1
|
Hunnicutt KE, Callahan CM, Keeble S, Moore EC, Good JM, Larson EL. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses. Genetics 2025; 229:iyae198. [PMID: 39601270 PMCID: PMC11796465 DOI: 10.1093/genetics/iyae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes toward over or underexpression, the influence of developmental stage on patterns of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex chromosome-specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid expression phenotypes of house mice and dwarf hamsters, there are also clear differences that point toward unique mechanisms underlying hybrid male sterility. Our results highlight the potential of comparative approaches in helping to understand the causes and consequences of disrupted gene expression in speciation.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emily C Moore
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
2
|
Hunnicutt KE, Callahan C, Keeble S, Moore EC, Good JM, Larson EL. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564782. [PMID: 37961317 PMCID: PMC10634954 DOI: 10.1101/2023.10.30.564782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes towards over or underexpression, the influence of developmental stage on patterns of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex-chromosome specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid expression phenotypes of house mice and dwarf hamsters, there are also clear differences that point towards unique mechanisms underlying hybrid male sterility. Our results highlight the potential of comparative approaches in helping to understand the causes and consequences of disrupted gene expression in speciation.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Emily C Moore
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Erica L Larson
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
| |
Collapse
|
3
|
Boyboy BAG, Ichiyanagi K. Insertion of short L1 sequences generates inter-strain histone acetylation differences in the mouse. Mob DNA 2024; 15:11. [PMID: 38730323 PMCID: PMC11084082 DOI: 10.1186/s13100-024-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gene expression divergence between populations and between individuals can emerge from genetic variations within the genes and/or in the cis regulatory elements. Since epigenetic modifications regulate gene expression, it is conceivable that epigenetic variations in cis regulatory elements can also be a source of gene expression divergence. RESULTS In this study, we compared histone acetylation (namely, H3K9ac) profiles in two mouse strains of different subspecies origin, C57BL/6 J (B6) and MSM/Ms (MSM), as well as their F1 hybrids. This identified 319 regions of strain-specific acetylation, about half of which were observed between the alleles of F1 hybrids. While the allele-specific presence of the interferon regulatory factor 3 (IRF3) binding sequence was associated with allele-specific histone acetylation, we also revealed that B6-specific insertions of a short 3' fragment of LINE-1 (L1) retrotransposon occur within or proximal to MSM-specific acetylated regions. Furthermore, even in hyperacetylated domains, flanking regions of non-polymorphic 3' L1 fragments were hypoacetylated, suggesting a general activity of the 3' L1 fragment to induce hypoacetylation. Indeed, we confirmed the binding of the 3' region of L1 by three Krüppel-associated box domain-containing zinc finger proteins (KZFPs), which interact with histone deacetylases. These results suggest that even a short insertion of L1 would be excluded from gene- and acetylation-rich regions by natural selection. Finally, mRNA-seq analysis for F1 hybrids was carried out, which disclosed a link between allele-specific promoter/enhancer acetylation and gene expression. CONCLUSIONS This study disclosed a number of genetic changes that have changed the histone acetylation levels during the evolution of mouse subspecies, a part of which is associated with gene expression changes. Insertions of even a very short L1 fragment can decrease the acetylation level in their neighboring regions and thereby have been counter-selected in gene-rich regions, which may explain a long-standing mystery of discrete genomic distribution of LINEs and SINEs.
Collapse
Affiliation(s)
- Beverly Ann G Boyboy
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
4
|
Valiskova B, Gregorova S, Lustyk D, Šimeček P, Jansa P, Forejt J. Genic and Chromosomal Components of Prdm9-Driven Hybrid Male Sterility in Mice (Mus musculus). Genetics 2022; 222:6655690. [PMID: 35924978 PMCID: PMC9434306 DOI: 10.1093/genetics/iyac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility (HMS) gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus m. musculus x Mus m. domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break (DSB) hotspots results in difficult to repair DSBs, incomplete synapsis of homologous chromosomes and meiotic arrest at the first meiotic prophase. Here we show that Prdm9 behaves as a major HMS gene in mice outside the Mus m. musculus x Mus m. domesticus F1 hybrids, in the genomes composed of Mus m. castaneus and Mus m. musculus chromosomes segregating on the Mus m. domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of five quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, four control either meiotic synapsis or fertility phenotypes and one controls both, synapsis and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of HMS. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled HMS represents an example of genetic architecture of HMS consisting of genic and chromosomal components.
Collapse
Affiliation(s)
- Barbora Valiskova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Sona Gregorova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Petr Šimeček
- Central Laboratory of Bioinformatics, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Jiří Forejt
- Corresponding author: Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, Vestec 25250, Czech Republic.
