. In general, studies of codon usage bias (CUB) assume that codons with higher tRNA abundance have lower missense error rates. Using a model of protein translation based on tRNA competition and intra-ribosomal kinetics, we show that this assumption can be violated when tRNA abundances are positively correlated across the genetic code. Examining the distribution of tRNA abundances across 73 bacterial genomes from 20 different genera, we find a consistent positive correlation between tRNA abundances across the genetic code. This work challenges one of the fundamental assumptions made in over 30 years of research on CUB that codons with higher tRNA abundances have lower missense error rates and that missense errors are the primary selective force responsible for CUB. Codon usage bias (CUB) is a ubiquitous and important phenomenon. CUB is thought to be driven primarily due to selection against missense errors. For over 30 years, the standard model of translation errors has implicitly assumed that the relationship between translation errors and tRNA abundances are inversely related. This is based on an implicit and unstated assumption that the distribution of tRNA abundances across the genetic code are uncorrelated. Examining these abundance distributions across 73 bacterial genomes from 20 different genera, we find a consistent positive correlation between tRNA abundances across the genetic code. We further show that codons with higher tRNA abundances are not always “optimal” with respect to reducing the missense error rate and hence cannot explain the observed patterns of CUB.
Collapse
Affiliation(s)
- Premal Shah
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.
| | | |
Collapse
|
23
|
Computational analysis of tRNA identity. FEBS Lett 2009; 584:325-33. [PMID: 19944694 DOI: 10.1016/j.febslet.2009.11.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 11/22/2022]
Abstract
I review recent developments in computational analysis of tRNA identity. I suggest that the tRNA-protein interaction network is hierarchically organized, and coevolutionarily flexible. Its functional specificity of recognition and discrimination persists despite generic structural constraints and perturbative evolutionary forces. This flexibility comes from its arbitrary nature as a self-recognizing shape code. A revisualization of predicted Proteobacterial tRNA identity highlights open research problems. tRNA identity elements and their coevolution with proteins must be mapped structurally over the Tree of Life. These traits can also resolve deep roots in the Tree. I show that histidylation identity elements phylogenetically reposition Pelagibacter ubique within alpha-Proteobacteria.
Collapse
|
24
|
Vinogradova E, Salinas T, Cognat V, Remacle C, Maréchal-Drouard L. Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are correlated with both cytosolic and mitochondrial codon usages. Nucleic Acids Res 2009; 37:1521-8. [PMID: 19139073 PMCID: PMC2655685 DOI: 10.1093/nar/gkn1073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mitochondrial genome of Chlamydomonas reinhardtii only encodes three expressed tRNA genes, thus most mitochondrial tRNAs are likely imported. The sharing of tRNAs between chloroplasts and mitochondria has been speculated in this organism. We first demonstrate that no plastidial tRNA is present in mitochondria and that the mitochondrial translation mainly relies on the import of nucleus-encoded tRNA species. Then, using northern analysis, we show that the extent of mitochondrial localization for the 49 tRNA isoacceptor families encoded by the C. reinhardtii nuclear genome is highly variable. Until now the reasons for such variability were unknown. By comparing cytosolic and mitochondrial codon usage with the sub-cellular distribution of tRNAs, we provide unprecedented evidence that the steady-state level of a mitochondrial tRNA is linked not only to the frequency of the cognate codon in mitochondria but also to its frequency in the cytosol, then allowing optimal mitochondrial translation.
Collapse
Affiliation(s)
- Elizaveta Vinogradova
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Université Louis Pasteur, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
25
|
|