1
|
Kotb NM, Ulukaya G, Ramamoorthy A, Park LS, Tang J, Hasson D, Rangan P. TORC1-driven translation of Nucleoporin44A promotes chromatin remodeling and germ cell-to-maternal transition in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643309. [PMID: 40161787 PMCID: PMC11952567 DOI: 10.1101/2025.03.14.643309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Oocyte specification is a critical developmental transition that requires the coordinated repression of germ cell-specific genes and activation of the maternal program to support embryogenesis. In Drosophila, the timely repression of germ cell and early oogenesis genes is essential for this transition, yet the mechanisms that coordinate this process remain unclear. Here, we uncover an unexpected translation-chromatin axis, where transient Target of Rapamycin Complex 1 (TORC1)-driven translation triggers chromatin remodeling, ensuring irreversible oocyte fate commitment. Through a screen, we identified ribosome biogenesis regulators, including Zinc finger protein RP-8 (Zfrp8) and TORC1 components, as key mediators of gene silencing. We show that TORC1 activity increases during oocyte specification, and disrupting ribosome biogenesis, translation, or TORC1 function prevents proper heterochromatin formation, leading to epigenetic instability. Polysome-seq analysis of zfrp8-depleted ovaries revealed that Zfrp8 is required for the translation of Nucleoporin 44A (Nup44A), a key nuclear pore complex (NPC) component. Given the role of the NPC in chromatin organization, independent disruption of Nup44A results in defective silencing of the germ cell and early oogenesis genes. Our findings reveal a mechanism in which translation-driven NPC remodeling coordinates heterochromatin establishment, facilitating the germ cell-to-maternal transition and ensuring proper oocyte fate commitment.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Current address, Hologic Diagenode, 400 Morris Avenue, Suite 101, Denville, New Jersey 07834, USA
| | - Gulay Ulukaya
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Anupriya Ramamoorthy
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Lina Seojin Park
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Julia Tang
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Dan Hasson
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
2
|
Rust K, Schubert A, Peralta JM, Nystul TG. Independent signaling pathways provide a fail-safe mechanism to prevent tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640798. [PMID: 40093137 PMCID: PMC11908167 DOI: 10.1101/2025.02.28.640798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Controlled signaling activity is vital for normal tissue homeostasis and oncogenic signaling activation facilitates tumorigenesis. Here we use single-cell transcriptomics to investigate the effects of pro-proliferative signaling on epithelial homeostasis using the Drosophila follicle cell lineage. Notably, EGFR-Ras overactivation induces cell cycle defects by activating the transcription factors Pointed and E2f1 and impedes differentiation. Hh signaling simultaneously promotes an undifferentiated state and induces differentiation via activation of EMT-associated transcription factors zfh1 and Mef2. As a result, overactivation of Hh signaling generates a transcriptional hybrid state comparable to epithelial-mesenchymal-transition. Co-overactivation of Hh signaling with EGFR-Ras signaling blocks differentiation and induces key characteristics of tumor cells including a loss of tissue architecture caused by reduced expression of cell adhesion molecules, sustained proliferation and an evasion of cell cycle checkpoints. These findings provide new insight into how non-interacting signaling pathways converge at the transcriptional level to prevent malignant cell behavior.
Collapse
Affiliation(s)
- Katja Rust
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps University Marburg, Germany
| | - Andrea Schubert
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps University Marburg, Germany
| | - Jobelle M Peralta
- UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA
- UCSF, Department of OB-GYN/RS, 513 Parnassus Ave, San Francisco, CA 94143, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Todd G Nystul
- UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA
- UCSF, Department of OB-GYN/RS, 513 Parnassus Ave, San Francisco, CA 94143, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, 513 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
4
|
Chen Y, Zheng X, Zhou R, Zhang H, Liu Y, Hu X, Yin Z. Mechanism of Apoptosis in Porcine Ovarian Granulosa Cells Triggered by T-2 Toxin. Genes (Basel) 2024; 15:579. [PMID: 38790208 PMCID: PMC11120908 DOI: 10.3390/genes15050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
T-2 toxin (T-2), an A-type mono mycotoxin produced by various Fusarium species, disrupts DNA/RNA and protein synthesis upon entering the body, resulting in pathological conditions in various tissues/organs and posing a significant threat to human and animal health. However, the mechanisms underlying its toxicity remain unclear. With the goal of learning how T-2 affects reproduction in animals, we utilized primary porcine ovarian granulosa cells (pGCs) as a carrier in vitro and constructed concentration models for analyzing cell morphology and RNA-sequencing (RNA-seq). Our findings showed that T-2 could influence pGCs morphology, induce cell cycle arrest, and promote apoptosis in a dose-dependent manner. The results of RNA-seq analyses indicated that a total of 8216 genes exhibited significant differential expression (DEG) following T-2 treatment, of which 4812 were observed to be down-regulated and 3404 were up-regulated. The DEGs following T-2 toxin treatment of pGCs had a notable impact on many metabolic pathways such as PI3K-Akt, Ras, MAPK, and apoptosis, which in turn altered important physiological processes. Gene set enrichment analysis (GSEA) indicated that the differences in the harmful effects of T-2 might be caused by the varying control of cellular processes and the pathway responsible for steroid metabolism. These results present further insights regarding the mechanism of T-2 action on sow reproductive toxicity, enhance our understanding of T-2 reproductive toxicological effects, and lay a theoretical foundation for the judicious prevention of T-2-induced reproductive toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China; (Y.C.); (X.Z.); (R.Z.); (H.Z.); (Y.L.); (X.H.)
| |
Collapse
|
5
|
Wilkin MB, Whiteford R, Akbar T, Hosseini-Alghaderi S, Revici R, Carbery AM, Baron M. The First Defined Null Allele of the Notch Regulator, a Suppressor of Deltex: Uncovering Its Novel Roles in Drosophila melanogaster Oogenesis. Biomolecules 2024; 14:522. [PMID: 38785929 PMCID: PMC11118177 DOI: 10.3390/biom14050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Baron
- Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Michael Smith Building and Oxford Rd., Manchester M13 9PT, UK
| |
Collapse
|
6
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Wang ZH, Zhao W, Combs CA, Zhang F, Knutson JR, Lilly MA, Xu H. Mechanical stimulation from the surrounding tissue activates mitochondrial energy metabolism in Drosophila differentiating germ cells. Dev Cell 2023; 58:2249-2260.e9. [PMID: 37647895 PMCID: PMC10843713 DOI: 10.1016/j.devcel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
In multicellular lives, the differentiation of stem cells and progenitor cells is often accompanied by a transition from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). However, the underlying mechanism of this metabolic transition remains largely unknown. In this study, we investigate the role of mechanical stress in activating OXPHOS during differentiation of the female germline cyst in Drosophila. We demonstrate that the surrounding somatic cells flatten the 16-cell differentiating cyst, resulting in an increase of the membrane tension of germ cells inside the cyst. This mechanical stress is necessary to maintain cytosolic Ca2+ concentration in germ cells through a mechanically activated channel, transmembrane channel-like. The sustained cytosolic Ca2+ triggers a CaMKI-Fray-JNK signaling relay, leading to the transcriptional activation of OXPHOS in differentiating cysts. Our findings demonstrate a molecular link between cell mechanics and mitochondrial energy metabolism, with implications for other developmentally orchestrated metabolic transitions in mammals.