| |
Collapse
|
5
|
Hunnicutt KE, Good JM, Larson EL. Unraveling patterns of disrupted gene expression across a complex tissue. Evolution 2022; 76:275-291. [PMID: 34882778 PMCID: PMC9355168 DOI: 10.1111/evo.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
Whole tissue RNASeq is the standard approach for studying gene expression divergence in evolutionary biology and provides a snapshot of the comprehensive transcriptome for a given tissue. However, whole tissues consist of diverse cell types differing in expression profiles, and the cellular composition of these tissues can evolve across species. Here, we investigate the effects of different cellular composition on whole tissue expression profiles. We compared gene expression from whole testes and enriched spermatogenesis populations in two species of house mice, Mus musculus musculus and M. m. domesticus, and their sterile and fertile F1 hybrids, which differ in both cellular composition and regulatory dynamics. We found that cellular composition differences skewed expression profiles and differential gene expression in whole testes samples. Importantly, both approaches were able to detect large-scale patterns such as disrupted X chromosome expression, although whole testes sampling resulted in decreased power to detect differentially expressed genes. We encourage researchers to account for histology in RNASeq and consider methods that reduce sample complexity whenever feasible. Ultimately, we show that differences in cellular composition between tissues can modify expression profiles, potentially altering inferred gene ontological processes, insights into gene network evolution, and processes governing gene expression evolution.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| |
Collapse
|
6
|
Davies B, Hinch AG, Cebrian-Serrano A, Alghadban S, Becker PW, Biggs D, Hernandez-Pliego P, Preece C, Moralli D, Zhang G, Myers S, Donnelly P. Altering the binding properties of PRDM9 partially restores fertility across the species boundary. Mol Biol Evol 2021; 38:5555-5562. [PMID: 34491357 PMCID: PMC8662609 DOI: 10.1093/molbev/msab269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sterility or subfertility of male hybrid offspring is commonly observed. This phenomenon contributes to reproductive barriers between the parental populations, an early step in the process of speciation. One frequent cause of such infertility is a failure of proper chromosome pairing during male meiosis. In subspecies of the house mouse, the likelihood of successful chromosome synapsis is improved by the binding of the histone methyltransferase PRDM9 to both chromosome homologues at matching positions. Using genetic manipulation, we altered PRDM9 binding to occur more often at matched sites, and find that chromosome pairing defects can be rescued, not only in an inter-subspecific cross, but also between distinct species. Using different engineered variants, we demonstrate a quantitative link between the degree of matched homologue binding, chromosome synapsis and rescue of fertility in hybrids between Mus musculus and Mus spretus. The resulting partial restoration of fertility reveals additional mechanisms at play that act to lock-in the reproductive isolation between these two species.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | | | | | - Samy Alghadban
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | | | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Simon Myers
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK.,Dept. of Statistics, University of Oxford, OX1 3LB, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK.,Dept. of Statistics, University of Oxford, OX1 3LB, UK
| |
Collapse
|
7
|
Forejt J, Jansa P, Parvanov E. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet 2021; 37:1095-1108. [PMID: 34238593 DOI: 10.1016/j.tig.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Hybrid sterility is a critical step in the evolution of reproductive barriers between diverging taxa during the process of speciation. Recent studies of young subspecies of the house mouse revealed a multigenic nature and frequent polymorphism of hybrid sterility genes as well as the recurrent engagement of the meiosis-specific gene PR domain-containing 9 (Prdm9) and X-linked loci. Prdm9-controlled hybrid sterility is essentially chromosomal in nature, conditioned by the sequence divergence between subspecies. Depending on the Prdm9 interallelic interactions and the X-linked Hstx2 locus, the same homologs either regularly recombine and synapse, or show impaired DNA DSB repair, asynapsis, and early meiotic arrest. Thus, Prdm9-dependent hybrid sterility points to incompatibilities affecting meiotic recombination as a possible mechanism of reproductive isolation between (sub)species.
Collapse
Affiliation(s)
- Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic.
| | - Petr Jansa
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Emil Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| |
Collapse
|
8
|
Mihola O, Landa V, Pratto F, Brick K, Kobets T, Kusari F, Gasic S, Smagulova F, Grey C, Flachs P, Gergelits V, Tresnak K, Silhavy J, Mlejnek P, Camerini-Otero RD, Pravenec M, Petukhova GV, Trachtulec Z. Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biol 2021; 19:86. [PMID: 33910563 PMCID: PMC8082845 DOI: 10.1186/s12915-021-01017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
Collapse
Affiliation(s)
- Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vladimir Landa
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Florencia Pratto
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatyana Kobets
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fitore Kusari
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Srdjan Gasic
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- Present address: Inserm U1085 IRSET, 35042, Rennes, France
| | - Corinne Grey
- Institut de Génétique Humaine, CNRS UMR 9002, 34396, Montpellier, France
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
- Present address: Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Karel Tresnak
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Jan Silhavy
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic.
| |
Collapse
|
9
|
Chromosomal Polymorphism and Speciation: The Case of the Genus Mazama (Cetartiodactyla; Cervidae). Genes (Basel) 2021; 12:genes12020165. [PMID: 33530376 PMCID: PMC7911811 DOI: 10.3390/genes12020165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chromosomal polymorphism plays a major role in speciation processes in mammals with high rates of karyotypic evolution, as observed in the family Cervidae. One remarkable example is the genus Mazama that comprises wide inter- and intra-specific chromosomal variability. To evaluate the impact of chromosomal polymorphisms as reproductive barriers within the genus Mazama, inter-specific hybrids between Mazama gouazoubira and Mazama nemorivaga (MGO × MNE) and intra-specific hybrids between cytotypes of Mazama americana (MAM) differing by a tandem (TF) or centric fusion (Robertsonian translocations—RT) were evaluated. MGO × MNE hybrid fertility was evaluated by the seminal quality and testicular histology. MAM hybrids estimation of the meiotic segregation products was performed by sperm-FISH analysis. MGO × MNE hybrids analyses showed different degrees of fertility reduction, from severe subfertility to complete sterility. Regarding MAM, RT, and TF carriers showed a mean value for alternate segregation rate of 97.74%, and 67.23%, and adjacent segregation rate of 1.80%, and 29.07%, respectively. Our results suggested an efficient post-zygotic barrier represented by severe fertility reduction for MGO × MNE and MAM with heterozygous TF. Nevertheless, RT did not show a severe effect on the reproductive fitness in MAM. Our data support the validity of MGO and MNE as different species and reveals cryptic species within MAM.
