1
|
Cea-Sánchez S, Martín-Villanueva S, Gutiérrez G, Cánovas D, Corrochano LM. VE-1 regulation of MAPK signaling controls sexual development in Neurospora crassa. mBio 2024; 15:e0226424. [PMID: 39283084 PMCID: PMC11481897 DOI: 10.1128/mbio.02264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In Neurospora crassa, this complex comprises VE-1, VE-2, and LAE-1. Deletion of ve-1 or ve-2, but not lae-1, leads to increased conidiation (asexual spore formation) and reduced sexual development. Mutants lacking ve-1 and/or ve-2 are female sterile and male fertile, indicating that a VE-1/VE-2 complex regulates the development of female structures. During sexual development, we observed differential regulation of 2,117 genes in dark and 4,364 genes in light between the wild type and the ∆ve-1 strain. The pheromone response and cell wall integrity pathways were downregulated in the ∆ve-1 mutant, especially in light. Additionally, we found reduced levels of both total and phosphorylated MAK-1 and MAK-2 kinases. In vitro experiments demonstrated the binding of VE-1 and VE-2 to the promoters of mak-1 and mak-2, suggesting a direct regulatory role of VE-1/VE-2 in the transcriptional control of MAPK genes to regulate sexual development. Deletion of the photosensor gene white-collar 1 prevented the light-dependent inhibition of sexual development in the ∆ve-1 mutant by increasing transcription of the pheromone response and cell wall integrity pathway genes to the levels in the dark. Our results support the proposal that the regulation of the MAP kinase pathways by the VE-1/VE-2 complex is a key element in transcriptional regulation that occurs during sexual development. IMPORTANCE Sexual reproduction generates new gene combinations and novel phenotypic traits and facilitates evolution. Induction of sexual development in fungi is often regulated by environmental conditions, such as the presence of light and nutrients. The velvet protein complex coordinates internal cues and environmental signals to regulate development. We have found that VE-1, a component of the velvet complex, regulates transcription during sexual development in the fungus Neurospora crassa. VE-1 regulates the transcription of many genes, including those involved in mitogen-activated protein kinase (MAPK) signaling pathways that are essential in the regulation of sexual development, and regulates the activity of the MAPK pathway. Our findings provide valuable insights into how fungi respond to environmental signals and integrate them into their reproductive processes.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Ma B, Luo XM, Zhao S, Feng JX. Protein Kinase PoxMKK1 Regulates Plant-Polysaccharide-Degrading Enzyme Biosynthesis, Mycelial Growth and Conidiation in Penicillium oxalicum. J Fungi (Basel) 2023; 9:jof9040397. [PMID: 37108852 PMCID: PMC10143691 DOI: 10.3390/jof9040397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The ability to adapt to changing environmental conditions is crucial for living organisms, as it enables them to successfully compete in natural niches, a process which generally depends upon protein phosphorylation-mediated signaling transduction. In the present study, protein kinase PoxMKK1, an ortholog of mitogen-activated protein kinase kinase Ste7 in Saccharomyces cerevisiae, was identified and characterized in the filamentous fungus Penicillium oxalicum. Deletion of PoxMKK1 in P. oxalicum ΔPoxKu70 led the fungus to lose 64.4-88.6% and 38.0-86.1% of its plant-polysaccharide-degrading enzyme (PPDE) production on day 4 after a shift under submerged- and solid-state fermentation, respectively, compared with the control strain ΔPoxKu70. In addition, PoxMKK1 affected hypha growth and sporulation, though this was dependent on culture formats and carbon sources. Comparative transcriptomics and real-time quantitative reverse transcription PCR assay revealed that PoxMKK1 activated the expression of genes encoding major PPDEs, known regulatory genes (i.e., PoxClrB and PoxCxrB) and cellodextrin transporter genes (i.e., PoxCdtD and PoxCdtC), while it inhibited the essential conidiation-regulating genes, including PoxBrlA, PoxAbaA and PoxFlbD. Notably, regulons modulated by PoxMKK1 and its downstream mitogen-activated protein kinase PoxMK1 co-shared 611 differential expression genes, including 29 PPDE genes, 23 regulatory genes, and 16 sugar-transporter genes. Collectively, these data broaden our insights into the diverse functions of Ste7-like protein kinase, especially regulation of PPDE biosynthesis, in filamentous fungi.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Lan N, Ye S, Hu C, Chen Z, Huang J, Xue W, Li S, Sun X. Coordinated Regulation of Protoperithecium Development by MAP Kinases MAK-1 and MAK-2 in Neurospora crassa. Front Microbiol 2021; 12:769615. [PMID: 34899653 PMCID: PMC8662359 DOI: 10.3389/fmicb.2021.769615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase pathways function as signaling hubs that are integral for many essential cellular processes, including sexual development. The molecular mechanisms and cross-talk between PR and CWI MAP kinase pathways have been extensively studied during asexual development. However, if these can be extended to sexual development remains elusive. By analyzing genome-wide transcriptional responses to deletion of each of two MAP kinase coding genes mak-2 (PR-MAP kinase pathway) and mak-1 (CWI-MAP kinase pathway) in Neurospora crassa during protoperithecium formation, 430 genes co-regulated by the MAK-1 and MAK-2 proteins were found, functionally enriched at integral components of membrane and oxidoreductase. These genes include 13 functionally known genes participating in sexual development (app, poi-2, stk-17, fsd-1, vsd-8, and NCU03863) and melanin synthesis (per-1, pkh-1, pkh-2, mld-1, scy-1, trn-2, and trn-1), as well as a set of functionally unknown genes. Phenotypic analysis of deletion mutants for the functionally unknown genes revealed that 12 genes were essential for female fertility. Among them, single-gene deletion mutants for NCU07743 (named as pfd-1), NCU02250 (oli), and NCU05948 (named as pfd-2) displayed similar protoperithecium development defects as the Δmak-1 and Δmak-2 mutants, failing to form protoperithecium. Western blotting analysis showed that both phosphorylated and total MAK-1 proteins were virtually abolished in the Δnrc-1, Δmek-2, and Δmak-2 mutants, suggesting that the posttranscriptional regulation of MAK-1 is dependent on the PR-MAP kinase pathway during the protoperithecium development. Taken together, this study revealed the regulatory roles and cross-talk between PR and CWI-MAP kinase pathways during protoperithecium development.