Collapse
Affiliation(s)
- Zong-Heng Wang
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Zhao
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian A Combs
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fan Zhang
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay R Knutson
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary A Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Xu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Galasso A, Xu DC, Hill C, Iakovleva D, Stefana MI, Baena‐Lopez LA. Non-apoptotic caspase activation ensures the homeostasis of ovarian somatic stem cells. EMBO Rep 2023; 24:e51716. [PMID: 37039000 PMCID: PMC10240206 DOI: 10.15252/embr.202051716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Current evidence has associated caspase activation with the regulation of basic cellular functions without causing apoptosis. Malfunction of non-apoptotic caspase activities may contribute to specific neurological disorders, metabolic diseases, autoimmune conditions and cancers. However, our understanding of non-apoptotic caspase functions remains limited. Here, we show that non-apoptotic caspase activation prevents the intracellular accumulation of the Patched receptor in autophagosomes and the subsequent Patched-dependent induction of autophagy in Drosophila follicular stem cells. These events ultimately sustain Hedgehog signalling and the physiological properties of ovarian somatic stem cells and their progeny under moderate thermal stress. Importantly, our key findings are partially conserved in ovarian somatic cells of human origin. These observations attribute to caspases a pro-survival role under certain cellular conditions.
Collapse
Affiliation(s)
- Alessia Galasso
- Faculty of Medicine CentreImperial College London, South Kensington CampusLondonUK
| | - Derek Cui Xu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Claire Hill
- School of Medicine, Dentistry and Biomedical SciencesQueen's University Belfast MedicineBelfastUK
| | - Daria Iakovleva
- Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | | |
Collapse
|
9
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
10
|
Riparbelli MG, Persico V, Callaini G. Cell-to-Cell Interactions during Early Drosophila Oogenesis: An Ultrastructural Analysis. Cells 2022; 11:cells11172658. [PMID: 36078066 PMCID: PMC9454453 DOI: 10.3390/cells11172658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Drosophila oogenesis requires the subsequent growth of distinct egg chambers each containing a group of sixteen germline cells surrounded by a simple epithelium of follicle cells. The oocyte occupies a posterior position within the germ cells, thus giving a distinct asymmetry to the egg chamber. Although this disposition is critical for the formation of the anterior–posterior axis of the embryo, the interplay between somatic and germ cells during the early stages of oogenesis remains an open question. We uncover by stage 2, when the egg chambers leaved the germarium, some unique spatial interactions between the posterior follicle cells and the oocyte. These interactions are restricted to the surface of the oocyte over the centriole cluster that formed during early oogenesis. Moreover, the posterior follicle cells in front of the oocyte display a convoluted apical membrane with extensive contacts, whereas the other follicle cells have a flat apical surface without obvious surface protrusions. In addition, the germ cells located at the posterior end of the egg chamber have very elongated protrusions that come into contact with each other or with facing follicle cells. These observations point to distinct polarization events during early oogenesis supporting previous molecular data of an inherent asymmetry between the anterior and the posterior regions of the egg chambers.
Collapse
|
11
|
Martin ET, Sarkar K, McCarthy A, Rangan P. Oo-site: A dashboard to visualize gene expression during Drosophila oogenesis suggests meiotic entry is regulated post-transcriptionally. Biol Open 2022; 11:bio059286. [PMID: 35579517 PMCID: PMC9148541 DOI: 10.1242/bio.059286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Determining how stem cell differentiation is controlled has important implications for understanding the etiology of degenerative disease and designing regenerative therapies. In vivo analyses of stem cell model systems have revealed regulatory paradigms for stem cell self-renewal and differentiation. The germarium of the female Drosophila gonad, which houses both germline and somatic stem cells, is one such model system. Bulk mRNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and bulk translation efficiency (polysome-seq) of mRNAs are available for stem cells and their differentiating progeny within the Drosophila germarium. However, visualizing those data is hampered by the lack of a tool to spatially map gene expression and translational data in the germarium. Here, we have developed Oo-site (https://www.ranganlab.com/Oo-site), a tool for visualizing bulk RNA-seq, scRNA-seq, and translational efficiency data during different stages of germline differentiation, which makes these data accessible to non-bioinformaticians. Using this tool, we recapitulated previously reported expression patterns of developmentally regulated genes and discovered that meiotic genes, such as those that regulate the synaptonemal complex, are regulated at the level of translation.
Collapse
Affiliation(s)
- Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
12
|
Alsous JI, Rozman J, Marmion RA, Košmrlj A, Shvartsman SY. Clonal dominance in excitable cell networks. NATURE PHYSICS 2021; 17:1391-1395. [PMID: 35242199 PMCID: PMC8887698 DOI: 10.1038/s41567-021-01383-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Clonal dominance arises when the descendants (clones) of one or a few founder cells contribute disproportionally to the final structure during collective growth [1-8]. In contexts such as bacterial growth, tumorigenesis, and stem cell reprogramming [2-4], this phenomenon is often attributed to pre-existing propensities for dominance, while in stem cell homeostasis, neutral drift dynamics are invoked [5,6]. The mechanistic origin of clonal dominance during development, where it is increasingly documented [1,6-8], is less understood. Here, we investigate this phenomenon in the Drosophila melanogaster follicle epithelium, a system in which the joint growth dynamics of cell lineage trees can be reconstructed. We demonstrate that clonal dominance can emerge spontaneously, in the absence of pre-existing biases, as a collective property of evolving excitable networks through coupling of divisions among connected cells. Similar mechanisms have been identified in forest fires and evolving opinion networks [9-11]; we show that the spatial coupling of excitable units explains a critical feature of the development of the organism, with implications for tissue organization and dynamics [1,12,13].
Collapse
Affiliation(s)
- Jasmin Imran Alsous
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- These authors contributed equally
| | - Jan Rozman
- Jožef Stefan Institute, Ljubljana 1000, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana 1000, Slovenia
- These authors contributed equally
| | - Robert A. Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y. Shvartsman
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Corresponding author ()
| |
Collapse
|
13
|
Tatapudy S, Peralta J, Nystul T. Distinct roles of Bendless in regulating FSC niche competition and daughter cell differentiation. Development 2021; 148:dev199630. [PMID: 35020878 PMCID: PMC8645206 DOI: 10.1242/dev.199630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/13/2021] [Indexed: 04/05/2024]
Abstract
A major goal in the study of adult stem cells is to understand how cell fates are specified at the proper time and place to facilitate tissue homeostasis. Here, we found that an E2 ubiquitin ligase, Bendless (Ben), has multiple roles in the Drosophila ovarian epithelial follicle stem cell (FSC) lineage. First, Ben is part of the JNK signaling pathway, and we found that it, as well as other JNK pathway genes, are essential for differentiation of FSC daughter cells. Our data suggest that JNK signaling promotes differentiation by suppressing the activation of the EGFR effector, ERK. Also, we found that loss of ben, but not the JNK kinase hemipterous, resulted in an upregulation of hedgehog signaling, increased proliferation and increased niche competition. Lastly, we demonstrate that the hypercompetition phenotype caused by loss of ben is suppressed by decreasing the rate of proliferation or knockdown of the hedgehog pathway effector, Smoothened (Smo). Taken together, our findings reveal a new layer of regulation in which a single gene influences cell signaling at multiple stages of differentiation in the early FSC lineage.
