1
|
Harbin JP, Shen Y, Lin SY, Kemper K, Haag ES, Schwarz EM, Ellis RE. Robust sex determination in the Caenorhabditis nigoni germ line. Genetics 2025; 229:iyae207. [PMID: 39663849 PMCID: PMC12005254 DOI: 10.1093/genetics/iyae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Sexual characteristics and reproductive systems are dynamic traits in many taxa, but the developmental modifications that allow change and innovation are largely unknown. A leading model for this process is the evolution of self-fertile hermaphrodites from male/female ancestors. However, these studies require direct analysis of sex determination in male/female species, as well as in the hermaphroditic species that are related to them. In Caenorhabditis nematodes, this has only become possible recently, with the discovery of new species. Here, we use gene editing to characterize major sex determination genes in Caenorhabditis nigoni, a sister to the widely studied hermaphroditic species Caenorhabditis briggsae. These 2 species are close enough to mate and form partially fertile hybrids. First, we find that tra-1 functions as the master regulator of sex in C. nigoni, in both the soma and the germ line. Surprisingly, these mutants make only sperm, in contrast to tra-1 mutants in related hermaphroditic species. Moreover, the XX mutants display a unique defect in somatic gonad development that is not seen elsewhere in the genus. Second, the fem-3 gene acts upstream of tra-1 in C. nigoni, and the mutants are females, unlike in the sister species C. briggsae, where they develop as hermaphrodites. This result points to a divergence in the role of fem-3 in the germ line of these species. Third, tra-2 encodes a transmembrane receptor that acts upstream of fem-3 in C. nigoni. Outside of the germ line, tra-2 mutations in all species cause a similar pattern of partial masculinization. However, heterozygosity for tra-2 does not alter germ cell fates in C. nigoni, as it can in sensitized backgrounds of 2 hermaphroditic species of Caenorhabditis. Finally, the epistatic relationships point to a simple, linear germline pathway in which tra-2 regulates fem-3 which regulates tra-1, unlike the more complex relationships seen in hermaphrodite germ cell development. Taking these results together, the regulation of sex determination is more robust and streamlined in the male/female species C. nigoni than in related species that make self-fertile hermaphrodites, a conclusion supported by studies of interspecies hybrids using sex determination mutations. Thus, we infer that the origin of self-fertility not only required mutations that activated the spermatogenesis program in XX germ lines, but prior to these there must have been mutations that decanalized the sex determination process, allowing for subsequent changes to germ cell fates.
Collapse
Affiliation(s)
- Jonathan P Harbin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Yongquan Shen
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Shin-Yi Lin
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kevin Kemper
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ronald E Ellis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
2
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive Conservation of Intron Number and Other Genetic Elements Revealed by a Chromosome-level Genome Assembly of the Hyper-polymorphic Nematode Caenorhabditis brenneri. Genome Biol Evol 2025; 17:evaf037. [PMID: 40037811 PMCID: PMC11925023 DOI: 10.1093/gbe/evaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
With within-species genetic diversity estimates that span the gamut of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and, notably, across Metazoa. Here, we present a high-quality, gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat-rich arms. A comparison of C. brenneri with other nematodes from the "Elegans" group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation of orthogroup size, indicative of high rates of gene turnover, consistent with previous studies. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. A comparison of gene structures revealed a strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Van Goor J, Turdiev A, Speir SJ, Manning J, Haag ES. Male secreted short glycoproteins link sperm competition to the reproductive isolation of species. Curr Biol 2025; 35:911-917.e5. [PMID: 39884276 DOI: 10.1016/j.cub.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Sperm competition is found across multicellular organisms1,2,3,4 using both external and internal fertilization.5,6 Sperm competition and post-copulatory cryptic female choice can promote incompatibility between species due to the antagonistic coevolution of the sexes within a species.7,8,9,10,11 This between-species incompatibility is accelerated and markedly asymmetrical when sexual mode differs, producing the "weak inbreeder, strong outcrosser" (WISO) pattern.12 Here, we show that male secreted short (MSS) sperm glycoproteins of nematodes constitute a gametic effector of WISO. In obligately outcrossing Caenorhabditis, MSS is dispensable for baseline fertility but required for intraspecific sperm competitiveness.13 MSS is lost in self-fertile lineages, likely as a response to selection for a hermaphrodite-biased sex ratio.14 Selfing hermaphrodites that mate with males of closely related outcrossing species are rapidly sterilized due to ovarian sperm invasion.11 The simplification of the male proteome in selfing species suggests that many factors could contribute to invasivity.13,15,16 However, restoration of just MSS to the self-fertile C. briggsae is sufficient to induce mild invasivity. Further, MSS+ sperm appear to derive their competitive advantage from this behavior, directly linking interspecies incompatibility with intraspecific competition. MSS-related proteins (MSRPs) remaining in the C. briggsae genome are similar in structure, expression, and localization to MSS but are not necessary for normal sperm competitiveness. Further, overexpression of the MSRP most similar to MSS, Cbr-MSRP-3, is insufficient to enhance competitiveness. We conclude that outcrossing species retain sperm competition factors that contribute to their reproductive isolation from selfing relatives that lost them.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Asan Turdiev
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Savannah J Speir
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jillian Manning
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Xie D, Ma Y, Ye P, Liu Y, Ding Q, Huang G, Félix MA, Cai Z, Zhao Z. A newborn F-box gene blocks gene flow by selectively degrading phosphoglucomutase in species hybrids. Proc Natl Acad Sci U S A 2024; 121:e2418037121. [PMID: 39514314 PMCID: PMC11573670 DOI: 10.1073/pnas.2418037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
The establishment of reproductive barriers such as postzygotic hybrid incompatibility (HI) remains the key to speciation. Gene duplication followed by differential functionalization has long been proposed as a major model underlying HI, but little supporting evidence exists. Here, we demonstrate that a newborn F-box gene, Cni-neib-1, of the nematode Caenorhabditis nigoni specifically inactivates an essential phosphoglucomutase encoded by Cbr-shls-1 in its sister species Caenorhabditis briggsae and their hybrids. Zygotic expression of Cni-neib-1 specifically depletes Cbr-SHLS-1, but not Cni-SHLS-1, in approximately 40 min starting from gastrulation, causing embryonic death. Cni-neib-1 is one of thirty-three paralogues emerging from a recent surge in F-box gene duplication events within C. nigoni, all of which are evolving under positive selection. Cni-neib-1 undergoes turnover even among C. nigoni populations. Differential expansion of F-box genes between the two species could reflect their distinctive innate immune responses. Collectively, we demonstrate how recent duplication of genes involved in protein degradation can cause incidental destruction of targets in hybrids that leads to HI, providing an invaluable insight into mechanisms of speciation.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Gefei Huang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris 75005, France
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
5
|
Cutter AD. Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination. eLife 2024; 13:e96652. [PMID: 39158559 PMCID: PMC11333046 DOI: 10.7554/elife.96652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
6
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
7
|
Portman DS. Behavioral evolution: No sex please, we're hermaphrodites. Curr Biol 2024; 34:R501-R504. [PMID: 38772338 DOI: 10.1016/j.cub.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Many 'hard-wired', innate animal behaviors are related to reproduction. So what happens when reproductive systems evolve? New research in nematodes has identified principles underlying the co-evolution of reproductive strategy and sexual behavior, revealing some surprises and raising intriguing new questions.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics and Ernest J. Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Ebert MS, Bargmann CI. Evolution remodels olfactory and mating-receptive behaviors in the transition from female to hermaphrodite reproduction. Curr Biol 2024; 34:969-979.e4. [PMID: 38340714 DOI: 10.1016/j.cub.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Male/hermaphrodite species have arisen multiple times from a male/female ancestral state in nematodes, providing a model to study behavioral adaptations to different reproductive strategies. Here, we examined the mating behaviors of male/female (gonochoristic) Caenorhabditis species in comparison with male/hermaphrodite (androdiecious) close relatives. We find that females from two species in the Elegans group chemotax to volatile odor from males, but hermaphrodites do not. Females, but not hermaphrodites, also display known mating-receptive behaviors such as sedation when male reproductive structures contact the vulva. Focusing on the male/female species C. nigoni, we show that female chemotaxis to males is limited to adult females approaching adult or near-adult males and relies upon the AWA neuron-specific transcription factor ODR-7, as does male chemotaxis to female odor as previously shown in C. elegans. However, female receptivity during mating contact is odr-7 independent. All C. nigoni female behaviors are suppressed by mating and all are absent in young hermaphrodites from the sister species C. briggsae. However, latent receptivity during mating contact can be uncovered in mutant or aged C. briggsae hermaphrodites that lack self-sperm. These results reveal two mechanistically distinct components of the shift from female to hermaphrodite behavior: the loss of female-specific odr-7-dependent chemotaxis and a sperm-dependent state of reduced receptivity to mating contact. Hermaphrodites from a second androdioecious species, C. tropicalis, recover all female behaviors upon aging, including chemotaxis to males. Regaining mating receptivity after sperm depletion could maximize hermaphrodite fitness across their lifespan.