Collapse
Affiliation(s)
- Nan Lan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiling Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jun Huang
- Shandong Jinniu Group Company, Ltd., Jinan, China
| | - Wei Xue
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Liu N, Wang J, Yun Y, Wang J, Xu C, Wu S, Xu L, Li B, Kolodkin-Gal I, Dawood DH, Zhao Y, Ma Z, Chen Y. The NDR kinase-MOB complex FgCot1-Mob2 regulates polarity and lipid metabolism in Fusarium graminearum. Environ Microbiol 2021; 23:5505-5524. [PMID: 34347361 DOI: 10.1111/1462-2920.15698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023]
Abstract
Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential for cell differentiation and polarized morphogenesis. However, their functions in plant pathogenic fungi are not well understood. Here, we characterized the NDR kinase FgCot1 and its activator FgMob2 in Fusarium graminearum, a major pathogen causing Fusarium head blight (FHB) in wheat. FgCot1 and FgMob2 formed a NDR kinase-MOB protein complex. Localization assays using FgCot1-GFP or FgMob2-RFP constructs showed diverse subcellular localizations, including cytoplasm, septum, nucleus and hyphal tip. ΔFgcot1 and ΔFgmob2 exhibited serious defects in hyphal growth, polarity, fungal development and cell wall integrity as well as reduced virulence in planta. In contrast, lipid droplet accumulation was significantly increased in these two mutants. Phosphorylation of FgCot1 at two highly conserved residues (S462 and T630) as well as five new sites synergistically contributed its role in various cellular processes. In addition, non-synonymous mutations in two MAPK (mitogen-activated protein kinase) proteins, FgSte11 and FgGpmk1, partially rescued the growth defect of ΔFgmob2, indicating a functional link between the FgCot1-Mob2 complex and the FgGpmk1 signalling pathway in regulating filamentous fungal growth. These results indicated that the FgCot1-Mob2 complex is critical for polarity, fungal development, cell wall organization, lipid metabolism and virulence in F. graminearum.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yingzi Yun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyun Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Siqi Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Luona Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Herold I, Zolti A, Garduño-Rosales M, Wang Z, López-Giráldez F, Mouriño-Pérez RR, Townsend JP, Ulitsky I, Yarden O. The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:672696. [PMID: 37744127 PMCID: PMC10512220 DOI: 10.3389/ffunb.2021.672696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 09/26/2023]
Abstract
The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avihai Zolti
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis, Department of Genetics, Yale University, New Haven, CT, United States
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Weichert M, Herzog S, Robson SA, Brandt R, Priegnitz BE, Brandt U, Schulz S, Fleißner A. Plasma Membrane Fusion Is Specifically Impacted by the Molecular Structure of Membrane Sterols During Vegetative Development of Neurospora crassa. Genetics 2020; 216:1103-1116. [PMID: 33046504 PMCID: PMC7768248 DOI: 10.1534/genetics.120.303623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell fusion is crucial for the development and propagation of most eukaryotic organisms. Despite this importance, the molecular mechanisms mediating this process are only poorly understood in biological systems. In particular, the step of plasma membrane merger and the contributing proteins and physicochemical factors remain mostly unknown. Earlier studies provided the first evidence of a role of membrane sterols in cell-to-cell fusion. By characterizing different ergosterol biosynthesis mutants of the fungus Neurospora crassa, which accumulate different ergosterol precursors, we show that the structure of the sterol ring system specifically affects plasma membrane merger during the fusion of vegetative spore germlings. Genetic analyses pinpoint this defect to an event prior to engagement of the fusion machinery. Strikingly, this effect is not observed during sexual fusion, suggesting that the specific sterol precursors do not generally block membrane merger, but rather impair subcellular processes exclusively mediating fusion of vegetative cells. At a colony-wide level, the altered structure of the sterol ring system affects a subset of differentiation processes, including vegetative sporulation and steps before and after fertilization during sexual propagation. Together, these observations corroborate the notion that the accumulation of particular sterol precursors has very specific effects on defined cellular processes rather than nonspecifically disturbing membrane functioning. Given the phenotypic similarities of the ergosterol biosynthesis mutants of N. crassa during vegetative fusion and of Saccharomyces cerevisiae cells undergoing mating, our data support the idea that yeast mating is evolutionarily and mechanistically more closely related to vegetative than sexual fusion of filamentous fungi.
Collapse
Affiliation(s)
- Martin Weichert
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sarah-Anne Robson
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Raphael Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bert-Ewald Priegnitz
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Carrillo AJ, Cabrera IE, Spasojevic MJ, Schacht P, Stajich JE, Borkovich KA. Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa. BMC Genomics 2020; 21:755. [PMID: 33138786 PMCID: PMC7607824 DOI: 10.1186/s12864-020-07131-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Background With 9730 protein-coding genes and a nearly complete gene knockout strain collection, Neurospora crassa is a major model organism for filamentous fungi. Despite this abundance of information, the phenotypes of these gene knockout mutants have not been categorized to determine whether there are broad correlations between phenotype and any genetic features. Results Here, we analyze data for 10 different growth or developmental phenotypes that have been obtained for 1168 N. crassa knockout mutants. Of these mutants, 265 (23%) are in the normal range, while 903 (77%) possess at least one mutant phenotype. With the exception of unclassified functions, the distribution of functional categories for genes in the mutant dataset mirrors that of the N. crassa genome. In contrast, most genes do not possess a yeast ortholog, suggesting that our analysis will reveal functions that are not conserved in Saccharomyces cerevisiae. To leverage the phenotypic data to identify pathways, we used weighted Partitioning Around Medoids (PAM) approach with 40 clusters. We found that genes encoding metabolic, transmembrane and protein phosphorylation-related genes are concentrated in subsets of clusters. Results from K-Means clustering of transcriptomic datasets showed that most phenotypic clusters contain multiple expression profiles, suggesting that co-expression is not generally observed for genes with shared phenotypes. Analysis of yeast orthologs of genes that co-clustered in MAPK signaling cascades revealed potential networks of interacting proteins in N. crassa. Conclusions Our results demonstrate that clustering analysis of phenotypes is a promising tool for generating new hypotheses regarding involvement of genes in cellular pathways in N. crassa. Furthermore, information about gene clusters identified in N. crassa should be applicable to other filamentous fungi, including saprobes and pathogens.