Collapse
Affiliation(s)
| | | | - Todd Nystul
- Department of Anatomy and Department of OB/Gyn-RS, University of California, San Francisco, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
14
|
Slaidina M, Gupta S, Banisch TU, Lehmann R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 2021; 31:1938-1951. [PMID: 34389661 DOI: 10.1101/gr.274340.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation, and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions, and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes, and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates and functional predictions for 34 ovarian cell types and subtypes.
Collapse
Affiliation(s)
| | - Selena Gupta
- Skirball Institute, NYU Grossman School of Medicine
| | | | | |
Collapse
|
15
|
Marca JEL, Somers WG. The Drosophila gonads: models for stem cell proliferation, self-renewal, and differentiation. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe male and female gonads of Drosophila melanogaster have developed into powerful model systems for both the study of stem cell behaviours, and for understanding how stem cell misregulation can lead to cancers. Using these systems, one is able to observe and manipulate the resident stem cell populations in vivo with a great deal of licence. The tractability of the testis and ovary also allow researchers to explore a range of cellular mechanisms, such as proliferation and polarity, as well as the influence exerted by the local environment through a host of highly-conserved signalling pathways. Importantly, many of the cellular behaviours and processes studied in the Drosophila testis and ovary are known to be disrupted, or otherwise misregulated, in human tumourigenic cells. Here, we review the mechanisms relating to stem cell behaviour, though we acknowledge there are many other fascinating aspects of gametogenesis, including the invasive behaviour of migratory border cells in the Drosophila ovary that, though relevant to the study of tumourigenesis, will unfortunately not be covered.
Collapse
Affiliation(s)
- John E. La Marca
- Department of Genetics, La Trobe University, Melbourne, VIC 3086, Australia
| | | |
Collapse
|
16
|
Wang X, LaFever KS, Waghmare I, Page-McCaw A. Extracellular spreading of Wingless is required for Drosophila oogenesis. PLoS Genet 2021; 17:e1009469. [PMID: 33798197 PMCID: PMC8046344 DOI: 10.1371/journal.pgen.1009469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/14/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies have investigated whether the Wnt family of extracellular ligands can signal at long range, spreading from their source and acting as morphogens, or whether they signal only in a juxtacrine manner to neighboring cells. The original evidence for long-range Wnt signaling arose from studies of Wg, a Drosophila Wnt protein, which patterns the wing disc over several cell diameters from a central source of Wg ligand. However, the requirement of long-range Wg for patterning was called into question when it was reported that replacing the secreted protein Wg with a membrane-tethered version, NRT-Wg, results in flies with normally patterned wings. We and others previously reported that Wg spreads in the ovary about 50 μm or 5 cell diameters, from the cap cells to the follicle stem cells (FSCs) and that Wg stimulates FSC proliferation. We used the NRT-wg flies to analyze the consequence of tethering Wg to the cap cells. NRT-wg homozygous flies are sickly, but we found that hemizygous NRT-wg/null flies, carrying only one copy of tethered Wingless, were significantly healthier. Despite their overall improved health, these hemizygous flies displayed dramatic reductions in fertility and in FSC proliferation. Further, FSC proliferation was nearly undetectable when the wg locus was converted to NRT-wg only in adults, and the resulting germarium phenotype was consistent with a previously reported wg loss-of-function phenotype. We conclude that Wg protein spreads from its source cells in the germarium to promote FSC proliferation.
Collapse
Affiliation(s)
- Xiaoxi Wang
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kimberly S. LaFever
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Indrayani Waghmare
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
17
|
A Progressive Somatic Cell Niche Regulates Germline Cyst Differentiation in the Drosophila Ovary. Curr Biol 2021; 31:840-852.e5. [PMID: 33340458 DOI: 10.1016/j.cub.2020.11.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
In the germarium of the Drosophila ovary, developing germline cysts are surrounded by a population of somatic escort cells that are known to function as the niche cells for germline differentiation;1 however, the underlying molecular mechanisms of this niche function remain poorly understood. Through single-cell gene expression profiling combined with genetic analyses, we here demonstrate that the escort cells can be spatially and functionally divided into two successive domains. The anterior escort cells (aECs) specifically produce ecdysone, which acts on the cystoblast to promote synchronous cell division, whereas the posterior escort cells (pECs) respond to ecdysone signaling and regulate soma-germline cell adhesion to promote the transition from 16-cell cyst-to-egg chamber formation. The patterning of the aEC and pEC domains is independent of the germline but is dependent on JAK/STAT signaling activity, which emanates from the posterior. Thus, a heterogeneous population of escort cells constitutes a stepwise niche environment to orchestrate cystoblast division and differentiation toward egg chamber formation.
Collapse
|
18
|
A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun 2020; 11:5628. [PMID: 33159074 PMCID: PMC7648648 DOI: 10.1038/s41467-020-19361-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The Drosophila ovary is a widely used model for germ cell and somatic tissue biology. Here we use single-cell RNA-sequencing (scRNA-seq) to build a comprehensive cell atlas of the adult Drosophila ovary that contains transcriptional profiles for every major cell type in the ovary, including the germline stem cells and their niche cells, follicle stem cells, and previously undescribed subpopulations of escort cells. In addition, we identify Gal4 lines with specific expression patterns and perform lineage tracing of subpopulations of escort cells and follicle cells. We discover that a distinct subpopulation of escort cells is able to convert to follicle stem cells in response to starvation or upon genetic manipulation, including knockdown of escargot, or overactivation of mTor or Toll signalling.
Collapse
|
19
|
Melamed D, Kalderon D. Opposing JAK-STAT and Wnt signaling gradients define a stem cell domain by regulating differentiation at two borders. eLife 2020; 9:61204. [PMID: 33135631 PMCID: PMC7695452 DOI: 10.7554/elife.61204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many adult stem cell communities are maintained by population asymmetry, where stochastic behaviors of multiple individual cells collectively result in a balance between stem cell division and differentiation. We investigated how this is achieved for Drosophila Follicle Stem Cells (FSCs) by spatially-restricted niche signals. FSCs produce transit-amplifying Follicle Cells (FCs) from their posterior face and quiescent Escort Cells (ECs) to their anterior. We show that JAK-STAT pathway activity, which declines from posterior to anterior, dictates the pattern of divisions over the FSC domain, promotes more posterior FSC locations and conversion to FCs, while opposing EC production. Wnt pathway activity declines from the anterior, promotes anterior FSC locations and EC production, and opposes FC production. The pathways combine to define a stem cell domain through concerted effects on FSC differentiation to ECs and FCs at either end of opposing signaling gradients, and impose a pattern of proliferation that matches derivative production.
Collapse
Affiliation(s)
- David Melamed
- Department of Biological Sciences, Columbia University, New York, United States
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
20
|
Rust K, Nystul T. Signal transduction in the early Drosophila follicle stem cell lineage. CURRENT OPINION IN INSECT SCIENCE 2020; 37:39-48. [PMID: 32087562 PMCID: PMC7155752 DOI: 10.1016/j.cois.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 05/08/2023]
Abstract
The follicle stem cell (FSC) lineage in the Drosophila ovary is a highly informative model of in vivo epithelial stem cell biology. Studies over the past 30 years have identified roles for every major signaling pathway in the early FSC lineage. These pathways regulate a wide variety of cell behaviors, including self-renewal, proliferation, survival and differentiation. Studies of cell signaling in the follicle epithelium have provided new insights into how these cell behaviors are coordinated within an epithelial stem cell lineage and how signaling pathways interact with each other in the native, in vivo context of a living tissue. Here, we review these studies, with a particular focus on how these pathways specify differences between the FSCs and their daughter cells. We also describe common themes that have emerged from these studies, and highlight new research directions that have been made possible by the detailed understanding of the follicle epithelium.