Collapse
|
10
|
Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 Intersubspecific Interactions in Hybrid Male Sterility of House Mouse. Mol Biol Evol 2020; 37:3423-3438. [PMID: 32642764 PMCID: PMC7743643 DOI: 10.1093/molbev/msaa167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Amisa Mukaj
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladana Fotopulosova
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | | | - Linda Odenthal-Hesse
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Emil D Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| |
Collapse
|
11
|
Niayale R, Cui Y, Adzitey F. Male hybrid sterility in the cattle-yak and other bovines: a review. Biol Reprod 2020; 104:495-507. [PMID: 33185248 DOI: 10.1093/biolre/ioaa207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hybridization is important for both animal breeders attempting to fix new phenotypic traits and researchers trying to unravel the mechanism of reproductive barriers in hybrid species and the process of speciation. In interspecies animal hybrids, gains made in terms of adaptation to environmental conditions and hybrid vigor may be offset by reduced fertility or sterility. Bovine hybrids exhibit remarkable hybrid vigor compared to their parents. However, the F1 male hybrid exhibits sterility, whereas the female is fertile. This male-biased sterility is consistent with the Haldane rule where heterogametic sex is preferentially rare, absent, or sterile in the progeny of two different species. The obstacle of fixing favorable traits and passing them to subsequent generations due to the male sterility is a major setback in improving the reproductive potential of bovines through hybridization. Multiperspective approaches such as molecular genetics, proteomics, transcriptomics, physiology, and endocrinology have been used by several researchers over the past decade in an attempt to unravel the potential mechanisms underlying male hybrid sterility. However, the mechanism of sterility in the hybrid male is still not completely unravelled. This review seeks to provide an update of the mechanisms of the sterility in the cattle-yak and other bovines.
Collapse
Affiliation(s)
- Robert Niayale
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Faculty of Agriculture, Animal Science Department, University for Development Studies, Tamale, Ghana
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Fredrick Adzitey
- Faculty of Agriculture, Animal Science Department, University for Development Studies, Tamale, Ghana
| |
Collapse
|
12
|
Widmayer SJ, Handel MA, Aylor DL. Age and Genetic Background Modify Hybrid Male Sterility in House Mice. Genetics 2020; 216:585-597. [PMID: 32817010 PMCID: PMC7536842 DOI: 10.1534/genetics.120.303474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 12 weeks and after 35 weeks. However, some PWKB6 and PWKAJ males were transiently fertile between 12 and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Graduate Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | | | - David L Aylor
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
13
|
Hasegawa A, Mochida K, Matoba S, Inoue K, Hama D, Kadota M, Hiraiwa N, Yoshiki A, Ogura A. Development of assisted reproductive technologies for Mus spretus†. Biol Reprod 2020; 104:234-243. [PMID: 32990726 DOI: 10.1093/biolre/ioaa177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
The genus Mus consists of many species with high genetic diversity. However, only one species, Mus musculus (the laboratory mouse), is common in biomedical research. The unavailability of assisted reproductive technologies (ARTs) for other Mus species might be a major reason for their limited use in laboratories. Here, we devised ARTs for Mus spretus (the Algerian mouse), a commonly used wild-derived Mus species. We found that in vitro production of M. spretus embryos was difficult because of low efficacies of superovulation with equine chorionic gonadotropin or anti-inhibin serum (AIS) (5-8 oocytes per female) and a low fertilization rate following in vitro fertilization (IVF; 15.2%). The primary cause of this was the hardening of the zona pellucida but not the sperm's fertilizing ability, as revealed by reciprocal IVF with laboratory mice. The largest number of embryos (16 per female) were obtained when females were injected with AIS followed by human chorionic gonadotropin and estradiol injections 24 h later, and then by natural mating. These in vivo-derived 2-cell embryos could be vitrified/warmed with a high survival rate (94%) using an ethylene glycol-based solution. Importantly, more than 60% of such embryos developed into healthy offspring following interspecific embryo transfer into (C57BL/6 × C3H) F1 female mice. Thus, we have devised practical ARTs for Mus spretus mice, enabling efficient production of embryos and animals, with safe laboratory preservation of their strains. In addition, we have demonstrated that interspecific embryo transfer is possible in murine rodents.