Collapse
Affiliation(s)
- Alexander J Carrillo
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ilva E Cabrera
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521, USA
| | - Patrick Schacht
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Katherine A Borkovich
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Schmidt S, Märker R, Ramšak B, Beier-Rosberger AM, Teichert I, Kück U. Crosstalk Between Pheromone Signaling and NADPH Oxidase Complexes Coordinates Fungal Developmental Processes. Front Microbiol 2020; 11:1722. [PMID: 32849367 PMCID: PMC7401384 DOI: 10.3389/fmicb.2020.01722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sexual and asexual development in filamentous ascomycetes is controlled by components of conserved signaling pathways. Here, we investigated the development of mutant strains lacking genes for kinases MAK2, MEK2, and MIK2, as well as the scaffold protein HAM5 of the pheromone response (PR) pathway. All had a defect in fruiting body development and hyphal fusion. Another phenotype was a defect in melanin-dependent ascospore germination. However, this deficiency was observed only in kinase deletion mutants, but not in strains lacking HAM5. Notably, the same developmental phenotypes were previously described for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) mutants, but the germination defect was only seen in NOX2 mutants. These data suggest a molecular link between the pheromone signaling pathway and both NOX complexes. Using data from yeast two-hybrid (Y2H) analysis, we found that the scaffolding protein HAM5 interacts with NOR1, the regulator of NOX1 and NOX2 complexes. This interaction was further confirmed using differently fluorescent-labeled proteins to demonstrate that NOR1 and HAM5 co-localize at cytoplasmic spots and tips of mature hyphae. This observation was supported by phenotypic characterization of single and double mutants. The oxidative stress response and the initiation of fruiting bodies were similar in Δham5Δnor1 and Δham5, but distinctly reduced in Δnor1, indicating that the double deletion leads to a partial suppression of the Δnor1 phenotype. We conclude that the PR and NOX1 complexes are connected by direct interaction between HAM5 and NOR1. In contrast, PR kinases are linked to the NOX2 complex without participation of HAM5.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
10
|
Two dominant selectable markers for genetic manipulation in Neurospora crassa. Curr Genet 2020; 66:835-847. [PMID: 32152733 DOI: 10.1007/s00294-020-01063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Neurospora crassa is an excellent model fungus for studies on molecular genetics, biochemistry, physiology, and molecular cell biology. Along with the rapid progress of Neurospora research, new tools facilitating more efficient and accurate genetic analysis are in high demand. Here, we tested whether the dominant selective makers widely used in yeasts are applicable in N. crassa. Among them, we found that the strains of N. crassa are sensitive to the aminoglycoside antibiotics, G418 and nourseothricin. 1000 μg/mL of G418 or 50 μg/mL of nourseothricin is sufficient to inhibit Neurospora growth completely. When the neomycin phosphotransferase gene (neo) used in mammalian cells is expressed, N. crassa shows potent resistance to G418. This establishes G418-resistant marker as a dominant selectable marker to use in N. crassa. Similarly, when the nourseothricin acetyltransferase gene (nat) from Streptomyces noursei is induced by qa-2 promoter in the presence of quinic acid (QA), N. crassa shows potent resistance to nourseothricin. When nat is constitutively expressed by full-length or truncated versions of the promoter from the N. crassa cfp gene (NCU02193), or by the trpC promoter of Aspergillus nidulans, the growth of N. crassa in the presence of nourseothricin is proportional to the expression levels of Nat. Finally, these two markers are used to knock-out wc-2 or al-1 gene from the N. crassa genome. The successful development of these two markers in this study expands the toolbox for N. crassa and very likely for other filamentous fungi as well.
Collapse
|
11
|
Li FGM, Liu W, Bai Y, Tao T, Wang Y, Zhang J, Luo H, Yao B, Huang H, Su X, Su X. RNAi-Mediated Gene Silencing of Trcot1 Induces a Hyperbranching Phenotype in Trichoderma reesei. J Microbiol Biotechnol 2020; 30:206-215. [PMID: 31752060 PMCID: PMC9728278 DOI: 10.4014/jmb.1909.09050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trichoderma reesei is the major filamentous fungus used to produce cellulase and there is huge interest in promoting its ability to produce higher titers of cellulase. Among the many factors affecting cellulase production in T. reesei, the mycelial phenotype is important but seldom studied. Herein, a close homolog of the Neurospora crassa COT1 kinase was discovered in T. reesei and designated TrCOT1, which is of 83.3% amino acid sequence identity. Functional disruption of Trcot1 in T. reesei by RNAi-mediated gene silencing resulted in retarded sporulation on potato dextrose agar and dwarfed colonies on minimal medium agar plates containing glucose, xylan, lactose, xylose, or glycerol as the sole carbon source. The representative mutant strain, SUS2/Trcot1i, also displayed reduced mycelia accumulation but hyperbranching in the MM glucose liquid medium, with hyphal growth unit length values decreased to 73.0 µm/tip compared to 239.8 µm/tip for the parent strain SUS2. The hyperbranching phenotype led to slightly but significantly increased cellulase secretion from 24 to 72 h in a batch culture. However, the cellulase production per unit of mycelial biomass was much more profoundly improved from 24 to 96 h.