Collapse
|
21
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
22
|
Fadiga J, Nystul TG. The follicle epithelium in the Drosophila ovary is maintained by a small number of stem cells. eLife 2019; 8:e49050. [PMID: 31850843 PMCID: PMC6946398 DOI: 10.7554/elife.49050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The follicle stem cells (FSCs) in the Drosophila ovary are an important experimental model for the study of epithelial stem cell biology. Although decades of research support the conclusion that there are two FSCs per ovariole, a recent study used a novel clonal marking system to conclude that there are 15-16 FSCs per ovariole. We performed clonal analysis using both this novel clonal marking system and standard clonal marking systems, and identified several problems that may have contributed to the overestimate of FSC number. In addition, we developed new methods for accurately measuring clone size, and found that FSC clones produce, on average, half of the follicle cells in each ovariole. Our findings provide strong independent support for the conclusion that there are typically two active FSCs per ovariole, though they are consistent with up to four FSCs per germarium.
Collapse
Affiliation(s)
- Jocelyne Fadiga
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
23
|
Merkle JA, Wittes J, Schüpbach T. Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Curr Top Dev Biol 2019; 140:55-86. [PMID: 32591083 DOI: 10.1016/bs.ctdb.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
24
|
Mojica-Vázquez LH, Madrigal-Zarraga D, García-Martínez R, Boube M, Calderón-Segura ME, Oyallon J. Mercury chloride exposure induces DNA damage, reduces fertility, and alters somatic and germline cells in Drosophila melanogaster ovaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32322-32332. [PMID: 31598926 DOI: 10.1007/s11356-019-06449-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Mercury exposure has been shown to affect the reproductive system in many organisms, although the molecular mechanisms are still elusive. In the present study, we exposed Drosophila melanogaster Canton-S adult females to concentrations of 0 mM, 0.1 mM, 0.3 mM, 3 mM, and 30 mM of mercury chloride (HgCl2) for 24 h, 48 h, or 72 h to determine how mercury could affect fertility. Alkaline assays performed on dissected ovaries showed that mercury induced DNA damage that is not only dose-dependent but also time-dependent. All ovaries treated for 72 h have incorporated mercury and exhibit size reduction. Females treated with 30 mM HgCl2, the highest dose, had atrophied ovaries and exhibited a drastic 7-fold reduction in egg laying. Confocal microscopy analysis revealed that exposure to HgCl2 disrupts germinal and somatic cell organization in the germarium and leads to the aberrant expression of a germline-specific gene in somatic follicle cells in developing egg chambers. Together, these results highlight the potential long-term impact of mercury on germline and ovarian cells that might involve gene deregulation.
Collapse
Affiliation(s)
- Luis Humberto Mojica-Vázquez
- Genotoxicología Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria Coyoacán, 04510, Mexico, Mexico.
| | - Diana Madrigal-Zarraga
- Genotoxicología Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria Coyoacán, 04510, Mexico, Mexico
| | - Rocío García-Martínez
- Genotoxicología Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria Coyoacán, 04510, Mexico, Mexico
| | - Muriel Boube
- Centre de Biologie Intégrative (CBI)-CBD, UMR5547 CNRS/Université Toulouse III, Toulouse, France
| | - María Elena Calderón-Segura
- Genotoxicología Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria Coyoacán, 04510, Mexico, Mexico
| | - Justine Oyallon
- Genotoxicología Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria Coyoacán, 04510, Mexico, Mexico.
| |
Collapse
|
25
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
26
|
Singh T, Lee EH, Hartman TR, Ruiz-Whalen DM, O'Reilly AM. Opposing Action of Hedgehog and Insulin Signaling Balances Proliferation and Autophagy to Determine Follicle Stem Cell Lifespan. Dev Cell 2018; 46:720-734.e6. [PMID: 30197240 PMCID: PMC6159899 DOI: 10.1016/j.devcel.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Egg production declines with age in many species, a process linked with stem cell loss. Diet-dependent signaling has emerged as critical for stem cell maintenance during aging. Follicle stem cells (FSCs) in the Drosophila ovary are exquisitely responsive to diet-induced signals including Hedgehog (Hh) and insulin-IGF signaling (IIS), entering quiescence in the absence of nutrients and initiating proliferation rapidly upon feeding. Although highly proliferative FSCs generally exhibit an extended lifespan, we find that constitutive Hh signaling drives FSC loss and premature sterility despite high proliferative rates. This occurs due to Hh-mediated induction of autophagy in FSCs via a Ptc-dependent, Smo-independent mechanism. Hh-dependent autophagy increases during aging, triggering FSC loss and consequent reproductive arrest. IIS is necessary and sufficient to suppress Hh-induced autophagy, promoting a stable proliferative state. These results suggest that opposing action of diet-responsive IIS and Hh signals determine reproductive lifespan by modulating the proliferation-autophagy balance in FSCs during aging.
Collapse
Affiliation(s)
- Tanu Singh
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19111, USA
| | - Eric H Lee
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tiffiney R Hartman
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Dara M Ruiz-Whalen
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Alana M O'Reilly
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
27
|
Drosophila Glypicans Regulate Follicle Stem Cell Maintenance and Niche Competition. Genetics 2018; 209:537-549. [PMID: 29632032 DOI: 10.1534/genetics.118.300839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Adult stem cells reside in specialized microenvironments called niches, which provide signals for stem cells to maintain their undifferentiated and self-renewing state. To maintain stem cell quality, several types of stem cells are known to be regularly replaced by progenitor cells through niche competition. However, the cellular and molecular bases for stem cell competition for niche occupancy are largely unknown. Here, we show that two Drosophila members of the glypican family of heparan sulfate proteoglycans (HSPGs), Dally and Dally-like (Dlp), differentially regulate follicle stem cell (FSC) maintenance and competitiveness for niche occupancy. Lineage analyses of glypican mutant FSC clones showed that dally is essential for normal FSC maintenance. In contrast, dlp is a hypercompetitive mutation: dlp mutant FSC progenitors often eventually occupy the entire epithelial sheet. RNA interference knockdown experiments showed that Dally and Dlp play both partially redundant and distinct roles in regulating Jak/Stat, Wg, and Hh signaling in FSCs. The Drosophila FSC system offers a powerful genetic model to study the mechanisms by which HSPGs exert specific functions in stem cell replacement and competition.
Collapse
|
28
|
Borensztejn A, Mascaro A, Wharton KA. JAK/STAT signaling prevents excessive apoptosis to ensure maintenance of the interfollicular stalk critical for Drosophila oogenesis. Dev Biol 2018; 438:1-9. [PMID: 29571611 DOI: 10.1016/j.ydbio.2018.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Apoptosis not only eliminates cells that are damaged or dangerous but also cells whose function during development in patterning or organogenesis is complete. The successful formation of germ cells is essential for the perpetuation of a species. The production of an oocyte often depends on signaling between germline and somatic cells, but also between specialized types of somatic cells. In Drosophila, each developing egg chamber is separated from the next by a single file of interfollicular somatic cells. Little is known about the function of the interfollicular stalk, although its presumed role in separating egg chambers is to ensure that patterning cues from one egg chamber do not impact or disrupt the development of adjacent egg chambers. We found that cells comprising the stalk undergo a progressive decrease in number during oogenesis through an apoptotic-dependent loss. The extent of programmed cell death is restricted by JAK/STAT signaling in a cell-autonomous manner to ensure that the stalk is maintained. Both a failure to undergo the normal reduction in stalk cell number, or to prevent excessive stalk cell apoptosis results in a decrease in fecundity. Thus, activation of JAK/STAT signaling in the Drosophila interfollicular stalk emerges as a model to study the tight regulation of signaling-dependent apoptosis.