Collapse
Affiliation(s)
| | | | - Shogo Matoba
- RIKEN BioResouce Research Center, Tsukuba, Japan
| | - Kimiko Inoue
- RIKEN BioResouce Research Center, Tsukuba, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | - Daiki Hama
- RIKEN BioResouce Research Center, Tsukuba, Japan
| | | | | | | | - Atsuo Ogura
- RIKEN BioResouce Research Center, Tsukuba, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan.,Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
14
|
Nishino R, Petri S, Handel MA, Kunieda T, Fujiwara Y. Hybrid Sterility with Meiotic Metaphase Arrest in Intersubspecific Mouse Crosses. J Hered 2019; 110:183-193. [PMID: 30452700 PMCID: PMC6399516 DOI: 10.1093/jhered/esy060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Although organisms belonging to different species and subspecies sometimes produce fertile offspring, a hallmark of the speciation process is reproductive isolation, characterized by hybrid sterility (HS) due to failure in gametogenesis. In mammals, HS is usually exhibited by males, the heterogametic sex. The phenotypic manifestations of HS are complex. The most frequently observed are abnormalities in both autosomal and sex chromosome interactions that are linked to meiotic prophase arrest or postmeiotic spermiogenesis aberrations and lead to defective or absent gametes. The aim of this study was to determine the HS phenotypes in intersubspecific F1 mice produced by matings between Mus musculus molossinus-derived strains and diverse Mus musculus domesticus-inbred laboratory mouse strains. Most of these crosses produced fertile F1 offspring. However, when female BALB/cJ (domesticus) mice were mated to male JF1/MsJ (molossinus) mice, the (BALBdomxJF1mol)F1 males were sterile, whereas the (JF1molxBALBdom)F1 males produced by the reciprocal crossings were fertile; thus the sterility phenotype was asymmetric. The sterile (BALBdomxJF1mol) F1 males exhibited a high rate of meiotic metaphase arrest with misaligned chromosomes, probably related to a high frequency of XY dissociation. Intriguingly, in the sterile (BALBdomxJF1mol)F1 males we observed aberrant allele-specific expression of several meiotic genes, that play critical roles in important meiotic events including chromosome pairing. Together, these observations of an asymmetrical HS phenotype in intersubspecific F1 males, probably owing to meiotic defects in the meiotic behavior of the XY chromosomes pair and possibly also transcriptional misregulation of meiotic genes, provide new models and directions for understanding speciation mechanisms in mammals.
Collapse
Affiliation(s)
- Risako Nishino
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Okayama, Japan
- Institute of Environmental Toxicology, Joso, Ibaraki, Japan
| | | | | | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Okayama, Japan
| | - Yasuhiro Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Okayama, Japan
- The Jackson Laboratory, Bar Harbor, ME, Japan
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Hashemian N, Rajabi-Maham H, Edrisi M. Genetic vs environment influences on house mouse hybrid zone in Iran. J Genet Eng Biotechnol 2019; 15:483-488. [PMID: 30647690 PMCID: PMC6296597 DOI: 10.1016/j.jgeb.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Genetic divergence and environment influence on speciation process are the great deal studies over recent decades. One of the best ways for exploring the interaction of geography and genetics is the evaluation of hybrids in a contact zone. To understand if there is one or more hybrid zone between house mouse subspecies in Iran and what are the differences comparing these zones with European well-known hybrid zone, we performed this approach. Samples were live-trapped from Ilam city in west for sensu lato M. m. domesticus subspecies, and Neishabur city in north-east of Iran for sensu lato M. m. musculus subspecies. In five experimental groups, male and female mice of the two subspecies were crossed reciprocally to generate F1 hybrids, and then F1 offspring males and females were crossed also reciprocally between siblings to generate F2 hybrids. In the same manner as seen in European hybrid zone, hybridization between female M. m. musculus and male M. m. domesticus of all five groups showed male sterility in F1 generation, but intact female offspring. These sterile males comparing with a parent or healthy males showed low count and more abnormal sperm percentage in morphological and testis histological section studies. Comparing the results from this study with numerous studies carried out during several years on the European hybrid zone showed an equal condition of contact between two subspecies. Genetical elements have kept their same influence on postzygotic reproductive isolation more than environmental effects far from the Europe, here in Iran.
Collapse
Affiliation(s)
- Nima Hashemian
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, IR, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, IR, Iran
| | - Maryam Edrisi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, IR, Iran
| |
Collapse
|
16
|
Schwahn DJ, Wang RJ, White MA, Payseur BA. Genetic Dissection of Hybrid Male Sterility Across Stages of Spermatogenesis. Genetics 2018; 210:1453-1465. [PMID: 30333190 PMCID: PMC6283182 DOI: 10.1534/genetics.118.301658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Hybrid sterility is a common form of reproductive isolation between nascent species. Although hybrid sterility is routinely documented and genetically dissected in speciation studies, its developmental basis is rarely examined, especially in generations beyond the F1 generation. To identify phenotypic and genetic determinants of hybrid male sterility from a developmental perspective, we characterized testis histology in 312 F2 hybrids generated by intercrossing inbred strains of Mus musculus domesticus and M. m. musculus, two subspecies of house mice. Hybrids display a range of histologic abnormalities that indicate defective spermatogenesis. Among these abnormalities, we quantified decreased testis size, reductions in spermatocyte and spermatid number, increased apoptosis of meiosis I spermatocytes, and more multinucleated syncytia. Collectively, our phenotypic data point to defects in meiosis I as a primary barrier to reproduction. We identified seven quantitative trait loci (QTL) controlling five histologic traits. A region of chromosome 17 that contains Prdm9, a gene known to confer F1 hybrid male sterility, affects multinucleated syncytia and round spermatids, potentially extending the phenotypic outcomes of this incompatibility. The X chromosome also plays a key role, with loci affecting multinucleated syncytia, apoptosis of round spermatids, and round spermatid numbers. We detected an epistatic interaction between QTL on chromosomes 17 and X for multinucleated syncytia. Our results refine the developmental basis of a key reproductive barrier in a classic model system for speciation genetics.