Collapse
Affiliation(s)
- Fei Gao Mengzhu Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China,College of Biological Sciences, China Agricultural University, Beijing 100193, P.R, China
| | - Weiquan Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China
| | - Yingguo Bai
- College of Biological Sciences, China Agricultural University, Beijing 100193, P.R, China
| | - Tu Tao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China
| | - Jie Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China,Corresponding authors H.H. Phone: +86-10-82106065 E-mail:
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 0008, P.R. China,X.S. Phone: +86-10-82106094 E-mail:
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
12
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
13
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
14
|
Herold I, Kowbel D, Delgado-Álvarez DL, Garduño-Rosales M, Mouriño-Pérez RR, Yarden O. Transcriptional profiling and localization of GUL-1, a COT-1 pathway component, in Neurospora crassa. Fungal Genet Biol 2019; 126:1-11. [PMID: 30731203 DOI: 10.1016/j.fgb.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/19/2023]
Abstract
Impairment of theNeurospora crassaCOT-1 kinase results in defects in hyphal polarity. Some of these effects are partially suppressed by inactivation of gul-1 (encoding an mRNA-binding protein involved in translational regulation). Here, we report on the transcriptional profiling of cot-1 inactivation and demonstrate that gul-1 affects transcript abundance of multiple genes in the COT-1 pathway, including processes such as cell wall remodeling, nitrogen and amino acid metabolism. The GUL-1 protein itself was found to be distributed within the entire hyphal cell, along with a clear presence of aggregates that traffic within the cytoplasm. Live imaging of GUL-1-GFP demonstrated that GUL-1 transport is microtubule-dependent. Cellular stress, as imposed by the presence of the cell wall biosynthesis inhibitor Nikkomycin Z or by nitrogen limitation, resulted in a 2-3-fold increase of GUL-1 aggregate association with nuclei. Taken together, this study demonstrates that GUL-1 affects multiple processes, its function is stress-related and linked with cellular traffic and nuclear association.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - David Kowbel
- Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720-3102, USA
| | - Diego L Delgado-Álvarez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
15
|
Integration of Self and Non-self Recognition Modulates Asexual Cell-to-Cell Communication in Neurospora crassa. Genetics 2019; 211:1255-1267. [PMID: 30718271 DOI: 10.1534/genetics.118.301780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells rarely exist alone, which drives the evolution of diverse mechanisms for identifying and responding appropriately to the presence of other nearby cells. Filamentous fungi depend on somatic cell-to-cell communication and fusion for the development and maintenance of a multicellular, interconnected colony that is characteristic of this group of organisms. The filamentous fungus Neurospora crassa is a model for investigating the mechanisms of somatic cell-to-cell communication and fusion. N. crassa cells chemotropically grow toward genetically similar cells, which ultimately make physical contact and undergo cell fusion. Here, we describe the development of a Pprm1-luciferase reporter system that differentiates whether genes function upstream or downstream of a conserved MAP kinase (MAPK) signaling complex, by using a set of mutants required for communication and cell fusion. The vast majority of these mutants are deficient for self-fusion and for fusion when paired with wild-type cells. However, the Δham-11 mutant is unique in that it fails to undergo self-fusion, but chemotropic interactions and cell fusion are restored in Δham-11 + wild-type interactions. In genetically dissimilar cells, chemotropic interactions are regulated by genetic differences at doc-1 and doc-2, which regulate prefusion non-self recognition; cells with dissimilar doc-1 and doc-2 alleles show greatly reduced cell-fusion frequencies. Here, we show that HAM-11 functions in parallel with the DOC-1 and DOC-2 proteins to regulate the activity of the MAPK signaling complex. Together, our data support a model of integrated self and non-self recognition processes that modulate somatic cell-to-cell communication in N. crassa.
Collapse
|
16
|
Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa. Genetics 2018; 209:489-506. [PMID: 29678830 DOI: 10.1534/genetics.118.300904] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Maintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as Neurospora crassa, depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP kinase (MAPK) pathways are essential for communication and cell fusion in N. crassa: the cell wall integrity/MAK-1 pathway and the MAK-2 (signal response) pathway. Previous studies have demonstrated several points of cross-talk between the MAK-1 and MAK-2 pathways, which is likely necessary for coordinating chemotropic growth toward an extracellular signal, and then mediating cell fusion. Canonical MAPK pathways begin with signal reception and end with a transcriptional response. Two transcription factors, ADV-1 and PP-1, are essential for communication and cell fusion. PP-1 is the conserved target of MAK-2, but it is unclear what targets ADV-1. We did RNA sequencing on Δadv-1, Δpp-1, and wild-type cells and found that ADV-1 and PP-1 have a shared regulon including many genes required for communication, cell fusion, growth, development, and stress response. We identified ADV-1 and PP-1 binding sites across the genome by adapting the in vitro method of DNA-affinity purification sequencing for N. crassa To elucidate the regulatory network, we misexpressed each transcription factor in each upstream MAPK deletion mutant. Misexpression of adv-1 was sufficient to fully suppress the phenotype of the Δpp-1 mutant and partially suppress the phenotype of the Δmak-1 mutant. Collectively, our data demonstrate that the MAK-1/ADV-1 and MAK-2/PP-1 pathways form a tight regulatory network that maintains cell integrity and mediates communication and cell fusion.
Collapse
|
17
|
Segorbe D, Di Pietro A, Pérez‐Nadales E, Turrà D. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. MOLECULAR PLANT PATHOLOGY 2017; 18:912-924. [PMID: 27301316 PMCID: PMC6638227 DOI: 10.1111/mpp.12446] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum.
Collapse
Affiliation(s)
- David Segorbe
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
- Present address:
Department of Genetics and Microbiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
| | - Elena Pérez‐Nadales
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
- Present address:
Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)Hospital Universitario Reina Sofía, Universidad deCórdobaEspaña
| | - David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
| |
Collapse
|
18
|
Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0015-2016. [PMID: 28256191 PMCID: PMC11687462 DOI: 10.1128/microbiolspec.funk-0015-2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 12/13/2022] Open
Abstract
For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.
Collapse
Affiliation(s)
- Asen Daskalov
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Jens Heller
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| |
Collapse
|
19
|
Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion. Proc Natl Acad Sci U S A 2016; 113:11877-11882. [PMID: 27708165 DOI: 10.1073/pnas.1610527113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.
Collapse
|
20
|
Steffens EK, Becker K, Krevet S, Teichert I, Kück U. Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Mol Microbiol 2016; 102:792-809. [PMID: 27560538 DOI: 10.1111/mmi.13491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
The filamentous fungus Sordaria macrospora is a model system to study multicellular development during fruiting body formation. Previously, we demonstrated that this major process in the sexual life cycle is controlled by the Zn(II)2 Cys6 zinc cluster transcription factor PRO1. Here, we further investigated the genome-wide regulatory network controlled by PRO1 by employing chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) to identify binding sites for PRO1. We identified several target regions that occur in the promoter regions of genes encoding components of diverse signaling pathways. Furthermore, we identified a conserved DNA-binding motif that is bound specifically by PRO1 in vitro. In addition, PRO1 controls in vivo the expression of a DsRed reporter gene under the control of the esdC target gene promoter. Our ChIP-seq data suggest that PRO1 also controls target genes previously shown to be involved in regulating the pathways controlling cell wall integrity, NADPH oxidase and pheromone signaling. Our data point to PRO1 acting as a master regulator of genes for signaling components that comprise a developmental cascade controlling fruiting body formation.