Collapse
Affiliation(s)
- Antoine Borensztejn
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Alexandra Mascaro
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Waghmare I, Page-McCaw A. Wnt Signaling in Stem Cell Maintenance and Differentiation in the Drosophila Germarium. Genes (Basel) 2018; 9:genes9030127. [PMID: 29495453 PMCID: PMC5867848 DOI: 10.3390/genes9030127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Wnt signaling is a conserved regulator of stem cell behaviors, and the Drosophila germarium has been an important model tissue for the study of stem cell maintenance, differentiation, and proliferation. Here we review Wnt signaling in the germarium, which houses two distinct types of ovarian stem cells: the anteriorly located germline stem cells (GSCs), which give rise to oocytes; and the mid-posteriorly located follicle stem cells (FSCs), which give rise to the somatic follicle cells that cover a developing oocyte. The maintenance and proliferation of GSCs and FSCs is regulated by the stem cell niches, whereas differentiation of the germline is regulated by the differentiation niche. Four distinct Wnt ligands are localized in the germarium, and we focus review on how these Wnt ligands and Wnt signaling affects maintenance and differentiation of both germline and follicle stem cells in their respective niches.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
30
|
Tomer D, Chippalkatti R, Mitra K, Rikhy R. ERK regulates mitochondrial membrane potential in fission deficient Drosophila follicle cells during differentiation. Dev Biol 2018; 434:48-62. [DOI: 10.1016/j.ydbio.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/04/2017] [Accepted: 11/15/2017] [Indexed: 01/10/2023]
|
31
|
Dai W, Peterson A, Kenney T, Burrous H, Montell DJ. Quantitative microscopy of the Drosophila ovary shows multiple niche signals specify progenitor cell fate. Nat Commun 2017; 8:1244. [PMID: 29093440 PMCID: PMC5665863 DOI: 10.1038/s41467-017-01322-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 09/09/2017] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells commonly give rise to transit-amplifying progenitors, whose progeny differentiate into distinct cell types. It is unclear if stem cell niche signals coordinate fate decisions within the progenitor pool. Here we use quantitative analysis of Wnt, Hh, and Notch signalling reporters and the cell fate markers Eyes Absent (Eya) and Castor (Cas) to study the effects of hyper-activation and loss of niche signals on progenitor development in the Drosophila ovary. Follicle stem cell (FSC) progeny adopt distinct polar, stalk, and main body cell fates. We show that Wnt signalling transiently inhibits expression of the main body cell fate determinant Eya, and Wnt hyperactivity strongly biases cells towards polar and stalk fates. Hh signalling independently controls the proliferation to differentiation transition. Notch is permissive but not instructive for differentiation of multiple cell types. These findings reveal that multiple niche signals coordinate cell fates and differentiation of progenitor cells.
Collapse
Affiliation(s)
- Wei Dai
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Amy Peterson
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas Kenney
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Haley Burrous
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Denise J Montell
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
32
|
The Hippo pathway acts downstream of the Hedgehog signaling to regulate follicle stem cell maintenance in the Drosophila ovary. Sci Rep 2017; 7:4480. [PMID: 28667262 PMCID: PMC5493701 DOI: 10.1038/s41598-017-04052-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway is conserved and plays important roles in organ size control. The core components of the Hippo pathway are two kinases Hippo (Hpo), Warts (Wts), and a transcription-co-activator Yorkie (Yki). Yki activity is regulated by phosphorylation, which affects its nuclear localization and stability. To determine the role of the Hippo pathway in stem cells, we examine follicle stem cells (FSCs) in the Drosophila ovary. Yki is detected in the nucleus of FSCs. Knockdown of yki in the follicle cell lineage leads to a disruption of the follicular epithelium. Mitotic clones of FSCs mutant for hpo or wts are maintained in the niche and tend to replace the other FSCs, and FSCs mutant for yki are rapidly lost, demonstrating that the Hippo pathway is both required and sufficient for FSC maintenance. Using genetic interaction analyses, we demonstrate that the Hedgehog pathway acts upstream of the Hippo pathway in regulating FSC maintenance. The nuclear localization of Yki is enhanced when the Hedgehog signaling is activated. Furthermore, a constitutively active but not a wild-type Yki promotes FSC maintenance as activation of the Hedgehog signaling does, suggesting that the Hedgehog pathway regulates Yki through a post-translational mechanism in maintaining FSCs.
Collapse
|
33
|
Teuscher M, Ströhlein N, Birkenbach M, Schultheis D, Schoppmeier M. TC003132 is essential for the follicle stem cell lineage in telotrophic Tribolium oogenesis. Front Zool 2017; 14:26. [PMID: 28533810 PMCID: PMC5438533 DOI: 10.1186/s12983-017-0212-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Background Stem cells are undifferentiated cells with a potential for self-renewal, which are essential to support normal development and homeostasis. To gain insight into the molecular mechanisms underlying adult stem cell biology and organ evolution, we use the telotrophic ovary of the beetle Tribolium. To this end, we participated in a large-scale RNAi screen in the red flour beetle Tribolium, which identified functions in embryonic and postembryonic development for more than half of the Tribolium genes. Results We identified TC003132 as candidate gene for the follicle stem cell linage in telotrophic Tribolium oogenesis. TC003132 belongs to the Casein Kinase 2 substrate family (CK2S), which in humans is associated with the proliferative activity of different cancers. Upon TC003132 RNAi, central pre-follicular cells are lost, which results in termination of oogenesis. Given that also Notch-signalling is required to promote the mitotic activity of central pre-follicular cells, we performed epistasis experiments with Notch and cut. In addition, we identified a putative follicle stem cell population by monitoring the mitotic pattern of wild type and TC003132 depleted follicle cells by EdU incorporations. In TC003132 RNAi these putative FSCs cease the expression of differentiation makers and are eventually lost. Conclusions TC003132 depleted pre-follicular cells neither react to mitosis or endocycle stimulating signals, suggesting that TC003132 provides competence for differentiation cues. This may resemble the situation in C. elegans were CK2 is required to maintain the balance between proliferation and differentiation in the germ line. Since the earliest effect of TC003132 RNAi is characterized by the loss of putative FSCs, we posit that TC003132 crucially contributes to the proliferation or maintenance of follicle stem cells in the telotrophic Tribolium ovary. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0212-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Teuscher
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Nadi Ströhlein
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Birkenbach
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Dorothea Schultheis
- Present address: Institute of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Michael Schoppmeier
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
34
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
35
|
Reilein A, Melamed D, Park KS, Berg A, Cimetta E, Tandon N, Vunjak-Novakovic G, Finkelstein S, Kalderon D. Alternative direct stem cell derivatives defined by stem cell location and graded Wnt signalling. Nat Cell Biol 2017; 19:433-444. [PMID: 28414313 PMCID: PMC5672635 DOI: 10.1038/ncb3505] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022]
Abstract
Adult stem cells provide a renewable source of differentiated cells for a wide variety of tissues and generally give rise to multiple cell types. Basic principles of stem cell organization and regulation underlying this behavior are emerging. Local niche signals maintain stem cells, while different sets of signals act outside the niche to diversify initially equivalent stem cell progeny. Here we show that Drosophila ovarian Follicle Stem Cells (FSCs) produced two distinct cell types directly. This cell fate choice was determined by the A/P position of an FSC and by the magnitude of spatially graded Wnt pathway activity. These findings reveal a paradigm of immediate diversification of stem cell derivatives according to stem cell position within a larger population, guided by a graded niche signal. We also found that FSCs strongly resemble mammalian intestinal stem cells in many aspects of their organization, including population asymmetry and dynamic heterogeneity.