Collapse
Affiliation(s)
- Margaret S Ebert
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
9
|
Szabo N, Cutter AD. Experimental evolution of hybrid populations to identify Dobzhansky-Muller incompatibility loci. Ecol Evol 2024; 14:e10972. [PMID: 38333096 PMCID: PMC10851027 DOI: 10.1002/ece3.10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Epistatic interactions between loci that reduce fitness in interspecies hybrids, Dobzhansky-Muller incompatibilities (DMIs), contribute genetically to the inviability and infertility within hybrid populations. It remains a challenge, however, to identify the loci that contribute to DMIs as causes of reproductive isolation between species. Here, we assess through forward simulation the power of evolve-and-resequence (E&R) experimental evolution of hybrid populations to map DMI loci. We document conditions under which such a mapping strategy may be most feasible and demonstrate how mapping power is sensitive to biologically relevant parameters such as one-way versus two-way incompatibility type, selection strength, recombination rate, and dominance interactions. We also assess the influence of parameters under direct control of an experimenter, including duration of experimental evolution and number of replicate populations. We conclude that an E&R strategy for mapping DMI loci, and other cases of epistasis, can be a viable option under some circumstances for study systems with short generation times like Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Nicole Szabo
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Asher D. Cutter
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
10
|
Xie D, Gu B, Liu Y, Ye P, Ma Y, Wen T, Song X, Zhao Z. Efficient targeted recombination with CRISPR/Cas9 in hybrids of Caenorhabditis nematodes with suppressed recombination. BMC Biol 2023; 21:203. [PMID: 37775783 PMCID: PMC10542263 DOI: 10.1186/s12915-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. RESULTS Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. CONCLUSIONS Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Bida Gu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Tongshu Wen
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
11
|
Harbin JP, Ellis RE. Efficient production of CRISPR/Cas9 gene knockouts in the male/female nematode Caenorhabditis nigoni. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000968. [PMID: 37746063 PMCID: PMC10512056 DOI: 10.17912/micropub.biology.000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Although nematode genetics was founded on the use of hermaphrodite genetics for studying animal development and behavior, there is a growing need to extend this work to male/female species. One of the most promising species is C. nigoni, because it is so closely related to the model hermaphroditic C. briggsae. We present methods for using CRISPR/Cas9 gene editing to create mutations, and techniques for balancing, maintaining and studying these mutations.
Collapse
Affiliation(s)
- Jonathan P Harbin
- Molecular Biology, Rowan-Virtua SOM, Stratford, New Jersey, United States
| | - Ronald E Ellis
- Molecular Biology, Rowan-Virtua SOM, Stratford, New Jersey, United States
| |
Collapse
|
12
|
Choi CP, Villeneuve AM. CRISPR/Cas9 mediated genome editing of Caenorhabditis nigoni using the conserved dpy-10 co-conversion marker. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000937. [PMID: 37720684 PMCID: PMC10500344 DOI: 10.17912/micropub.biology.000937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
In this study, we developed an efficient co-conversion marker, using the conserved dpy-10 gene, to facilitate creation and detection of CRISPR/Cas9-mediated targeted genomic changes in an emerging male/female nematode model system, Caenorhabditis nigoni .
Collapse
Affiliation(s)
- Charlotte P. Choi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 U.S.A
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 U.S.A
| |
Collapse
|
13
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Ding Q, Ren X, Li R, Chan L, Ho VWS, Bi Y, Xie D, Zhao Z. Highly efficient transgenesis with miniMos in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2022; 12:jkac254. [PMID: 36171682 PMCID: PMC9713419 DOI: 10.1093/g3journal/jkac254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Caenorhabditis briggsae as a companion species for Caenorhabditis elegans has played an increasingly important role in study of evolution of development and genome and gene regulation. Aided by the isolation of its sister spices, it has recently been established as a model for speciation study. To take full advantage of the species for comparative study, an effective transgenesis method especially those with single-copy insertion is important for functional comparison. Here, we improved a transposon-based transgenesis methodology that had been originally developed in C. elegans but worked marginally in C. briggsae. By incorporation of a heat shock step, the transgenesis efficiency in C. briggsae with a single-copy insertion is comparable to that in C. elegans. We used the method to generate 54 independent insertions mostly consisting of a mCherry tag over the C. briggsae genome. We demonstrated the use of the tags in identifying interacting loci responsible for hybrid male sterility between C. briggsae and Caenorhabditis nigoni when combined with the GFP tags we generated previously. Finally, we demonstrated that C. briggsae tolerates the C. elegans toxin, PEEL-1, but not SUP-35, making the latter a potential negative selection marker against extrachromosomal array.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Luyan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
15
|
Description of Oscheius cyrus n. sp. (Nematoda: Rhabditidae) as new entomopathogenic nematode from Iran. J Helminthol 2022; 96:e69. [PMID: 36120816 DOI: 10.1017/s0022149x22000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new species of the genus Oscheius, Oscheius cyrus n. sp., collected in the moist soils taken from forest heights in the north of Iran, is recorded. A comprehensive description, comprising molecular (internal transcribed spacer (ITS), 18S, and 28S rDNA genes) information, morphometrics data, light microscope and scanning electron microscope images, is supplied. The species resembles Oscheius myriophilus. However, the highest ranges for female body length, female tail, infective juvenile tail length, median bulb, absence of epiptygma and lateral field incisures number vary. The new species was distinguished from Oscheius insectivorus by the general lip region. The male was not found. Molecular analysis showed that the new species has the most similarity to O. myriophilus both in the ITS and 18S regions. Morphological and molecular data confirmed its belonging to the Insectivora-group. Furthermore, the species of Ochrobactrum pseudogrignonense was reported as a dominant associated bacterium of the new Oscheius species. Finally, the mortality of the host after seven days varied from 20% to 82.5%, depending on nematodes' concentration.