Collapse
Affiliation(s)
- Eva Katharina Steffens
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Sabine Krevet
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| |
Collapse
|
21
|
Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassa. Biosci Biotechnol Biochem 2016; 80:1843-52. [DOI: 10.1080/09168451.2016.1189321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Among three MAPK disruptants of Neurospora crassa, Δmak-1 was sensitive and Δmak-2 was hypersensitive to micafungin, a beta-1,3-glucan synthase inhibitor, than the wild-type or Δos-2 strains. We identified six micafungin-inducible genes that are involved in cell wall integrity (CWI) and found that MAK-1 regulated the transcription of non-anchored cell wall protein gene, ncw-1, and the beta-1,3-endoglucanase gene, bgt-2, whereas MAK-2 controlled the expression of the glycosylhydrolase-like protein gene, gh76-5, and the C4-dicarboxylate transporter gene, tdt-1. Western blotting analysis revealed that, in the wild-type strain, MAK-1 was constitutively phosphorylated from conidial germination to hyphal development. In contrast, the phosphorylation of MAK-2 was growth phase-dependent, and micafungin induced the phosphorylation of unphosphorylated MAK-2. It should be noted that the phosphorylation of MAK-1 was virtually abolished in the Δmak-2 strain, but was significantly induced by micafungin, suggesting functional cross talk between MAK-1 and MAK-2 signalling pathway in CWI.
Collapse
Affiliation(s)
- Masayuki Kamei
- Faculty of Life Sciences, Toyo University, Oura-gun, Japan
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | - Fumiyasu Fukumori
- Faculty of Food and Nutritional Sciences, Toyo University, Oura-gun, Japan
| | | | | |
Collapse
|
22
|
Fleißner A, Herzog S. Signal exchange and integration during self-fusion in filamentous fungi. Semin Cell Dev Biol 2016; 57:76-83. [DOI: 10.1016/j.semcdb.2016.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
23
|
Wang CL, Shim WB, Shaw BD. The Colletotrichum graminicola striatin orthologue Str1 is necessary for anastomosis and is a virulence factor. MOLECULAR PLANT PATHOLOGY 2016; 17:931-42. [PMID: 26576029 PMCID: PMC6638439 DOI: 10.1111/mpp.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 05/24/2023]
Abstract
Striatin family proteins are key regulators in signalling pathways in fungi and animals. These scaffold proteins contain four conserved domains: a caveolin-binding domain, a coiled-coil motif and a calmodulin-binding domain at the N-terminus, and a WD-repeat domain at the C-terminus. Fungal striatin orthologues are associated with sexual development, hyphal growth and plant pathogenesis. In Fusarium verticillioides, the striatin orthologue Fsr1 promotes virulence in the maize stalk. The relationship between fungal striatins and pathogenicity remains largely unexplored. In this study, we demonstrate that the Colletotrichum graminicola striatin orthologue Str1 is required for full stalk rot and leaf blight virulence in maize. Pathogenicity assays show that the striatin mutant strain (Δstr1) produces functional appressoria, but infection and colonization are attenuated. Additional phenotypes of the Δstr1 mutant include reduced radial growth and compromised hyphal fusion. In comparison with the wild-type, Δstr1 also shows a defect in sexual development and produces fewer and shorter conidia. Together with the fact that F. verticillioides fsr1 can complement Δstr1, our results indicate that C. graminicola Str1 shares five phenotypes with striatin orthologues in other fungal species: hyphal growth, hyphal fusion, conidiation, sexual development and virulence. We propose that fungal striatins, like mammalian striatins, act as scaffolding molecules that cross-link multiple signal transduction pathways.
Collapse
Affiliation(s)
- Chih-Li Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
| |
Collapse
|
24
|
Herold I, Yarden O. Regulation of Neurospora crassa cell wall remodeling via the cot-1 pathway is mediated by gul-1. Curr Genet 2016; 63:145-159. [PMID: 27363849 DOI: 10.1007/s00294-016-0625-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Impairment of the Neurospora crassa Nuclear DBF2-related kinase-encoding gene cot-1 results in pleiotropic effects, including abnormally thick hyphal cell walls and septa. An increase in the transcript abundance of genes encoding chitin and glucan synthases and the chitinase gh18-5, but not the cell wall integrity pathway transcription factor rlm-1, accompany the phenotypic changes observed. Deletion of chs-5 or chs-7 in a cot-1 background results in a reduction of hyperbranching frequency characteristic of the cot-1 parent. gul-1 (a homologue of the yeast SSD1 gene) encodes a translational regulator and has been shown to partially suppress cot-1. We demonstrate that the high expression levels of the cell wall remodeling genes analyzed is curbed, and reaches near wild type levels, when gul-1 is inactivated. This is accompanied by morphological changes that include reduced cell wall thickness and restoration of normal chitin levels. We conclude that gul-1 is a mediator of cell wall remodeling within the cot-1 pathway.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610000, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610000, Rehovot, Israel.
| |
Collapse
|
25
|
Turrà D, Nordzieke D, Vitale S, El Ghalid M, Di Pietro A. Hyphal chemotropism in fungal pathogenicity. Semin Cell Dev Biol 2016; 57:69-75. [PMID: 27150623 DOI: 10.1016/j.semcdb.2016.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The ability to grow as filamentous hyphae defines the lifestyle of fungi. Hyphae are exposed to a variety of chemical stimuli such as nutrients or signal molecules from mating partners and host organisms. How fungi sense and process this chemical information to steer hyphal growth is poorly understood. Saccharomyces cerevisiae and Neurospora crassa have served as genetic models for the identification of cellular components functioning in chemotropism. A recent study in the pathogen Fusarium oxysporum revealed distinct MAPK pathways governing hyphal growth towards nutrient sources and sex pheromones or plant signals, suggesting an unanticipated complexity of chemosensing during fungus-host interactions.