Collapse
Affiliation(s)
- Amy Reilein
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - David Melamed
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Karen Sophia Park
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ari Berg
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Elisa Cimetta
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | - Nina Tandon
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | | | - Sarah Finkelstein
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
36
|
Identification of Genes Mediating Drosophila Follicle Cell Progenitor Differentiation by Screening for Modifiers of GAL4::UAS Variegation. G3-GENES GENOMES GENETICS 2017; 7:309-318. [PMID: 27866148 PMCID: PMC5217119 DOI: 10.1534/g3.116.036038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation. Eventually, follicle progenitors acquire competence to respond to Delta, a Notch ligand present in the environment, which signals them to cease division and initiate differentiation. The time required to acquire competence determines the duration of mitotic cycling and hence the final number of follicle cells. We carried out a screen for dominant modifiers of variegation spanning nearly 70% of Drosophila euchromatin to identify new genes influencing follicle progenitor epigenetic maturation. The eight genes found include chromatin modifiers, but also cell cycle regulators and transcription factors. Five of the modifier genes accelerate the acquisition of progenitor competence and reduce follicle cell number, however, the other three genes affect follicle cell number in an unexpected manner.
Collapse
|
37
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
38
|
Riechmann V. In vivo RNAi in the Drosophila Follicular Epithelium: Analysis of Stem Cell Maintenance, Proliferation, and Differentiation. Methods Mol Biol 2017; 1622:185-206. [PMID: 28674810 DOI: 10.1007/978-1-4939-7108-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vivo RNAi in Drosophila facilitates simple and rapid analysis of gene functions in a cell- or tissue-specific manner. The versatility of the UAS-GAL4 system allows to control exactly where and when during development the function of a gene is depleted. The epithelium of the ovary is a particularly good model to study in a living animal how stem cells are maintained and how their descendants proliferate and differentiate. Here I provide basic information about the publicly available reagents for in vivo RNAi, and I describe how the oogenesis system can be applied to analyze stem cells and epithelial development at a histological level. Moreover, I give helpful hints to optimize the use of the UAS-GAL4 system for RNAi induction in the follicular epithelium. Finally, I provide detailed step-by-step protocols for ovary dissection, antibody stainings, and ovary mounting for microscopic analysis.
Collapse
Affiliation(s)
- Veit Riechmann
- Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg University, Ludolf-Krehl-Strasse 13-17, D-68167, Mannheim, Germany.
| |
Collapse
|
39
|
Johnston MJ, Bar-Cohen S, Paroush Z, Nystul TG. Phosphorylated Groucho delays differentiation in the follicle stem cell lineage by providing a molecular memory of EGFR signaling in the niche. Development 2016; 143:4631-4642. [PMID: 27836963 PMCID: PMC5201033 DOI: 10.1242/dev.143263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023]
Abstract
In the epithelial follicle stem cells (FSCs) of the Drosophila ovary, Epidermal Growth Factor Receptor (EGFR) signaling promotes self-renewal, whereas Notch signaling promotes differentiation of the prefollicle cell (pFC) daughters. We have identified two proteins, Six4 and Groucho (Gro), that link the activity of these two pathways to regulate the earliest cell fate decision in the FSC lineage. Our data indicate that Six4 and Gro promote differentiation towards the polar cell fate by promoting Notch pathway activity. This activity of Gro is antagonized by EGFR signaling, which inhibits Gro-dependent repression via p-ERK mediated phosphorylation. We have found that the phosphorylated form of Gro persists in newly formed pFCs, which may delay differentiation and provide these cells with a temporary memory of the EGFR signal. Collectively, these findings demonstrate that phosphorylated Gro labels a transition state in the FSC lineage and describe the interplay between Notch and EGFR signaling that governs the differentiation processes during this period.
Collapse
Affiliation(s)
- Michael J Johnston
- The University of California, San Francisco, Departments of Anatomy and OB-GYN/RS, CA 94122, USA
| | - Shaked Bar-Cohen
- The Hebrew University, Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Ze'ev Paroush
- The Hebrew University, Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Todd G Nystul
- The University of California, San Francisco, Departments of Anatomy and OB-GYN/RS, CA 94122, USA
| |
Collapse
|
40
|
Ulmschneider B, Grillo-Hill BK, Benitez M, Azimova DR, Barber DL, Nystul TG. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J Cell Biol 2016; 215:345-355. [PMID: 27821494 PMCID: PMC5100294 DOI: 10.1083/jcb.201606042] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022] Open
Abstract
Despite extensive knowledge about the transcriptional regulation of stem cell differentiation, less is known about the role of dynamic cytosolic cues. We report that an increase in intracellular pH (pHi) is necessary for the efficient differentiation of Drosophila adult follicle stem cells (FSCs) and mouse embryonic stem cells (mESCs). We show that pHi increases with differentiation from FSCs to prefollicle cells (pFCs) and follicle cells. Loss of the Drosophila Na+-H+ exchanger DNhe2 lowers pHi in differentiating cells, impairs pFC differentiation, disrupts germarium morphology, and decreases fecundity. In contrast, increasing pHi promotes excess pFC cell differentiation toward a polar/stalk cell fate through suppressing Hedgehog pathway activity. Increased pHi also occurs with mESC differentiation and, when prevented, attenuates spontaneous differentiation of naive cells, as determined by expression of microRNA clusters and stage-specific markers. Our findings reveal a previously unrecognized role of pHi dynamics for the differentiation of two distinct types of stem cell lineages, which opens new directions for understanding conserved regulatory mechanisms.