Collapse
|
16
|
Velazco-Cruz L, Ross JA. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay. PLoS One 2022; 17:e0272843. [PMID: 35951524 PMCID: PMC9371335 DOI: 10.1371/journal.pone.0272843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying the alleles that reduce hybrid fitness is a major goal in the study of speciation genetics. It is rare to identify systems in which hybrid incompatibilities with minor phenotypic effects are segregating in genetically diverse populations of the same biological species. Such traits do not themselves cause reproductive isolation but might initiate the process. In the nematode Caenorhabditis briggsae, a small percent of F2 generation hybrids between two natural populations suffer from developmental delay, in which adulthood is reached after approximately 33% more time than their wild-type siblings. Prior efforts to identify the genetic basis for this hybrid incompatibility assessed linkage using one or two genetic markers on chromosome III and suggested that delay is caused by a toxin-antidote element. Here, we have genotyped F2 hybrids using multiple chromosome III markers to refine the developmental delay locus. Also, to better define the developmental delay phenotype, we measured the development rate of 66 F2 hybrids and found that delay is not restricted to a particular larval developmental stage. Deviation of the developmental delay frequency from hypothetical expectations for a toxin-antidote element adds support to the assertion that the epistatic interaction is not fully penetrant. Our mapping and refinement of the delay phenotype motivates future efforts to study the genetic architecture of hybrid dysfunction between genetically distinct populations of one species by identifying the underlying loci.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Department of Biology, California State University, Fresno, California, United States of America
| | - Joseph A. Ross
- Department of Biology, California State University, Fresno, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Jhaveri N, van den Berg W, Hwang BJ, Muller HM, Sternberg PW, Gupta BP. Genome annotation of Caenorhabditis briggsae by TEC-RED identifies new exons, paralogs, and conserved and novel operons. G3 (BETHESDA, MD.) 2022; 12:jkac101. [PMID: 35485953 PMCID: PMC9258526 DOI: 10.1093/g3journal/jkac101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/14/2022] [Indexed: 11/14/2022]
Abstract
The nematode Caenorhabditis briggsae is routinely used in comparative and evolutionary studies involving its well-known cousin Caenorhabditis elegans. The C. briggsae genome sequence has accelerated research by facilitating the generation of new resources, tools, and functional studies of genes. While substantial progress has been made in predicting genes and start sites, experimental evidence is still lacking in many cases. Here, we report an improved annotation of the C. briggsae genome using the trans-spliced exon coupled RNA end determination technique. In addition to identifying the 5' ends of expressed genes, we have discovered operons and paralogs. In summary, our analysis yielded 10,243 unique 5' end sequence tags with matches in the C. briggsae genome. Of these, 6,395 were found to represent 4,252 unique genes along with 362 paralogs and 52 previously unknown exons. These genes included 14 that are exclusively trans-spliced in C. briggsae when compared with C. elegans orthologs. A major contribution of this study is the identification of 492 high confidence operons, of which two-thirds are fully supported by tags. In addition, 2 SL1-type operons were discovered. Interestingly, comparisons with C. elegans showed that only 40% of operons are conserved. Of the remaining operons, 73 are novel, including 12 that entirely lack orthologs in C. elegans. Further analysis revealed that 4 of the 12 novel operons are conserved in Caenorhabditis nigoni. Altogether, the work described here has significantly advanced our understanding of the C. briggsae system and serves as a rich resource to aid biological studies involving this species.
Collapse
Affiliation(s)
- Nikita Jhaveri
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | - Byung Joon Hwang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hans-Michael Muller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
18
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
20
|
Xie D, Ye P, Ma Y, Li Y, Liu X, Sarkies P, Zhao Z. Genetic exchange with an outcrossing sister species causes severe genome-wide dysregulation in a selfing Caenorhabditis nematode. Genome Res 2022; 32:2015-2027. [PMID: 36351773 PMCID: PMC9808620 DOI: 10.1101/gr.277205.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Different modes of reproduction evolve rapidly, with important consequences for genome composition. Selfing species often occupy a similar niche as their outcrossing sister species with which they are able to mate and produce viable hybrid progeny, raising the question of how they maintain genomic identity. Here, we investigate this issue by using the nematode Caenorhabditis briggsae, which reproduces as a hermaphrodite, and its outcrossing sister species Caenorhabditis nigoni We hypothesize that selfing species might develop some barriers to prevent gene intrusions through gene regulation. We therefore examined gene regulation in the hybrid F2 embryos resulting from reciprocal backcrosses between F1 hybrid progeny and C. nigoni or C. briggsae F2 hybrid embryos with ∼75% of their genome derived from C. briggsae (termed as bB2) were inviable, whereas those with ∼75% of their genome derived from C. nigoni (termed as nB2) were viable. Misregulation of transposable elements, coding genes, and small regulatory RNAs was more widespread in the bB2 compared with the nB2 hybrids, which is a plausible explanation for the differential phenotypes between the two hybrids. Our results show that regulation of the C. briggsae genome is strongly affected by genetic exchanges with its outcrossing sister species, C. nigoni, whereas regulation of the C. nigoni genome is more robust on genetic exchange with C. briggsae The results provide new insights into how selfing species might maintain their identity despite genetic exchanges with closely related outcrossing species.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, OX1 4BH, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China;,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Onken B, Sedore CA, Coleman‐Hulbert AL, Hall D, Johnson E, Jones EG, Banse SA, Huynh P, Guo S, Xue J, Chen E, Harinath G, Foulger A, Chao EA, Hope J, Bhaumik D, Plummer T, Inman D, Morshead M, Guo M, Lithgow G, Phillips PC, Driscoll M. Metformin treatment of diverse Caenorhabditis species reveals the importance of genetic background in longevity and healthspan extension outcomes. Aging Cell 2022; 21:e13488. [PMID: 34837316 PMCID: PMC8761014 DOI: 10.1111/acel.13488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/31/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Metformin, the most commonly prescribed anti‐diabetes medication, has multiple reported health benefits, including lowering the risks of cardiovascular disease and cancer, improving cognitive function with age, extending survival in diabetic patients, and, in several animal models, promoting youthful physiology and lifespan. Due to its longevity and health effects, metformin is now the focus of the first proposed clinical trial of an anti‐aging drug—the Targeting Aging with Metformin (TAME) program. Genetic variation will likely influence outcomes when studying metformin health effects in human populations. To test for metformin impact in diverse genetic backgrounds, we measured lifespan and healthspan effects of metformin treatment in three Caenorhabditis species representing genetic variability greater than that between mice and humans. We show that metformin increases median survival in three C. elegans strains, but not in C. briggsae and C. tropicalis strains. In C. briggsae, metformin either has no impact on survival or decreases lifespan. In C. tropicalis, metformin decreases median survival in a dose‐dependent manner. We show that metformin prolongs the period of youthful vigor in all C. elegans strains and in two C. briggsae strains, but that metformin has a negative impact on the locomotion of C. tropicalis strains. Our data demonstrate that metformin can be a robust promoter of healthy aging across different genetic backgrounds, but that genetic variation can determine whether metformin has positive, neutral, or negative lifespan/healthspan impact. These results underscore the importance of tailoring treatment to individuals when testing for metformin health benefits in diverse human populations.