Collapse
Affiliation(s)
- David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Daniela Nordzieke
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Stefania Vitale
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Mennat El Ghalid
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
26
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
27
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
28
|
|
29
|
Cell fusion in Neurospora crassa. Curr Opin Microbiol 2015; 28:53-9. [DOI: 10.1016/j.mib.2015.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
30
|
Chen F, Chen XZ, Su XY, Qin LN, Huang ZB, Tao Y, Dong ZY. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei. Biotechnol Lett 2015; 37:2055-62. [DOI: 10.1007/s10529-015-1888-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
|
31
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B, Cartwright GM, Reinhold L, Scott B. The Fungal Cell-Wall Integrity MAPK Cascade Is Crucial for Hyphal Network Formation and Maintenance of Restrictive Growth of Epichloë festucae in Symbiosis With Lolium perenne. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:69-85. [PMID: 25303335 DOI: 10.1094/mpmi-06-14-0183-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell–cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.
Collapse
|
33
|
|
34
|
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 2014; 10:e1004783. [PMID: 25412208 PMCID: PMC4238974 DOI: 10.1371/journal.pgen.1004783] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. Cell fusion between genetically identical cells of the fungus Neurospora crassa occurs when germinating asexual cells (conidia) sense each other's proximity and redirect their growth. Chemotropic growth is dependent upon the assembly of a MAPK cascade (NRC-1/MEK-2/MAK-2) at the cell cortex (conidial anastomosis tubes; CATs), followed by disassembly over an ∼8 min cycle. A second protein required for fusion, SO, also assembles and disassembles at CAT tips during chemotropic growth, but with perfectly opposite dynamics to the MAK-2 complex. This process of germling chemotropism, oscillation and cell fusion is regulated by many genes and is poorly understood. Via a phosphoproteomics approach, we identify HAM-5, which functions as a scaffold for the MAK-2 signal transduction complex. HAM-5 is required for assembly/disassembly and oscillation of the MAK-2 complex during chemotropic growth. Our data supports a model whereby regulated modification of HAM-5 controls the disassembly of the MAK-2 MAPK complex and is essential for modulating the tempo of oscillation during chemotropic interactions.
Collapse
|
35
|
Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLoS Genet 2014; 10:e1004762. [PMID: 25411845 PMCID: PMC4239118 DOI: 10.1371/journal.pgen.1004762] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022] Open
Abstract
Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes. Appropriate cellular responses to external stimuli depend on the highly orchestrated activity of interconnected signaling cascades. One crucial level of control arises from the formation of discrete complexes through scaffold proteins that bind multiple components of a given pathway. Central for our understanding of these signaling platforms is the archetypical MAP kinase scaffold Ste5p, a protein that is restricted to budding yeast and close relatives. We identified HAM-5, a protein highly conserved in filamentous ascomycete fungi, as cell–cell communication-specific scaffold protein of the Neurospora crassa MAK-2 cascade (homologous to the budding yeast pheromone pathway). We also describe a network of upstream acting proteins, consisting of two Ste20-related kinases, the small G-protein RAS-2 and the adenylate cyclase capping protein CAP-1, whose signals converge on HAM-5. Our work has implications for the mechanistic understanding of MAP kinase scaffold proteins and their function during intercellular communication in eukaryotic microbes as well as higher eukaryotes.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yvonne Heilig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Sarah Ludwig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 2014; 9:e110603. [PMID: 25333968 PMCID: PMC4204872 DOI: 10.1371/journal.pone.0110603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023] Open
Abstract
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Collapse
Affiliation(s)
- Jennifer L. Chinnici
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Lauren M. Caccamise
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jason W. Arnold
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Fu C, Ao J, Dettmann A, Seiler S, Free SJ. Characterization of the Neurospora crassa cell fusion proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2. PLoS One 2014; 9:e107773. [PMID: 25279949 PMCID: PMC4184795 DOI: 10.1371/journal.pone.0107773] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion.
Collapse
Affiliation(s)
- Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jie Ao
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Anne Dettmann
- Institute for Biology II, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephan Seiler
- Institute for Biology II, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Teichert I, Steffens EK, Schnaß N, Fränzel B, Krisp C, Wolters DA, Kück U. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C. PLoS Genet 2014; 10:e1004582. [PMID: 25188365 PMCID: PMC4154660 DOI: 10.1371/journal.pgen.1004582] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI) MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK) of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK) MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1). We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems. The specific response to environmental cues is crucial for cell differentiation and is often mediated by highly conserved eukaryotic MAP kinase (MAPK) pathways. How these pathways react specifically to huge numbers of different cues is still unclear, and current literature about adapter and scaffolding proteins remains scarce. However, gaining fundamental insight into molecular signaling determinants is pivotal for combating diseases with impaired signal transduction processes, such as Alzheimer's disease or cancer. Importantly, signal transduction can easily be studied in lower eukaryotes like filamentous fungi that are readily genetically tractable. The fungus Sordaria macrospora has a long history as an ideal model system for cell differentiation, and we show here that the proposed cell wall integrity (CWI) MAPK module of this fungus controls differentiation of sexual fruiting bodies, cell fusion, polar growth and cell wall stress response. We further discovered that developmental protein PRO40 binds the MAPK kinase kinase (MAPKKK), the MAPK kinase (MAPKK) and upstream activator protein kinase C (PKC1) of the CWI pathway and is required for MAK1 activity, thereby providing evidence that PRO40 is a scaffold protein. Collectively, our findings reveal a molecular role for a protein implicated in development, cell fusion, symbiosis, and pathogenicity in different fungi.