Collapse
Affiliation(s)
- Bryne Ulmschneider
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Bree K Grillo-Hill
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Marimar Benitez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Dinara R Azimova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Todd G Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
41
|
Laws KM, Drummond-Barbosa D. AMP-activated protein kinase has diet-dependent and -independent roles in Drosophila oogenesis. Dev Biol 2016; 420:90-99. [PMID: 27729213 DOI: 10.1016/j.ydbio.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
Multiple aspects of organismal physiology influence the number and activity of stem cells and their progeny, including nutritional status. Previous studies demonstrated that Drosophila germline stem cells (GSCs), follicle stem cells (FSCs), and their progeny sense and respond to diet via complex mechanisms involving many systemic and local signals. AMP-activated protein kinase, or AMPK, is a highly conserved regulator of energy homeostasis known to be activated under low cellular energy conditions; however, its role in the ovarian response to diet has not been investigated. Here, we describe nutrient-dependent and -independent requirements for AMPK in Drosophila oogenesis. We found that AMPK is cell autonomously required for the slow down in GSC and follicle cell proliferation that occurs on a poor diet. Similarly, AMPK activity is necessary in the germline for the degeneration of vitellogenic stages in response to nutrient deprivation. In contrast, AMPK activity is not required within the germline to modulate its growth. Instead, AMPK acts in follicle cells to negatively regulate their growth and proliferation, thereby indirectly limiting the size of the underlying germline cyst within developing follicles. Paradoxically, AMPK is required for GSC maintenance in well-fed flies (when AMPK activity is presumably at its lowest), suggesting potentially important roles for basal AMPK activity in specific cell types. Finally, we identified a nutrient-independent, developmental role for AMPK in cyst encapsulation by follicle cells. These results uncover specific AMPK requirements in multiple cell types in the ovary and suggest that AMPK can function outside of its canonical nutrient-sensing role in specific developmental contexts.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Garbiec A, Kubrakiewicz J, Mazurkiewicz-Kania M, Simiczyjew B, Jędrzejowska I. Asymmetry in structure of the eggshell in Osmylus fulvicephalus (Neuroptera: Osmylidae): an exceptional case of breaking symmetry during neuropteran oogenesis. PROTOPLASMA 2016; 253:1033-1042. [PMID: 26224214 PMCID: PMC4947476 DOI: 10.1007/s00709-015-0860-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/15/2015] [Indexed: 06/06/2023]
Abstract
Ovaries of neuropterans are of meroistic-polytrophic type. The ovarian tubes, the ovarioles, are divided into two major parts: a germarium, comprised of newly formed germ cell clusters; and a vitellarium, housing linearly arranged ovarian follicles. Each ovarian follicle consists of the germ cell cluster diversified into different number of nurse cells, and the oocyte enclosed by follicular epithelium. In Osmylus fulvicephalus, a representative of Neuroptera, during consecutive stages of oogenesis, the follicular cells undergo a multistep process of diversification which leads to the appearance of several follicular cell subpopulations i.e., the main-body follicular cells, the stretched cells, the anterior centripetal cells, and posterior centripetal cells. The anterior centripetal cells occupy the anterior pole of the oocyte and in advanced oogenesis due to hypertrophy that transform into anterior fold cells. Initially, the anterior fold cells form a symmetric fold, but in advanced oogenesis, quite different from other neuropterans studied so far, they undergo uneven hypertrophic growth which results in breaking symmetry of the anterior fold that becomes shifted to the ventral side of the oocyte. Since the anterior fold cells participate in the production of the specialized chorion structure, the micropyle, asymmetric structure of the anterior fold, is reflected both in its asymmetric position and in the asymmetric construction of the micropyle. As a consequence of breaking symmetry of the anterior fold, Osmylus eggshell gains dorso-ventral polarity, which is unusual for neuropterans.
Collapse
Affiliation(s)
- Arnold Garbiec
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland.
| | - Janusz Kubrakiewicz
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Marta Mazurkiewicz-Kania
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Bożena Simiczyjew
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Izabela Jędrzejowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| |
Collapse
|
43
|
Chen DY, Lipari KR, Dehghan Y, Streichan SJ, Bilder D. Symmetry Breaking in an Edgeless Epithelium by Fat2-Regulated Microtubule Polarity. Cell Rep 2016; 15:1125-33. [PMID: 27134170 DOI: 10.1016/j.celrep.2016.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
Planar cell polarity (PCP) information is a critical determinant of organ morphogenesis. While PCP in bounded epithelial sheets is increasingly well understood, how PCP is organized in tubular and acinar tissues is not. Drosophila egg chambers (follicles) are an acinus-like "edgeless epithelium" and exhibit a continuous, circumferential PCP that does not depend on pathways active in bounded epithelia; this follicle PCP directs formation of an ellipsoid rather than a spherical egg. Here, we apply an imaging algorithm to "unroll" the entire 3D tissue surface and comprehensively analyze PCP onset. This approach traces chiral symmetry breaking to plus-end polarity of microtubules in the germarium, well before follicles form and rotate. PCP germarial microtubules provide chiral information that predicts the direction of whole-tissue rotation as soon as independent follicles form. Concordant microtubule polarity, but not microtubule alignment, requires the atypical cadherin Fat2, which acts at an early stage to translate plus-end bias into coordinated actin-mediated collective cell migration. Because microtubules are not required for PCP or migration after follicle rotation initiates, while dynamic actin and extracellular matrix are, polarized microtubules lie at the beginning of a handoff mechanism that passes early chiral PCP of the cytoskeleton to a supracellular planar polarized extracellular matrix and elongates the organ.
Collapse
Affiliation(s)
- Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Katherine R Lipari
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Yalda Dehghan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Sebastian J Streichan
- Kavli Institute of Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
44
|
Woichansky I, Beretta CA, Berns N, Riechmann V. Three mechanisms control E-cadherin localization to the zonula adherens. Nat Commun 2016; 7:10834. [PMID: 26960923 PMCID: PMC4792928 DOI: 10.1038/ncomms10834] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
E-cadherin localization to the zonula adherens is fundamental for epithelial differentiation but the mechanisms controlling localization are unclear. Using the Drosophila follicular epithelium we genetically dissect E-cadherin transport in an in vivo model. We distinguish three mechanisms mediating E-cadherin accumulation at the zonula adherens. Two membrane trafficking pathways deliver newly synthesized E-cadherin to the plasma membrane. One is Rab11 dependent and targets E-cadherin directly to the zonula adherens, while the other transports E-cadherin to the lateral membrane. Lateral E-cadherin reaches the zonula adherens by endocytosis and targeted recycling. We show that this pathway is dependent on RabX1, which provides a functional link between early and recycling endosomes. Moreover, we show that lateral E-cadherin is transported to the zonula adherens by an apically directed flow within the plasma membrane. Differential activation of these pathways could facilitate cell shape changes during morphogenesis, while their misregulation compromises cell adhesion and tissue architecture in differentiated epithelia.
Collapse
Affiliation(s)
- Innokenty Woichansky
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, D-68167 Mannheim, Germany
| | - Carlo Antonio Beretta
- Heidelberg University, COS and Nikon Imaging Center at the University of Heidelberg, Bioquant, D-69120 Heidelberg, Germany
- Excellenzcluster CellNetworks, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, D-68167 Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
45
|
Silva D, Jemc JC. Sorting Out Identities: An Educational Primer for Use with "Novel Tools for Genetic Manipulation of Follicle Stem Cells in the Drosophila Ovary Reveal an Integrin-Dependent Transition from Quiescence to Proliferation". Genetics 2015; 201:13-22. [PMID: 26354974 PMCID: PMC4566258 DOI: 10.1534/genetics.115.179911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms are made up of thousands of different cell types that must migrate, proliferate, and interact with each other to yield functional organ systems and ultimately a viable organism. A characteristic that distinguishes one cell type from another is the set of genes that it expresses. An article by Hartman et al. in the April 2015 issue of GENETICS identified methods to uniquely identify different cell populations during oogenesis, providing valuable tools for future studies. This Primer article provides background information on the Drosophila ovary as a system in which to study stem cell regulation, mechanisms for regulating gene expression, and the techniques used by Hartman et al. to identify specific cell populations and study their function.