Collapse
Affiliation(s)
- Brian Onken
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | | | | | - David Hall
- The Buck Institute for Research on Aging Novato California USA
| | - Erik Johnson
- Institute of Ecology and Evolution University of Oregon Eugene Oregon USA
| | | | - Stephen A. Banse
- Institute of Ecology and Evolution University of Oregon Eugene Oregon USA
| | - Phu Huynh
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Suzhen Guo
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Jian Xue
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Esteban Chen
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Girish Harinath
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Anna C. Foulger
- The Buck Institute for Research on Aging Novato California USA
| | | | - June Hope
- The Buck Institute for Research on Aging Novato California USA
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging Novato California USA
| | - Todd Plummer
- The Buck Institute for Research on Aging Novato California USA
| | - Delaney Inman
- The Buck Institute for Research on Aging Novato California USA
| | | | - Max Guo
- Division of Aging Biology National Institute on Aging Bethesda Maryland USA
| | | | | | - Monica Driscoll
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| |
Collapse
|
22
|
Liang J, Hodge JM, Sharakhov IV. Asymmetric Phenotypes of Sterile Hybrid Males From Reciprocal Crosses Between Species of the Anopheles gambiae Complex. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.660207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Haldane’s rule of speciation states that sterility or inviability affects the heterogametic sex of inter-species hybrids. Darwin’s corollary to Haldane’s rule implies that there are asymmetric phenotypes in inter-species hybrids from reciprocal crosses. Studying the phenotypes of F1 hybrids among closely related species of malaria mosquitoes can assist researchers in identifying the genetic factors and molecular mechanisms of speciation. To characterize phenotypes of sterile hybrid males in the Anopheles gambiae complex, we performed crosses between laboratory strains of An. merus and either An. gambiae or An. coluzzii. The reproductive tracts had normal external morphology in hybrid males from crosses between female An. merus and male An. gambiae or An. coluzzii. Despite being sterile, these males could copulate with females for a normal period of time and could transfer a mating plug to induce female oviposition and monogamy. In contrast, the entire reproductive tracts in hybrid males from crosses between female An. gambiae or An. coluzzii and male An. merus were severely underdeveloped. These males had atrophic testes and reduced somatic organs of the reproductive system including male accessary glands and ejaculatory duct. In addition, hybrid males with underdeveloped reproductive tracts displayed a shorter copulation time with females and failed to induce female oviposition and monogamy due to their inability to form and transfer a plug to females during mating. The asymmetry of the phenotypes associated with hybrid male sterility suggests that different genetic factors and molecular mechanisms are responsible for reproductive isolation in reciprocal crosses among species of the An. gambiae complex.
Collapse
|
23
|
Sánchez-Ramírez S, Weiss JG, Thomas CG, Cutter AD. Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution. PLoS Genet 2021; 17:e1009409. [PMID: 33667233 PMCID: PMC7968742 DOI: 10.1371/journal.pgen.1009409] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/17/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that generate the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Both cis- and trans-acting regulatory divergence can be hastened by directional selection through adaptation, sexual selection, and inter-sexual conflict, in addition to cryptic evolution under stabilizing selection. Dysfunctional sex-biased gene expression, in particular, may provide an important source of sexually-dimorphic genetic incompatibilities. Here, we characterize and compare male and female/hermaphrodite transcriptome profiles for sibling nematode species Caenorhabditis briggsae and C. nigoni, along with allele-specific expression in their F1 hybrids, to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, misexpression of sex-biased genes pervades F1 hybrids of both sexes. This finding implicates greater fragility of male genetic networks to produce dysfunctional organismal phenotypes. Spermatogenesis genes are especially prone to high divergence in both expression and coding sequences, consistent with a "faster male" model for Haldane's rule and elevated sterility of hybrid males. Moreover, underdominant expression pervades male-biased genes compared to female-biased and sex-neutral genes and an excess of cis-trans compensatory regulatory divergence for X-linked genes underscores a "large-X effect" for hybrid male expression dysfunction. Extensive regulatory divergence in sex determination pathway genes likely contributes to demasculinization of XX hybrids. The evolution of genetic incompatibilities due to regulatory versus coding sequence divergence, however, are expected to arise in an uncorrelated fashion. This study identifies important differences between the sexes in how regulatory networks diverge to contribute to sex-biases in how genetic incompatibilities manifest during the speciation process.
Collapse
Affiliation(s)
- Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| | - Jörg G. Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| |
Collapse
|
24
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
25
|
Specific Interactions Between Autosome and X Chromosomes Cause Hybrid Male Sterility in Caenorhabditis Species. Genetics 2019; 212:801-813. [PMID: 31064822 DOI: 10.1534/genetics.119.302202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Hybrid male progeny from interspecies crosses are more prone to sterility or inviability than hybrid female progeny, and the male sterility and inviability often demonstrate parent-of-origin asymmetry. However, the underlying genetic mechanism of asymmetric sterility or inviability remains elusive. We previously established a genome-wide hybrid incompatibility (HI) landscape between Caenorhabditis briggsae and C. nigoni by phenotyping a large collection of C. nigoni strains each carrying a C. briggsae introgression. In this study, we systematically dissect the genetic mechanism of asymmetric sterility and inviability in both hybrid male and female progeny between the two species. Specifically, we performed reciprocal crosses between C . briggsae and different C. nigoni strains that each carry a GFP-labeled C. briggsae genomic fragment referred to as introgression, and scored the HI phenotypes in the F1 progeny. The aggregated introgressions cover 94.6% of the C. briggsae genome, including 100% of the X chromosome. Surprisingly, we observed that two C. briggsae X fragments that produce C. nigoni male sterility as an introgression rescued hybrid F1 sterility in males fathered by C. briggsae Subsequent backcrossing analyses indicated that a specific interaction between the X-linked interaction and one autosome introgression is required to rescue the hybrid male sterility. In addition, we identified another two C. briggsae genomic intervals on chromosomes II and IV that can rescue the inviability, but not the sterility, of hybrid F1 males fathered by C. nigoni, suggesting the involvement of differential epistatic interactions in the asymmetric hybrid male fertility and inviability. Importantly, backcrossing of the rescued sterile males with C. nigoni led to the isolation of a 1.1-Mb genomic interval that specifically interacts with an X-linked introgression, which is essential for hybrid male fertility. We further identified three C. briggsae genomic intervals on chromosome I, II, and III that produced inviability in all F1 progeny, dependent on or independent of the parent-of-origin. Taken together, we identified multiple independent interacting loci that are responsible for asymmetric hybrid male and female sterility, and inviability, which lays a foundation for their molecular characterization.