Collapse
Affiliation(s)
- Denise J Schwahn
- Research Animal Resources Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Richard J Wang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A White
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
17
|
Larson EL, Keeble S, Vanderpool D, Dean MD, Good JM. The Composite Regulatory Basis of the Large X-Effect in Mouse Speciation. Mol Biol Evol 2017; 34:282-295. [PMID: 27999113 PMCID: PMC6200130 DOI: 10.1093/molbev/msw243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination.
Collapse
Affiliation(s)
- Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT
| |
Collapse
|
18
|
Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region. Genetics 2017; 205:1089-1100. [PMID: 28100589 PMCID: PMC5340325 DOI: 10.1534/genetics.116.189092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus. Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus.
Collapse
|
19
|
Ishishita S, Matsuda Y. Interspecific hybrids of dwarf hamsters and Phasianidae birds as animal models for studying the genetic and developmental basis of hybrid incompatibility. Genes Genet Syst 2016; 91:63-75. [PMID: 27628130 DOI: 10.1266/ggs.16-00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hybrid incompatibility is important in speciation as it prevents gene flow between closely related populations. Reduced fitness from hybrid incompatibility may also reinforce prezygotic reproductive isolation between sympatric populations. However, the genetic and developmental basis of hybrid incompatibility in higher vertebrates remains poorly understood. Mammals and birds, both amniotes, have similar developmental processes, but marked differences in development such as the XY/ZW sex determination systems and the presence or absence of genomic imprinting. Here, we review the sterile phenotype of hybrids between the Phodopus dwarf hamsters P. campbelli and P. sungorus, and the inviable phenotype of hybrids between two birds of the family Phasianidae, chicken (Gallus gallus domesticus) and Japanese quail (Coturnix japonica). We propose hypotheses for developmental defects that are associated with these hybrid incompatibilities. In addition, we discuss the genetic and developmental basis for these defects in conjunction with recent findings from mouse and avian models of genetics, reproductive biology and genomics. We suggest that these hybrids are ideal animal models for studying the genetic and developmental basis of hybrid incompatibility in amniotes.
Collapse
Affiliation(s)
- Satoshi Ishishita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University
| | | |
Collapse
|
20
|
Mack KL, Campbell P, Nachman MW. Gene regulation and speciation in house mice. Genome Res 2016; 26:451-61. [PMID: 26833790 PMCID: PMC4817769 DOI: 10.1101/gr.195743.115] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/28/2016] [Indexed: 01/15/2023]
Abstract
One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was characterized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found extensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive selection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation.
Collapse
Affiliation(s)
- Katya L Mack
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA
| | - Polly Campbell
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA
| |
Collapse
|
21
|
Clement TM, Inselman AL, Goulding EH, Willis WD, Eddy EM. Disrupting Cyclin Dependent Kinase 1 in Spermatocytes Causes Late Meiotic Arrest and Infertility in Mice. Biol Reprod 2015; 93:137. [PMID: 26490841 DOI: 10.1095/biolreprod.115.134940] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 01/22/2023] Open
Abstract
While cyclin dependent kinase 1 (CDK1) has a critical role in controlling resumption of meiosis in oocytes, its role has not been investigated directly in spermatocytes. Unique aspects of male meiosis led us to hypothesize that its role is different in male meiosis than in female meiosis. We generated a conditional knockout (cKO) of the Cdk1 gene in mouse spermatocytes to test this hypothesis. We found that CDK1-null spermatocytes undergo synapsis, chiasmata formation, and desynapsis as is seen in oocytes. Additionally, CDK1-null spermatocytes relocalize SYCP3 to centromeric foci, express H3pSer10, and initiate chromosome condensation. However, CDK1-null spermatocytes fail to form condensed bivalent chromosomes in prophase of meiosis I and instead are arrested at prometaphase. Thus, CDK1 has an essential role in male meiosis that is consistent with what is known about the role of CDK1 in female meiosis, where it is required for formation of condensed bivalent metaphase chromosomes and progression to the first meiotic division. We found that cKO spermatocytes formed fully condensed bivalent chromosomes in the presence of okadaic acid, suggesting that cKO chromosomes are competent to condense, although they do not do so in vivo. Additionally, arrested cKO spermatocytes exhibited irregular cell shape, irregular large nuclei, and large distinctive nucleoli. These cells persist in the seminiferous epithelium through the next seminiferous epithelial cycle with a lack of stage XII checkpoint-associated cell death. This indicates that CDK1 is required upstream of a checkpoint-associated cell death as well as meiotic metaphase progression in mouse spermatocytes.
Collapse
Affiliation(s)
- Tracy M Clement
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Amy L Inselman
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Eugenia H Goulding
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - William D Willis
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Edward M Eddy
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
22
|
Abstract
Hybrids between species are often sterile or inviable. This form of reproductive isolation is thought to evolve via the accumulation of mutations that interact to reduce fitness when combined in hybrids. Mathematical formulations of this "Dobzhansky-Muller model" predict an accelerating buildup of hybrid incompatibilities with divergence time (the "snowball effect"). Although the Dobzhansky-Muller model is widely accepted, the snowball effect has only been tested in two species groups. We evaluated evidence for the snowball effect in the evolution of hybrid male sterility among subspecies of house mice, a recently diverged group that shows partial reproductive isolation. We compared the history of subspecies divergence with patterns of quantitative trait loci (QTL) detected in F2 intercrosses between two pairs of subspecies (Mus musculus domesticus with M. m. musculus and M. m. domesticus with M. m. castaneus). We used a recently developed phylogenetic comparative method to statistically measure the fit of these data to the snowball prediction. To apply this method, QTL were partitioned as either shared or unshared in the two crosses. A heuristic partitioning based on the overlap of QTL confidence intervals produced unambiguous support for the snowball effect. An alternative approach combining data among crosses favored the snowball effect for the autosomes, but a linear accumulation of incompatibilities for the X chromosome. Reasoning that the X chromosome analyses are complicated by low mapping resolution, we conclude that hybrid male sterility loci have snowballed in house mice. Our study illustrates the power of comparative genetic mapping for understanding mechanisms of speciation.