Collapse
Affiliation(s)
- Ines Teichert
- Department for General and Molecular Botany, Ruhr-University Bochum, Bochum, Germany
| | | | - Nicole Schnaß
- Department for General and Molecular Botany, Ruhr-University Bochum, Bochum, Germany
| | - Benjamin Fränzel
- Department of Analytical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Christoph Krisp
- Department of Analytical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Dirk A. Wolters
- Department of Analytical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Ulrich Kück
- Department for General and Molecular Botany, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
39
|
Genetic control of anastomosis in Podospora anserina. Fungal Genet Biol 2014; 70:94-103. [DOI: 10.1016/j.fgb.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022]
|
40
|
Lichius A, Goryachev AB, Fricker MD, Obara B, Castro-Longoria E, Read ND. CDC-42 and RAC-1 regulate opposite chemotropisms in Neurospora crassa. J Cell Sci 2014; 127:1953-65. [DOI: 10.1242/jcs.141630] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT
Cell polarization and fusion are crucial developmental processes that occur in response to intracellular and extracellular signals. Asexual spores (conidia) of the mold Neurospora crassa differentiate two types of polarized cell protrusions, germ tubes and conidial anastomosis tubes (CATs), which exhibit negative and positive chemotropism, respectively. We provide the first evidence that shared and separate functions of the Rho-type GTPases CDC-42 and RAC-1 regulate these opposite chemotropisms. We demonstrate that RAC-1 is essential for CAT formation and cell fusion, whereas CDC-42 is necessary and sufficient for normal germ tube development. Cdc42-Rac-interactive-binding (CRIB) reporters were constructed to exclusively label locally activated GTP-bound GTPases. Time course analyses showed that repositioning of these activated GTPase clusters within germ tube and CAT tip apices controls directional growth in the absence of a tip-localized vesicle supply center (Spitzenkörper). We propose a model in which the local assembly of a plasma-membrane-associated GTPase–PAK–MAPK signaling platform regulates chemoattractant perception and secretion in order to synchronize oscillatory cell–cell communication and directional CAT tip growth.
Collapse
Affiliation(s)
- Alexander Lichius
- Institute of Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, 22860 Ensenada, Baja California, México
| | - Andrew B. Goryachev
- Institute of Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | - Mark D. Fricker
- Department of Plant Sciences, University of Oxford, South Park Road, Oxford OX1 3RB, UK
| | - Boguslaw Obara
- School of Engineering and Computing Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, 22860 Ensenada, Baja California, México
| | - Nick D. Read
- Institute of Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| |
Collapse
|
41
|
Gras DE, Persinoti GF, Peres NT, Martinez-Rossi NM, Tahira AC, Reis EM, Prade RA, Rossi A. Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway. Fungal Genet Biol 2013; 60:140-9. [DOI: 10.1016/j.fgb.2013.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 05/01/2013] [Accepted: 05/18/2013] [Indexed: 11/16/2022]
|
42
|
Dettmann A, Heilig Y, Ludwig S, Schmitt K, Illgen J, Fleißner A, Valerius O, Seiler S. HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol Microbiol 2013; 90:796-812. [PMID: 24028079 DOI: 10.1111/mmi.12399] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Intercellular communication and somatic cell fusion are important for fungal colony establishment, multicellular differentiation and have been associated with host colonization and virulence of pathogenic species. By a combination of genetic, biochemical and live cell imaging techniques, we characterized the Neurospora crassa STRIPAK complex that is essential for self-signalling and consists of the six proteins HAM-2/STRIP, HAM-3/striatin, HAM-4/SLMAP, MOB-3/phocein, PPG-1/PP2A-C and PP2A-A. We describe that the core STRIPAK components HAM-2 and HAM-3 are central for the assembly of the complex at the nuclear envelope, while the phosphatase PPG-1 only transiently associates with this central subcomplex. Our data connect the STRIPAK complex with two MAP kinase pathways: (i) nuclear accumulation of the cell wall integrity MAP kinase MAK-1 depends on the functional integrity of the STRIPAK complex at the nuclear envelope, and (ii) phosphorylation of MOB-3 by the MAP kinase MAK-2 impacts the nuclear accumulation of MAK-1. In summary, these data support a model, in which MAK-2-dependent phosphorylation of MOB-3 is part of a MAK-1 import mechanism. Although self-communication remained intact in the absence of nuclear MAK-1 accumulation, supporting the presence of multiple mechanisms that co-ordinate robust intercellular communication, proper fruiting body morphology was dependent on the MAK-2-phosphorylated N-terminus of MOB-3.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Biology II - Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW, Brem RB, Glass NL. Genome wide association identifies novel loci involved in fungal communication. PLoS Genet 2013; 9:e1003669. [PMID: 23935534 PMCID: PMC3731230 DOI: 10.1371/journal.pgen.1003669] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 01/25/2023] Open
Abstract
Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species. Many phenotypes of interest are controlled by multiple loci, and in biological systems identifying determinants of such complex traits is challenging. Here, we genotyped 112 wild isolates of Neurospora crassa and used this resource to identify genes that mediate a fundamental but poorly-understood attribute of this filamentous fungus: the ability of germinating spores to sense each other at a distance, extend projections toward one another, and fuse. Inheritance at a secretion gene, cse-1, was associated strongly with germling communication across wild strains; this association was validated in experiments showing reduced communication in a cse-1 deletion strain. By testing interacting partners of CSE1, and by assessing additional secretion and signaling factors whose inheritance associated more modestly with germling communication in wild strains, we identified eight other novel determinants of this phenotype. Our population of genotyped wild isolates provides a flexible and powerful community resource for the rapid identification of any varying, complex phenotype in N. crassa. The success of our approach, which used a phenotyping scheme far more tractable than would be required in a screen of the entire N. crassa gene deletion collection, serves as a proof of concept for association studies of wild populations for any organism.
Collapse
Affiliation(s)
- Javier Palma-Guerrero
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Charles R. Hall
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Juliet Welch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RBB); (NLG)
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RBB); (NLG)
| |
Collapse
|
44
|
Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, Wang H, Wong M. Genetic basis of cell-cell fusion mechanisms. Trends Genet 2013; 29:427-37. [PMID: 23453622 DOI: 10.1016/j.tig.2013.01.011] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes.