Collapse
|
26
|
Woodruff GC, Johnson E, Phillips PC. A large close relative of C. elegans is slow-developing but not long-lived. BMC Evol Biol 2019; 19:74. [PMID: 30866802 PMCID: PMC6416856 DOI: 10.1186/s12862-019-1388-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Variation in body size is thought to be a major driver of a wide variety of ecological and evolutionary patterns, including changes in development, reproduction, and longevity. Additionally, drastic changes in natural context often have profound effects on multiple fitness-related traits. Caenorhabditis inopinata is a recently-discovered fig-associated nematode that is unusually large relative to other members of the genus, including the closely related model system C. elegans. Here we test whether the dramatic increase in body size and shift in ecological context has led to correlated changes in key life history and developmental parameters within this species. RESULTS Using four developmental milestones, C. inopinata was found to have a slower rate of development than C. elegans across a range of temperatures. Despite this, C. inopinata did not reveal any differences in adult lifespan from C. elegans after accounting for differences in developmental timing and reproductive mode. C. inopinata fecundity was generally lower than that of C. elegans, but fitness improved under continuous-mating, consistent with sperm-limitation under gonochoristic (male/female) reproduction. C. inopinata also revealed greater fecundity and viability at higher temperatures. CONCLUSION Consistent with observations in other ectotherms, slower growth in C. inopinata indicates a potential trade-off between body size and developmental timing, whereas its unchanged lifespan suggests that longevity is largely uncoupled from its increase in body size. Additionally, temperature-dependent patterns of fitness in C. inopinata are consistent with its geographic origins in subtropical Okinawa. Overall, these results underscore the extent to which changes in ecological context and body size can shape life history traits.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| | - Erik Johnson
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| | - Patrick C. Phillips
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| |
Collapse
|
27
|
Abolafia J, Peña-Santiago R. Morphological and Molecular Characterization of Oscheius saproxylicus sp. n. (Rhabditida, Rhabditidae) From Decaying Wood in Spain, With New Insights into the Phylogeny of the Genus and a Revision of its Taxonomy. J Nematol 2019; 51:e2019-53. [PMID: 34179804 PMCID: PMC6909031 DOI: 10.21307/jofnem-2019-053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén. Campus “Las Lagunillas” s/n. 23071-Jaén, Spain
- * E-mail:
| | - Reyes Peña-Santiago
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén. Campus “Las Lagunillas” s/n. 23071-Jaén, Spain
| |
Collapse
|
28
|
Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis. Front Genet 2018; 9:481. [PMID: 30505316 PMCID: PMC6250786 DOI: 10.3389/fgene.2018.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic variants that are neutral within, but deleterious between, populations (Dobzhansky-Muller Incompatibilities) are thought to initiate hybrid dysfunction and then to accumulate and complete the speciation process. To identify the types of genetic differences that might initiate speciation, it is useful to study inter-population (intra-species) hybrids that exhibit reduced fitness. In Caenorhabditis briggsae, a close relative of the nematode C. elegans, such minor genetic incompatibilities have been identified. One incompatibility between the mitochondrial and nuclear genomes reduces the fitness of some hybrids. To understand the nuclear genetic architecture of this epistatic interaction, we constructed two sets of recombinant inbred lines by hybridizing two genetically diverse wild populations. In such lines, selection is able to eliminate deleterious combinations of alleles derived from the two parental populations. The genotypes of surviving hybrid lines thus reveal favorable allele combinations at loci experiencing selection. Our genotype data from the resulting lines are consistent with the interpretation that the X alleles participate in epistatic interactions with autosomes and the mitochondrial genome. We evaluate this possibility given predictions that mitochondria-X epistasis should be more prevalent than between mitochondria and autosomes. Our empirical identification of inter-genomic linkage disequilibrium supports the body of literature indicating that the accumulation of mito-nuclear genetic incompatibilities might initiate the speciation process through the generation of less-fit inter-population hybrids.
Collapse
Affiliation(s)
- Rania Haddad
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Brandon Meter
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Joseph A Ross
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| |
Collapse
|
29
|
Ting JJ, Cutter AD. Demographic consequences of reproductive interference in multi-species communities. BMC Ecol 2018; 18:46. [PMID: 30400870 PMCID: PMC6219154 DOI: 10.1186/s12898-018-0201-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproductive interference can mediate interference competition between species through sexual interactions that reduce the fitness of one species by another. Theory shows that the positive frequency-dependent effects of such costly errors in mate recognition can dictate species coexistence or exclusion even with countervailing resource competition differences between species. While usually framed in terms of pre-mating or post-zygotic costs, reproductive interference manifests between individual Caenorhabditis nematodes from negative interspecies gametic interactions: sperm cells from interspecies matings can migrate ectopically to induce female sterility and premature death. The potential for reproductive interference to exert population level effects on Caenorhabditis trait evolution and community structure, however, remains unknown. RESULTS Here we test whether a species that is superior in individual-level reproductive interference (C. nigoni) can exact negative demographic effects on competitor species that are superior in resource competition (C. briggsae and C. elegans). We observe coexistence over six generations and find evidence of demographic reproductive interference even under conditions unfavorable to its influence. C. briggsae and C. elegans show distinct patterns of reproductive interference in competitive interactions with C. nigoni. CONCLUSIONS These results affirm that individual level negative effects of reproductive interference mediated by gamete interactions can ramify to population demography, with the potential to influence patterns of species coexistence separately from the effects of direct resource competition.
Collapse
Affiliation(s)
- Janice J Ting
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada.
| |
Collapse
|
30
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
31
|
Bundus JD, Wang D, Cutter AD. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes. Heredity (Edinb) 2018; 121:169-182. [PMID: 29626207 PMCID: PMC6039526 DOI: 10.1038/s41437-018-0069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
32
|
Clarke EK, Rivera Gomez KA, Mustachi Z, Murph MC, Schvarzstein M. Manipulation of Ploidy in Caenorhabditis elegans. J Vis Exp 2018. [PMID: 29608173 PMCID: PMC5931776 DOI: 10.3791/57296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mechanisms that involve whole genome polyploidy play important roles in development and evolution; also, an abnormal generation of tetraploid cells has been associated with both the progression of cancer and the development of drug resistance. Until now, it has not been feasible to easily manipulate the ploidy of a multicellular animal without generating mostly sterile progeny. Presented here is a simple and rapid protocol for generating tetraploid Caenorhabditis elegans animals from any diploid strain. This method allows the user to create a bias in chromosome segregation during meiosis, ultimately increasing ploidy in C. elegans. This strategy relies on the transient reduction of expression of the rec-8 gene to generate diploid gametes. A rec-8 mutant produces diploid gametes that can potentially produce tetraploids upon fertilization. This tractable scheme has been used to generate tetraploid strains carrying mutations and chromosome rearrangements to gain insight into chromosomal dynamics and interactions during pairing and synapsis in meiosis. This method is efficient for generating stable tetraploid strains without genetic markers, can be applied to any diploid strain, and can be used to derive triploid C. elegans. This straightforward method is useful for investigating other fundamental biological questions relevant to genome instability, gene dosage, biological scaling, extracellular signaling, adaptation to stress, development of resistance to drugs, and mechanisms of speciation.