Collapse
|
23
|
Scherthan H, Schöfisch K, Dell T, Illner D. Contrasting behavior of heterochromatic and euchromatic chromosome portions and pericentric genome separation in pre-bouquet spermatocytes of hybrid mice. Chromosoma 2014; 123:609-24. [PMID: 25119530 PMCID: PMC4226931 DOI: 10.1007/s00412-014-0479-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
The spatial distribution of parental genomes has attracted much interest because intranuclear chromosome distribution can modulate the transcriptome of cells and influence the efficacy of meiotic homologue pairing. Pairing of parental chromosomes is imperative to sexual reproduction as it translates into homologue segregation and genome haploidization to counteract the genome doubling at fertilization. Differential FISH tagging of parental pericentromeric genome portions and specific painting of euchromatic chromosome arms in Mus musculus (MMU) × Mus spretus (MSP) hybrid spermatogenesis disclosed a phase of homotypic non-homologous pericentromere clustering that led to parental pericentric genome separation from the pre-leptoteneup to zygotene stages. Preferential clustering of MMU pericentromeres correlated with particular enrichment of epigenetic marks (H3K9me3), HP1-γ and structural maintenance of chromosomes SMC6 complex proteins at the MMU major satellite DNA repeats. In contrast to the separation of heterochromatic pericentric genome portions, the euchromatic arms of homeologous chromosomes showed considerable presynaptic pairing already during leptotene stage of all mice investigated. Pericentric genome separation was eventually disbanded by telomere clustering that concentrated both parental pericentric genome portions in a limited nuclear sector of the bouquet nucleus. Our data disclose the differential behavior of pericentromeric heterochromatin and the euchromatic portions of the parental genomes during homologue search. Homotypic pericentromere clustering early in prophase I may contribute to the exclusion of large repetitive DNA domains from homology search, while the telomere bouquet congregates and registers spatially separated portions of the genome to fuel synapsis initiation and high levels of homologue pairing, thus contributing to the fidelity of meiosis and reproduction.
Collapse
Affiliation(s)
- Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Univ. Ulm, 80937, München, Germany,
| | | | | | | |
Collapse
|
24
|
Berríos S, Manieu C, López-Fenner J, Ayarza E, Page J, González M, Manterola M, Fernández-Donoso R. Robertsonian chromosomes and the nuclear architecture of mouse meiotic prophase spermatocytes. Biol Res 2014; 47:16. [PMID: 25027603 PMCID: PMC4101721 DOI: 10.1186/0717-6287-47-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/06/2022] Open
Abstract
Background The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. Results In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. Conclusions The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.
Collapse
|
25
|
Flachs P, Bhattacharyya T, Mihola O, Piálek J, Forejt J, Trachtulec Z. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids. PLoS One 2014; 9:e95806. [PMID: 24756080 PMCID: PMC3995920 DOI: 10.1371/journal.pone.0095806] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/30/2014] [Indexed: 01/19/2023] Open
Abstract
PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9-Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9-Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.
Collapse
Affiliation(s)
- Petr Flachs
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Tanmoy Bhattacharyya
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Ondřej Mihola
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiří Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Zdenek Trachtulec
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| |
Collapse
|
26
|
Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation. PLoS Genet 2014; 10:e1004301. [PMID: 24743563 PMCID: PMC3990516 DOI: 10.1371/journal.pgen.1004301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/24/2014] [Indexed: 01/17/2023] Open
Abstract
Improper gene regulation is implicated in reproductive isolation, but its genetic and molecular bases are unknown. We previously reported that a mouse inter-subspecific X chromosome substitution strain shows reproductive isolation characterized by male-specific sterility due to disruption of meiotic entry in spermatogenesis. Here, we conducted comprehensive transcriptional profiling of the testicular cells of this strain by microarray. The results clearly revealed gross misregulation of gene expression in the substituted donor X chromosome. Such misregulation occurred prior to detectable spermatogenetic impairment, suggesting that it is a primal event in reproductive isolation. The misregulation of X-linked genes showed asymmetry; more genes were disproportionally downregulated rather than upregulated. Furthermore, this misregulation subsequently resulted in perturbation of global transcriptional regulation of autosomal genes, probably by cascading deleterious effects. Remarkably, this transcriptional misregulation was substantially restored by introduction of chromosome 1 from the same donor strain as the X chromosome. This finding implies that one of regulatory genes acting in trans for X-linked target genes is located on chromosome 1. This study collectively suggests that regulatory incompatibility is a major cause of reproductive isolation in the X chromosome substitution strain. Reproductive isolation characterized by male sterility and decreased viability is important for speciation, because it suppresses free genetic exchange between two diverged populations and accelerates the genetic divergence. One of the reproductive isolation phenomena, hybrid sterility (sterility in hybrid animals), is possibly caused by deleterious interactions between diverged genetic factors brought by two distinct populations. The polymorphism not only in protein-coding sequences but also in transcriptional regulatory sequences can cause the genetic incompatibility in hybrid animals. However, the precise genetic mechanisms of hybrid sterility are mostly unknown. Here, we report that the expression of X-linked genes derived from one mouse subspecies was largely misregulated in the genetic background of another subspecies. The misregulated expression of the X-linked genes subsequently affected the global expression of autosomal genes. The results collectively indicate that hybrid sterility between the two mouse subspecies is caused by misregulation of gene expression due to genetic incompatibility in the transcriptional regulatory circuitry. Such genetic incompatibility in transcriptional regulation likely underlies reproductive isolation in general.