Collapse
Affiliation(s)
- Pablo S Aguilar
- Cellular Membranes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Circadian activation of the mitogen-activated protein kinase MAK-1 facilitates rhythms in clock-controlled genes in Neurospora crassa. EUKARYOTIC CELL 2012; 12:59-69. [PMID: 23125351 DOI: 10.1128/ec.00207-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The circadian clock regulates the expression of many genes involved in a wide range of biological functions through output pathways such as mitogen-activated protein kinase (MAPK) pathways. We demonstrate here that the clock regulates the phosphorylation, and thus activation, of the MAPKs MAK-1 and MAK-2 in the filamentous fungus Neurospora crassa. In this study, we identified genetic targets of the MAK-1 pathway, which is homologous to the cell wall integrity pathway in Saccharomyces cerevisiae and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in mammals. When MAK-1 was deleted from Neurospora cells, vegetative growth was reduced and the transcript levels for over 500 genes were affected, with significant enrichment for genes involved in protein synthesis, biogenesis of cellular components, metabolism, energy production, and transcription. Additionally, of the ~500 genes affected by the disruption of MAK-1, more than 25% were previously identified as putative clock-controlled genes. We show that MAK-1 is necessary for robust rhythms of two morning-specific genes, i.e., ccg-1 and the mitochondrial phosphate carrier protein gene NCU07465. Additionally, we show clock regulation of a predicted chitin synthase gene, NCU04352, whose rhythmic accumulation is also dependent upon MAK-1. Together, these data establish a role for the MAK-1 pathway as an output pathway of the circadian clock and suggest a link between rhythmic MAK-1 activity and circadian control of cellular growth.
Collapse
|
47
|
Dettmann A, Illgen J, März S, Schürg T, Fleissner A, Seiler S. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa. PLoS Genet 2012; 8:e1002950. [PMID: 23028357 PMCID: PMC3447951 DOI: 10.1371/journal.pgen.1002950] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 12/22/2022] Open
Abstract
Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell–cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell–cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication. Intercellular communication and cellular morphogenesis are essential for eukaryotic development. Our knowledge of molecules and mechanisms associated with these processes is, however, fragmentary. In particular, the molecular connection between signal sensing and regulation of cell polarity is poorly understood. Fungal hyphae share with neurons and pollen tubes the distinction of being amongst the most highly polarized cells in biology. The robust genetic tractability of filamentous fungi provides an unparalleled opportunity to determine common principles that underlie polarized growth and its regulation through cell communication. In Neurospora crassa, germinating spores mutually attract each other, establish physical contact through polarized tropic growth, and fuse. During this process, the cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. Here, we show that the conserved scaffolding protein HYM1/MO25 interacts with the polarity and cell shape-regulating NDR kinase complex as well as a MAP kinase module, which is essential for cell communication during the tropic interaction. We propose that this dual use of a common regulator in both molecular complexes may represent an intriguing mechanism of linking the perception of external cues with the polarization machinery to coordinate communication and tropic growth of interacting cells.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Julia Illgen
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine März
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Timo Schürg
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Seiler
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- * E-mail:
| |
Collapse
|
48
|
Lichius A, Lord KM, Jeffree CE, Oborny R, Boonyarungsrit P, Read ND. Importance of MAP kinases during protoperithecial morphogenesis in Neurospora crassa. PLoS One 2012; 7:e42565. [PMID: 22900028 PMCID: PMC3416862 DOI: 10.1371/journal.pone.0042565] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in gene-deletion mutants of all nine mitogen-activated protein (MAP) kinases conserved in N. crassa; confirmed that all three MAP kinase cascades are required for sexual development; and showed that the three different cascades each have distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion. Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal adhesion, and envelopment during the construction of fertilizable protoperithecia.
Collapse
Affiliation(s)
- Alexander Lichius
- Fungal Cell Biology Group, Institute of Cell Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn M. Lord
- Fungal Cell Biology Group, Institute of Cell Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chris E. Jeffree
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Radek Oborny
- Fungal Cell Biology Group, Institute of Cell Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patid Boonyarungsrit
- Fungal Cell Biology Group, Institute of Cell Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Maddi A, Dettman A, Fu C, Seiler S, Free SJ. WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLoS One 2012; 7:e42374. [PMID: 22879952 PMCID: PMC3411791 DOI: 10.1371/journal.pone.0042374] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
A large number of cell wall proteins are encoded in the Neurospora crassa genome. Strains carrying gene deletions of 65 predicted cell wall proteins were characterized. Deletion mutations in two of these genes (wsc-1 and ham-7) have easily identified morphological and inhibitor-based defects. Their phenotypic characterization indicates that HAM-7 and WSC-1 function during cell-to-cell hyphal fusion and in cell wall integrity maintenance, respectively. wsc-1 encodes a transmembrane protein with extensive homology to the yeast Wsc family of sensor proteins. In N. crassa, WSC-1 (and its homolog WSC-2) activates the cell wall integrity MAK-1 MAP kinase pathway. The GPI-anchored cell wall protein HAM-7 is required for cell-to-cell fusion and the sexual stages of the N. crassa life cycle. Like WSC-1, HAM-7 is required for activating MAK-1. A Δwsc-1;Δham-7 double mutant fully phenocopies mutants lacking components of the MAK-1 MAP kinase cascade. The data identify WSC-1 and HAM-7 as the major cell wall sensors that regulate two distinct MAK-1-dependent cellular activities, cell wall integrity and hyphal anastomosis, respectively.
Collapse
Affiliation(s)
- Abhiram Maddi
- Department of Biological Sciences, State University of New York, University at Buffalo, Buffalo, New York, United States of America
- Department of Periodontics and Endodontics, School of Dental Medicine, State University of New York, University at Buffalo, Buffalo, New York, United States of America
| | - Anne Dettman
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Ci Fu
- Department of Biological Sciences, State University of New York, University at Buffalo, Buffalo, New York, United States of America
| | - Stephan Seiler
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- * E-mail: (SS); (SF)
| | - Stephen J. Free
- Department of Biological Sciences, State University of New York, University at Buffalo, Buffalo, New York, United States of America
- * E-mail: (SS); (SF)
| |
Collapse
|
50
|
Richthammer C, Enseleit M, Sanchez-Leon E, März S, Heilig Y, Riquelme M, Seiler S. RHO1 and RHO2 share partially overlapping functions in the regulation of cell wall integrity and hyphal polarity in Neurospora crassa. Mol Microbiol 2012; 85:716-33. [DOI: 10.1111/j.1365-2958.2012.08133.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|