Collapse
Affiliation(s)
- Erlyana K Clarke
- Brooklyn College, Biology Department, City University of New York
| | - Katherine A Rivera Gomez
- Brooklyn College, Biology Department, City University of New York; The Graduate Center, Biology Department, City University of New York
| | - Zaki Mustachi
- Brooklyn College, Biology Department, City University of New York
| | - Mikaela C Murph
- Brooklyn College, Biology Department, City University of New York; Advanced Science Research Center, City University of New York
| | - Mara Schvarzstein
- Brooklyn College, Biology Department, City University of New York; The Graduate Center, Biology Department, City University of New York; Advanced Science Research Center, City University of New York;
| |
Collapse
|
33
|
Ren X, Li R, Wei X, Bi Y, Ho V, Ding Q, Xu Z, Zhang Z, Hsieh CL, Young A, Zeng J, Liu X, Zhao Z. Genomic basis of recombination suppression in the hybrid between Caenorhabditis briggsae and C. nigoni. Nucleic Acids Res 2018; 46:1295-1307. [PMID: 29325078 PMCID: PMC5814819 DOI: 10.1093/nar/gkx1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
DNA recombination is required for effective segregation and diversification of genomes and for the successful completion of meiosis. Recent studies in various species hybrids have demonstrated a genetic link between DNA recombination and speciation. Consistent with this, we observed a striking suppression of recombination in the hybrids between two nematodes, the hermaphroditic Caenorhabditis briggsae and the gonochoristic C. nigoni. To unravel the molecular basis underlying the recombination suppression in their hybrids, we generated a C. nigoni genome with chromosome-level contiguity and produced an improved C. briggsae genome with resolved gaps up to 2.8 Mb. The genome alignment reveals not only high sequence divergences but also pervasive intra- and inter-chromosomal sequence re-arrangements between the two species, which are plausible culprits for the observed suppression. Comparison of recombination boundary sequences suggests that recombination in the hybrid requires extensive sequence homology, which is rarely seen between the two genomes. The new genomes and genomic libraries form invaluable resources for studying genome evolution, hybrid incompatibilities and sex evolution for this pair of model species.
Collapse
Affiliation(s)
- Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaolin Wei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhichao Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihong Zhang
- Illumina Inc., 5200 Illumina Way, San Diego 92122, USA
| | | | - Amanda Young
- Illumina Inc., 5200 Illumina Way, San Diego 92122, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
34
|
Yin D, Schwarz EM, Thomas CG, Felde RL, Korf IF, Cutter AD, Schartner CM, Ralston EJ, Meyer BJ, Haag ES. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 2018; 359:55-61. [PMID: 29302007 PMCID: PMC5789457 DOI: 10.1126/science.aao0827] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022]
Abstract
To reveal impacts of sexual mode on genome content, we compared chromosome-scale assemblies of the outcrossing nematode Caenorhabditis nigoni to its self-fertile sibling species, C. briggsaeC. nigoni's genome resembles that of outcrossing relatives but encodes 31% more protein-coding genes than C. briggsaeC. nigoni genes lacking C. briggsae orthologs were disproportionately small and male-biased in expression. These include the male secreted short (mss) gene family, which encodes sperm surface glycoproteins conserved only in outcrossing species. Sperm from mss-null males of outcrossing C. remanei failed to compete with wild-type sperm, despite normal fertility in noncompetitive mating. Restoring mss to C. briggsae males was sufficient to enhance sperm competitiveness. Thus, sex has a pervasive influence on genome content that can be used to identify sperm competition factors.
Collapse
Affiliation(s)
- Da Yin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rebecca L Felde
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ian F Korf
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Caitlin M Schartner
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Edward J Ralston
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Barbara J Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
35
|
Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol 2017; 27:3925-3934. [PMID: 29134711 DOI: 10.1111/mec.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Subirana JA, Messeguer X. Evolution of Tandem Repeat Satellite Sequences in Two Closely Related Caenorhabditis Species. Diminution of Satellites in Hermaphrodites. Genes (Basel) 2017; 8:genes8120351. [PMID: 29182550 PMCID: PMC5748669 DOI: 10.3390/genes8120351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
The availability of the genome sequence of the unisexual (male-female) Caenorhabditis nigoni offers an opportunity to compare its non-coding features with the related hermaphroditic species Caenorhabditis briggsae; to understand the evolutionary dynamics of their tandem repeat sequences (satellites), as a result of evolution from the unisexual ancestor. We take advantage of the previously developed SATFIND program to build satellite families defined by a consensus sequence. The relative number of satellites (satellites/Mb) in C. nigoni is 24.6% larger than in C. briggsae. Some satellites in C. nigoni have developed from a proto-repeat present in the ancestor species and are conserved as an isolated sequence in C. briggsae. We also identify unique satellites which occur only once and joint satellite families with a related sequence in both species. Some of these families are only found in C. nigoni, which indicates a recent appearance; they contain conserved adjacent 5′ and 3′ regions, which may favor transposition. Our results show that the number, length and turnover of satellites are restricted in the hermaphrodite C. briggsae when compared with the unisexual C. nigoni. We hypothesize that this results from differences in unequal recombination during meiotic chromosome pairing, which limits satellite turnover in hermaphrodites.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
- Evolutionary Genomics Group, Research Program on Biomedical Informatics (GRIB)-Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Doctor Aiguader 86, 08003 Barcelona, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| |
Collapse
|
37
|
Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division. Sci Rep 2017; 7:4296. [PMID: 28655887 PMCID: PMC5487359 DOI: 10.1038/s41598-017-04533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.
Collapse
|
38
|
Moran PA, Ritchie MG, Bailey NW. A rare exception to Haldane's rule: Are X chromosomes key to hybrid incompatibilities? Heredity (Edinb) 2017; 118:554-562. [PMID: 28098850 PMCID: PMC5436020 DOI: 10.1038/hdy.2016.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
The prevalence of Haldane's rule suggests that sex chromosomes commonly have a key role in reproductive barriers and speciation. However, the majority of research on Haldane's rule has been conducted in species with conventional sex determination systems (XY and ZW) and exceptions to the rule have been understudied. Here we test the role of X-linked incompatibilities in a rare exception to Haldane's rule for female sterility in field cricket sister species (Teleogryllus oceanicus and T. commodus). Both have an XO sex determination system. Using three generations of crosses, we introgressed X chromosomes from each species onto different, mixed genomic backgrounds to test predictions about the fertility and viability of each cross type. We predicted that females with two different species X chromosomes would suffer reduced fertility and viability compared with females with two parental X chromosomes. However, we found no strong support for such X-linked incompatibilities. Our results preclude X-X incompatibilities and instead support an interchromosomal epistatic basis to hybrid female sterility. We discuss the broader implications of these findings, principally whether deviations from Haldane's rule might be more prevalent in species without dimorphic sex chromosomes.