Collapse
|
27
|
Buard J, Rivals E, Dunoyer de Segonzac D, Garres C, Caminade P, de Massy B, Boursot P. Diversity of Prdm9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite. PLoS One 2014; 9:e85021. [PMID: 24454780 PMCID: PMC3890296 DOI: 10.1371/journal.pone.0085021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/20/2013] [Indexed: 12/23/2022] Open
Abstract
In humans and mice, meiotic recombination events cluster into narrow hotspots whose genomic positions are defined by the PRDM9 protein via its DNA binding domain constituted of an array of zinc fingers (ZnFs). High polymorphism and rapid divergence of the Prdm9 gene ZnF domain appear to involve positive selection at DNA-recognition amino-acid positions, but the nature of the underlying evolutionary pressures remains a puzzle. Here we explore the variability of the Prdm9 ZnF array in wild mice, and uncovered a high allelic diversity of both ZnF copy number and identity with the caracterization of 113 alleles. We analyze features of the diversity of ZnF identity which is mostly due to non-synonymous changes at codons -1, 3 and 6 of each ZnF, corresponding to amino-acids involved in DNA binding. Using methods adapted to the minisatellite structure of the ZnF array, we infer a phylogenetic tree of these alleles. We find the sister species Mus spicilegus and M. macedonicus as well as the three house mouse (Mus musculus) subspecies to be polyphyletic. However some sublineages have expanded independently in Mus musculus musculus and M. m. domesticus, the latter further showing phylogeographic substructure. Compared to random genomic regions and non-coding minisatellites, none of these patterns appears exceptional. In silico prediction of DNA binding sites for each allele, overlap of their alignments to the genome and relative coverage of the different families of interspersed repeated elements suggest a large diversity between PRDM9 variants with a potential for highly divergent distributions of recombination events in the genome with little correlation to evolutionary distance. By compiling PRDM9 ZnF protein sequences in Primates, Muridae and Equids, we find different diversity patterns among the three amino-acids most critical for the DNA-recognition function, suggesting different diversification timescales.
Collapse
Affiliation(s)
- Jérôme Buard
- Institute of Human Genetics, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France
| | - Eric Rivals
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, Université Montpellier 2, Centre National de la Recherche Scientifique, Montpellier, France
- Institut de Biologie Computationnelle, Montpellier, France
| | - Denis Dunoyer de Segonzac
- Institute of Human Genetics, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France
- Institut des Sciences de l'Evolution Montpellier, Université Montpellier 2, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
| | - Charlotte Garres
- Institute of Human Genetics, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France
- Institut des Sciences de l'Evolution Montpellier, Université Montpellier 2, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
| | - Pierre Caminade
- Institut des Sciences de l'Evolution Montpellier, Université Montpellier 2, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
| | - Bernard de Massy
- Institute of Human Genetics, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Evolution Montpellier, Université Montpellier 2, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France
| |
Collapse
|
28
|
Chihara M, Otsuka S, Ichii O, Kon Y. Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood-testis barrier, resulting in irreversible testicular degeneration in mice. J Reprod Dev 2013; 59:525-35. [PMID: 23934320 PMCID: PMC3934156 DOI: 10.1262/jrd.2013-058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood testis-barrier (BTB) is essential for maintaining homeostasis in the
seminiferous epithelium. Although many studies have reported that vitamin A (VA) is
required for the maintenance of spermatogenesis, the relationships between the BTB,
spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB
assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet
from the prepubertal period to adulthood. During the prepubertal period, no changes
were observed in the initiation and progression of the first spermatogenic wave in
mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes
derived from the second spermatogenic wave onwards were decreased, and initial BTB
formation was also delayed, as evidenced by the decreased expression of mRNAs
encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed
the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the
BTB, and dramatically decreased testis size. Furthermore, vacuolization and
calcification were observed in the seminiferous epithelium of adult mice fed the VAD
diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD
diet rescued BTB assembly after when the second spermatogenic wave initiated from the
arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These
results suggested that BTB integrity was regulated by VA metabolism with meiotic
progression and that the impermeable BTB was required for persistent spermatogenesis
rather than meiotic initiation. In conclusion, consumption of the VAD diet led to
critical defects in spermatogenesis progression and altered the dynamics of BTB
assembly.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
29
|
Male Hybrid Sterility in the Mule Duck is Associated with Meiotic Arrest in Primary Spermatocytes. J Poult Sci 2013. [DOI: 10.2141/jpsa.0130011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Cocquet J, Ellis PJI, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet 2012; 8:e1002900. [PMID: 23028340 PMCID: PMC3441658 DOI: 10.1371/journal.pgen.1002900] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/01/2012] [Indexed: 11/27/2022] Open
Abstract
Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation. Both copies of a gene have normally an equal chance of being inherited; however, some genes can act “selfishly” to be transmitted to >50% of offspring: a phenomenon known as transmission distortion. Distorting genes on the X or Y chromosome leads to an excess of female/male offspring respectively. This then sets up a “genomic conflict” (arms race) between the sex chromosomes that can radically affect their gene content. Male mice that have lost part of their Y produce >50% female offspring and show over-activation of multiple genes on the X, providing strong circumstantial evidence for distortion. Here, we demonstrate the existence of a genomic conflict regulated by the genes Slx/Slxl1 and Sly, present in ∼50 to 100 copies on the X and Y chromosomes respectively. SLX/SLXL1 and SLY proteins have antagonistic effects on sex chromosome expression in developing sperm and skew the offspring sex-ratio in favor of females/males. Interestingly, while deficiency of either gene alone leads to severe fertility problems, fertility is improved when both genes are deficient. We believe that the conflict in which Slx/Slxl1 and Sly are involved led to the amplification of X and Y genes and may have played an important role in mouse speciation.