Collapse
Affiliation(s)
- Diane Silva
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60660
| | - Jennifer C Jemc
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60660
| |
Collapse
|
46
|
Hartman TR, Ventresca EM, Hopkins A, Zinshteyn D, Singh T, O'Brien JA, Neubert BC, Hartman MG, Schofield HK, Stavrides KP, Talbot DE, Riggs DJ, Pritchard C, O'Reilly AM. Novel tools for genetic manipulation of follicle stem cells in the Drosophila ovary reveal an integrin-dependent transition from quiescence to proliferation. Genetics 2015; 199:935-57. [PMID: 25680813 PMCID: PMC4391569 DOI: 10.1534/genetics.114.173617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/09/2015] [Indexed: 01/11/2023] Open
Abstract
In many tissues, the presence of stem cells is inferred by the capacity of the tissue to maintain homeostasis and undergo repair after injury. Isolation of self-renewing cells with the ability to generate the full array of cells within a given tissue strongly supports this idea, but the identification and genetic manipulation of individual stem cells within their niche remain a challenge. Here we present novel methods for marking and genetically altering epithelial follicle stem cells (FSCs) within the Drosophila ovary. Using these new tools, we define a sequential multistep process that comprises transitioning of FSCs from quiescence to proliferation. We further demonstrate that integrins are cell-autonomously required within FSCs to provide directional signals that are necessary at each step of this process. These methods may be used to define precise roles for specific genes in the sequential events that occur during FSC division after a period of quiescence.
Collapse
Affiliation(s)
- Tiffiney R Hartman
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Erin M Ventresca
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Anthony Hopkins
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Daniel Zinshteyn
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Tanu Singh
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Molecular Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Jenny A O'Brien
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Department of Cancer Biology and Genetics, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Benjamin C Neubert
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 North Penn High School, Lansdale, Pennsylvania 19446
| | - Matthew G Hartman
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Heather K Schofield
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Kevin P Stavrides
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Danielle E Talbot
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 St. Hubert Catholic High School for Girls, Philadelphia, Pennsylvania 19136
| | - Devon J Riggs
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Science Scholars Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Caroline Pritchard
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Souderton Area High School, Souderton, Pennsylvania 18964
| | - Alana M O'Reilly
- Program in Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
47
|
Discs large 5, an Essential Gene in Drosophila, Regulates Egg Chamber Organization. G3-GENES GENOMES GENETICS 2015; 5:943-52. [PMID: 25795662 PMCID: PMC4426378 DOI: 10.1534/g3.115.017558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Discs large 5 (Dlg5) is a member of the MAGUK family of proteins that typically serve as molecular scaffolds and mediate signaling complex formation and localization. In vertebrates, Dlg5 has been shown to be responsible for polarization of neural progenitors and to associate with Rab11-positive vesicles in epithelial cells. In Drosophila, however, the function of Dlg5 is not well-documented. We have identified dlg5 as an essential gene that shows embryonic lethality. dlg5 embryos display partial loss of primordial germ cells (PGCs) during gonad coalescence between stages 12 and 15 of embryogenesis. Loss of Dlg5 in germline and somatic stem cells in the ovary results in the depletion of both cell lineages. Reduced expression of Dlg5 in the follicle cells of the ovary leads to a number of distinct phenotypes, including defects in egg chamber budding, stalk cell overgrowth, and ectopic polar cell induction. Interestingly, loss of Dlg5 in follicle cells results in abnormal distribution of a critical component of cell adhesion, E-cadherin, shown to be essential for proper organization of egg chambers.
Collapse
|
48
|
Vlachos S, Jangam S, Conder R, Chou M, Nystul T, Harden N. A Pak-regulated cell intercalation event leading to a novel radial cell polarity is involved in positioning of the follicle stem cell niche in the Drosophila ovary. Development 2015; 142:82-91. [PMID: 25516970 DOI: 10.1242/dev.111039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the germarium of the Drosophila ovary, germline cysts are encapsulated one at a time by a follicular epithelium derived from two follicle stem cells (FSCs). Ovaries in flies mutant for the serine/threonine kinase Pak exhibit a novel phenotype, in which two side-by-side cysts are encapsulated at a time, generating paired egg chambers. This striking phenotype originates in the pupal ovary, where the developing germarium is shaped by the basal stalk, a stack of cells formed by cell intercalation. The process of basal stalk formation is not well understood, and we provide evidence that the cell intercalation is driven by actomyosin contractility of DE-Cadherin-adhered cells, leading to a column of disk-shaped cells exhibiting a novel radial cell polarity. Cell intercalation fails in Pak mutant ovaries, leading to abnormally wide basal stalks and consequently wide germaria with side-by-side cysts. We present evidence that Pak mutant germaria have extra FSCs, and we propose that contact of a germline cyst with the basal stalk in the pupal ovary contributes to FSC niche formation. The wide basal stalk in Pak mutants enables the formation of extra FSC niches which are mispositioned and yet functional, indicating that the FSC niche can be established in diverse locations.
Collapse
Affiliation(s)
- Stephanie Vlachos
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Sharayu Jangam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Michael Chou
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Todd Nystul
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143, USA
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
49
|
Bosch JA, Tran NH, Hariharan IK. CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in Drosophila. Development 2015; 142:597-606. [PMID: 25605786 PMCID: PMC4302991 DOI: 10.1242/dev.114603] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/05/2014] [Indexed: 01/12/2023]
Abstract
Screens in mosaic Drosophila tissues that use chemical mutagenesis have identified many regulators of growth and patterning. Many of the mutant phenotypes observed were contingent upon the presence of both wild-type and mutant cells in the same tissue. More recently, large collections of RNAi lines or cDNAs expressed under Gal4/UAS control have been used to alter gene expression uniformly in specific tissues. However, these newer approaches are not easily combined with the efficient generation of genetic mosaics. The CoinFLP system described here enables mosaic screens in the context of gene knockdown or overexpression by automatically generating a reliable ratio of mutant to wild-type tissue in a developmentally controlled manner. CoinFLP-Gal4 generates mosaic tissues composed of clones of which only a subset expresses Gal4. CoinFLP-LexGAD/Gal4 generates tissues composed of clones that express either Gal4 or LexGAD, thus allowing the study of interactions between different types of genetically manipulated cells. By combining CoinFLP-LexGAD/Gal4 with the split-GFP system GRASP, boundaries between genetically distinct cell populations can be visualized at high resolution.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Molecular and Cell Biology, University of California, Berkeley 361 LSA, Berkeley, CA 94720-3200, USA
| | - Ngoc Han Tran
- Department of Molecular and Cell Biology, University of California, Berkeley 361 LSA, Berkeley, CA 94720-3200, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley 361 LSA, Berkeley, CA 94720-3200, USA
| |
Collapse
|
50
|
Abstract
The study of Drosophila oogenesis provides invaluable information about signaling pathway regulation and cell cycle programming. During Drosophila oogenesis, a string of egg chambers in each ovariole progressively develops toward maturity. Egg chamber development consists of 14 stages. From stage 1 to stage 6 (mitotic cycle), main-body follicle cells undergo mitotic divisions. From stage 7 to stage 10a (endocycle), follicle cells cease mitosis but continue three rounds of endoreduplication. From stage 10b to stage 13 (gene amplification), instead of whole genome duplication, follicle cells selectively amplify specific genomic regions, mostly for chorion production. So far, Drosophila oogenesis is one of the most well studied model systems used to understand cell cycle switches, which furthers our knowledge about cell cycle control machinery and sheds new light on potential cancer treatments. Here, we give a brief summary of cell cycle switches, the associated signaling pathways and factors, and the detailed experimental procedures used to study the cell cycle switches.
Collapse
Affiliation(s)
- Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | | |
Collapse
|