Collapse
Affiliation(s)
- P A Moran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - M G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - N W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
39
|
Revisiting Suppression of Interspecies Hybrid Male Lethality in Caenorhabditis Nematodes. G3-GENES GENOMES GENETICS 2017; 7:1211-1214. [PMID: 28209763 PMCID: PMC5386869 DOI: 10.1534/g3.117.039479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within the nematode genus Caenorhabditis, Caenorhabditis briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male-XX female outcrossing system, while C. briggsae recently evolved self-fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C. briggsae hermaphrodites allowed them to produce viable and fertile hybrid XO male progeny when mated to C. nigoni Because such males would be useful for a variety of genetic experiments, we sought to verify this result. Preliminary crosses with wild-type C. briggsae hermaphrodites occasionally produced fertile males, but they could not be confirmed to be interspecies hybrids. Using an RNA interference (RNAi) protocol that eliminates any possibility of self-progeny in Cbr-him-8 hermaphrodites, we found sterile males bearing the C. nigoni X chromosome, but no fertile males bearing the C. briggsae X, as in wild-type crosses. Our results suggest that the apparent rescue of XO hybrid viability and fertility is due to incomplete purging of self-sperm prior to mating.
Collapse
|
40
|
Cytoplasmic-Nuclear Incompatibility Between Wild Isolates of Caenorhabditis nouraguensis. G3-GENES GENOMES GENETICS 2017; 7:823-834. [PMID: 28064190 PMCID: PMC5345712 DOI: 10.1534/g3.116.037101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (for example, hybrid sterility or lethality) is a common and strong reproductive barrier in nature. Here we report a lethal incompatibility between two wild isolates of the nematode Caenorhabditis nouraguensis Hybrid inviability results from the incompatibility between a maternally inherited cytoplasmic factor from each strain and a recessive nuclear locus from the other. We have excluded the possibility that maternally inherited endosymbiotic bacteria cause the incompatibility by treating both strains with tetracycline and show that hybrid death is unaffected. Furthermore, cytoplasmic-nuclear incompatibility commonly occurs between other wild isolates, indicating that this is a significant reproductive barrier within C. nouraguensis We hypothesize that the maternally inherited cytoplasmic factor is the mitochondrial genome and that mitochondrial dysfunction underlies hybrid death. This system has the potential to shed light on the dynamics of divergent mitochondrial-nuclear coevolution and its role in promoting speciation.
Collapse
|
41
|
Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res 2016; 45:D650-D657. [PMID: 27701074 PMCID: PMC5210618 DOI: 10.1093/nar/gkw893] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Studies in model organisms have yielded considerable insights into the etiology of disease and our understanding of evolutionary processes. Caenorhabditis elegans is among the most powerful model organisms used to understand biology. However, C. elegans is not used as extensively as other model organisms to investigate how natural variation shapes traits, especially through the use of genome-wide association (GWA) analyses. Here, we introduce a new platform, the C. elegans Natural Diversity Resource (CeNDR) to enable statistical genetics and genomics studies of C. elegans and to connect the results to human disease. CeNDR provides the research community with wild strains, genome-wide sequence and variant data for every strain, and a GWA mapping portal for studying natural variation in C. elegans. Additionally, researchers outside of the C. elegans community can benefit from public mappings and integrated tools for comparative analyses. CeNDR uses several databases that are continually updated through the addition of new strains, sequencing data, and association mapping results. The CeNDR data are accessible through a freely available web portal located at http://www.elegansvariation.org or through an application programming interface.
Collapse
Affiliation(s)
- Daniel E Cook
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Stefan Zdraljevic
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joshua P Roberts
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
42
|
To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis. Genetics 2016; 204:999-1013. [PMID: 27605052 DOI: 10.1534/genetics.116.194308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination establishes connections between homologous chromosomes to promote segregation. Hemizygous regions of sex chromosomes have no homologous chromosome to recombine with, yet must be transmitted through meiosis. An extreme case of hemizygosity exists in the genus Caenorhabditis, where males have a single X chromosome that completely lacks a homologous partner. To determine whether similar strategies have evolved to accommodate hemizygosity of the X during male meiosis in Caenorhabditis with distinct modes of sexual reproduction, we examined induction and processing of meiotic double strand breaks (DSBs) in androdioecious (hermaphrodite/male) Caenorhabditis elegans and C. briggsae, and gonochoristic (female/male) C. remanei and C. brenneri Analysis of the recombinase RAD-51 suggests more meiotic DSBs are induced in gonochoristic vs. androdioecious species. However, in late prophase in all species, chromosome pairs are restructured into bivalents around a single axis, suggesting that the holocentric nature of Caenorhabditis chromosomes dictates a single crossover per bivalent regardless of the number of DSBs induced. Interestingly, RAD-51 foci were readily observed on the X chromosome of androdioecious male germ cells, while very few were detected in gonochoristic male germ cells. As in C. elegans, the X chromosome in C. briggsae male germ cells undergoes transient pseudosynapsis and flexibility in DSB repair pathway choice. In contrast, in C. remanei and C. brenneri male germ cells, the X chromosome does not undergo pseudosynapsis and appears refractory to SPO-11-induced breaks. Together our results suggest that distinct strategies have evolved to accommodate sex chromosome hemizygosity during meiosis in closely related Caenorhabditis species.
Collapse
|
43
|
Ellis RE. "The persistence of memory"-Hermaphroditism in nematodes. Mol Reprod Dev 2016; 84:144-157. [PMID: 27291983 DOI: 10.1002/mrd.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Self-fertility has evolved many times in nematodes. This transition often produces an androdioecious species, with XX hermaphrodites and XO males. Although these hermaphrodites resemble females in most respects, early germ cells differentiate as sperm, and late ones as oocytes. The sperm then receive an activation signal, populate the spermathecae, and are stored for later use in self-fertilization. These traits are controlled by complex modifications to the sex-determination and sperm activation pathways, which have arisen independently during the evolution of each hermaphroditic species. This transformation in reproductive strategy then promotes other major changes in the development, evolution, and population structure of these animals. Mol. Reprod. Dev. 84: 144-157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey
| |
Collapse
|
44
|
Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in Caenorhabditis Species. Genetics 2016; 203:1641-58. [PMID: 27280692 DOI: 10.1534/genetics.116.191130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
During meiosis in the heterogametic sex in some species, sex chromosomes undergo meiotic sex chromosome inactivation (MSCI), which results in acquisition of repressive chromatin and transcriptional silencing. In Caenorhabditis elegans, MSCI is mediated by MET-2 methyltransferase deposition of histone H3 lysine 9 dimethylation. Here we examined the meiotic chromatin landscape in germ lines of four Caenorhabditis species; C. remanei and C. brenneri represent ancestral gonochorism, while C. briggsae and C. elegans are two lineages that independently evolved hermaphroditism. While MSCI is conserved across all four species, repressive chromatin modifications are distinct and do not correlate with reproductive mode. In contrast to C. elegans and C. remanei germ cells where X chromosomes are enriched for histone H3 lysine 9 dimethylation, X chromosomes in C. briggsae and C. brenneri germ cells are enriched for histone H3 lysine 9 trimethylation. Inactivation of C. briggsae MET-2 resulted in germ-line X chromosome transcription and checkpoint activation. Further, both histone H3 lysine 9 di- and trimethylation were reduced in Cbr-met-2 mutant germ lines, suggesting that in contrast to C. elegans, H3 lysine 9 di- and trimethylation are interdependent. C. briggsae H3 lysine 9 trimethylation was redistributed in the presence of asynapsed chromosomes in a sex-specific manner in the related process of meiotic silencing of unsynapsed chromatin. However, these repressive marks did not influence X chromosome replication timing. Examination of additional Caenorhabditis species revealed diverse H3 lysine 9 methylation patterns on the X, suggesting that the sex chromosome epigenome evolves rapidly.