Collapse
|
31
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
32
|
Campbell P, Good JM, Dean MD, Tucker PK, Nachman MW. The contribution of the Y chromosome to hybrid male sterility in house mice. Genetics 2012; 191:1271-81. [PMID: 22595240 PMCID: PMC3416006 DOI: 10.1534/genetics.112.141804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/10/2012] [Indexed: 12/18/2022] Open
Abstract
Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.
Collapse
Affiliation(s)
- Polly Campbell
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
33
|
White MA, Stubbings M, Dumont BL, Payseur BA. Genetics and evolution of hybrid male sterility in house mice. Genetics 2012; 191:917-34. [PMID: 22554891 PMCID: PMC3389984 DOI: 10.1534/genetics.112.140251] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.
Collapse
Affiliation(s)
| | - Maria Stubbings
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
34
|
Dzur-Gejdosova M, Simecek P, Gregorova S, Bhattacharyya T, Forejt J. Dissecting the genetic architecture of F1 hybrid sterility in house mice. Evolution 2012; 66:3321-35. [PMID: 23106700 DOI: 10.1111/j.1558-5646.2012.01684.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hybrid sterility as a postzygotic reproductive isolation mechanism has been studied for over 80 years, yet the first identifications of hybrid sterility genes in Drosophila and mouse are quite recent. To study the genetic architecture of F(1) hybrid sterility between young subspecies of house mouse Mus m. domesticus and M. m. musculus, we conducted QTL analysis of a backcross between inbred strains representing these two subspecies and probed the role of individual chromosomes in hybrid sterility using the intersubspecific chromosome substitution strains. We provide direct evidence that the asymmetry in male infertility between reciprocal crosses is conferred by the middle region of M. m. musculus Chr X, thus excluding other potential candidates such as Y, imprinted genes, and mitochondrial DNA. QTL analysis identified strong hybrid sterility loci on Chr 17 and Chr X and predicted a set of interchangeable autosomal loci, a subset of which is sufficient to activate the Dobzhansky-Muller incompatibility of the strong loci. Overall, our results indicate the oligogenic nature of F(1) hybrid sterility, which should be amenable to reconstruction by proper combination of chromosome substitution strains. Such a prefabricated model system should help to uncover the gene networks and molecular mechanisms underlying hybrid sterility.
Collapse
Affiliation(s)
- Maria Dzur-Gejdosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Montoto LG, Arregui L, Sánchez NM, Gomendio M, Roldan ERS. Postnatal testicular development in mouse species with different levels of sperm competition. Reproduction 2011; 143:333-46. [PMID: 22187670 DOI: 10.1530/rep-11-0245] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Postcopulatory sexual selection leads to an increase in sperm numbers which is partly the result of an increase in relative testes mass and could also be the consequence of changes in testis architecture or function. Very little is known regarding developmental changes during the first spermatogenic wave that may lead to enhanced spermatogenic efficiency and increased sperm production. We examined testicular development after birth in four mouse species with different sperm competition levels to assess changes in testicular architecture and function. Differences in relative testes mass between species appeared soon after birth and were exacerbated thereafter. The volume of testes occupied by seminiferous tubules differed between species postnatally and were associated with sperm competition levels. Finally, changes over time in the proportions of tubules with different germ cell types were also associated with sperm competition levels, with the time taken for the transition between various cell stages being negatively associated with levels of sperm competition. We conclude that postnatal testis development differs between closely related species with different sperm competition levels influencing testis architecture and the rate of progression of spermatogenesis, leading to differences in testis function at reproductive maturity.
Collapse
Affiliation(s)
- Laura Gómez Montoto
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), c/Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Genetic dissection of a key reproductive barrier between nascent species of house mice. Genetics 2011; 189:289-304. [PMID: 21750261 DOI: 10.1534/genetics.111.129171] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.
Collapse
|
37
|
Good JM, Vanderpool D, Smith KL, Nachman MW. Extraordinary sequence divergence at Tsga8, an X-linked gene involved in mouse spermiogenesis. Mol Biol Evol 2010; 28:1675-86. [PMID: 21186189 DOI: 10.1093/molbev/msq348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion-deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5' and 3' ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice.
Collapse
Affiliation(s)
- Jeffrey M Good
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ, USA.
| | | | | | | |
Collapse
|