Collapse
|
45
|
Sadhu MJ, Bloom JS, Day L, Kruglyak L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 2016; 352:1113-6. [PMID: 27230379 PMCID: PMC4933295 DOI: 10.1126/science.aaf5124] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
Abstract
Linkage and association studies have mapped thousands of genomic regions that contribute to phenotypic variation, but narrowing these regions to the underlying causal genes and variants has proven much more challenging. Resolution of genetic mapping is limited by the recombination rate. We developed a method that uses CRISPR (clustered, regularly interspaced, short palindromic repeats) to build mapping panels with targeted recombination events. We tested the method by generating a panel with recombination events spaced along a yeast chromosome arm, mapping trait variation, and then targeting a high density of recombination events to the region of interest. Using this approach, we fine-mapped manganese sensitivity to a single polymorphism in the transporter Pmr1. Targeting recombination events to regions of interest allows us to rapidly and systematically identify causal variants underlying trait differences.
Collapse
Affiliation(s)
- Meru J Sadhu
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Joshua S Bloom
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Laura Day
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Li R, Ren X, Bi Y, Ho VWS, Hsieh CL, Young A, Zhang Z, Lin T, Zhao Y, Miao L, Sarkies P, Zhao Z. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Res 2016; 26:1219-32. [PMID: 27197225 PMCID: PMC5052035 DOI: 10.1101/gr.204479.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Amanda Young
- Illumina Incorporated, San Diego, California 92122, USA
| | - Zhihong Zhang
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tingting Lin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanmei Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peter Sarkies
- MRC Clinical Sciences Centre, London W12 0NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
47
|
Ragavapuram V, Hill EE, Baird SE. Suppression of F1 Male-Specific Lethality in Caenorhabditis Hybrids by cbr-him-8. G3 (BETHESDA, MD.) 2015; 6:623-9. [PMID: 26721896 PMCID: PMC4777125 DOI: 10.1534/g3.115.025320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/29/2015] [Indexed: 01/26/2023]
Abstract
Haldane's Rule and Darwin's Corollary to Haldane's Rule are the observations that heterogametic F1 hybrids are frequently less fit than their homogametic siblings, and that asymmetric results are often obtained from reciprocal hybrid crosses. In Caenorhabditis, Haldane's Rule and Darwin's Corollary have been observed in several hybrid crosses, including crosses of Caenorhabditis briggsae and C. nigoni. Fertile F1 females are obtained from reciprocal crosses. However, F1 males obtained from C. nigoni mothers are sterile and F1 males obtained from C. briggsae die during embryogenesis. We have identified cbr-him-8 as a recessive maternal-effect suppressor of F1 hybrid male-specific lethality in this combination of species. This result implicates epigenetic meiotic silencing in the suppression of F1 male-specific lethality. It is also shown that F1 males bearing a C. briggsae X chromosome are fertile. When crossed to C. briggsae hermaphrodites or F1 females derived from C. briggsae hermaphrodites, viable F2 and backcross (B2) progeny were obtained. Sibling males that possessed a C. nigoni X chromosome were sterile. Therefore, the sterility of F1 males bearing a C. nigoni X chromosome must result from dysgenic interactions between the X chromosome of C. nigoni and the autosomes of C. briggsae. The fertility of F1 males bearing a C. briggsae X chromosome provides an opportunity to identify C. nigoni loci that prevent spermatogenesis, and hence hermaphroditic reproduction, in diplo-X hybrids.
Collapse
Affiliation(s)
| | - Emily Elaine Hill
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Scott Everet Baird
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
48
|
Roelens B, Schvarzstein M, Villeneuve AM. Manipulation of Karyotype in Caenorhabditis elegans Reveals Multiple Inputs Driving Pairwise Chromosome Synapsis During Meiosis. Genetics 2015; 201:1363-79. [PMID: 26500263 PMCID: PMC4676528 DOI: 10.1534/genetics.115.182279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/21/2015] [Indexed: 01/12/2023] Open
Abstract
Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination.
Collapse
Affiliation(s)
- Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Mara Schvarzstein
- Department of Biology, Brooklyn College, City University of New York (CUNY), Brooklyn, New York 11210 Molecular, Cellular, and Developmental Biology Program, The Graduate Center, CUNY, New York, New York 10016
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
49
|
Chang CC, Rodriguez J, Ross J. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids. G3 (BETHESDA, MD.) 2015; 6:209-19. [PMID: 26585825 PMCID: PMC4704720 DOI: 10.1534/g3.115.022970] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
In order to identify the earliest genetic changes that precipitate species formation, it is useful to study genetic incompatibilities that cause only mild dysfunction when incompatible alleles are combined in an interpopulation hybrid. Such hybridization within the nematode species Caenorhabditis briggsae has been suggested to result in selection against certain combinations of nuclear and mitochondrial alleles, raising the possibility that mitochondrial-nuclear (mitonuclear) epistasis reduces hybrid fitness. To test this hypothesis, cytoplasmic-nuclear hybrids (cybrids) were created to purposefully disrupt any epistatic interactions. Experimental analysis of the cybrids suggests that mitonuclear discord can result in decreased fecundity, increased lipid content, and increased mitochondrial reactive oxygen species levels. Many of these effects were asymmetric with respect to cross direction, as expected if cytoplasmic-nuclear Dobzhansky-Muller incompatibilities exist. One such effect is consistent with the interpretation that disrupting coevolved mitochondrial and nuclear loci impacts mitochondrial function and organismal fitness. These findings enhance efforts to study the genesis, identity, and maintenance of genetic incompatibilities that precipitate the speciation process.
Collapse
Affiliation(s)
- Chih-Chiun Chang
- Department of Biology, California State University, Fresno, California, 93740
| | - Joel Rodriguez
- Department of Biology, California State University, Fresno, California, 93740
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California, 93740
| |
Collapse
|
50
|
Bundus JD, Alaei R, Cutter AD. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule. Evolution 2015; 69:2005-17. [PMID: 26102479 DOI: 10.1111/evo.12708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Ravin Alaei
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2.
| |
Collapse
|