1
|
Liu JJ, Edge MD. Error rates in QST-FST comparisons depend on genetic architecture and estimation procedures. Genetics 2025; 229:iyaf034. [PMID: 40036848 PMCID: PMC12005246 DOI: 10.1093/genetics/iyaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Genetic and phenotypic variation among populations is one of the fundamental subjects of evolutionary genetics. One question that arises often in data on natural populations is whether differentiation among populations on a particular trait might be caused in part by natural selection. For the past several decades, researchers have used QST-FST approaches to compare the amount of trait differentiation among populations on one or more traits (measured by the statistic QST) with differentiation on genome-wide genetic variants (measured by FST). Theory says that under neutrality, FST and QST should be approximately equal in expectation, so QST values much larger than FST are consistent with local adaptation driving subpopulations' trait values apart, and QST values much smaller than FST are consistent with stabilizing selection on similar optima. At the same time, investigators have differed in their definitions of genome-wide FST (such as "ratio of averages" vs. "average of ratios" versions of FST) and in their definitions of the variance components in QST. Here, we show that these details matter. Different versions of FST and QST have different interpretations in terms of coalescence time, and comparing incompatible statistics can lead to elevated type I error rates, with some choices leading to type I error rates near one when the nominal rate is 5%. We conduct simulations under varying genetic architectures and forms of population structure and show how they affect the distribution of QST. When many loci influence the trait, our simulations support procedures grounded in a coalescent-based framework for neutral phenotypic differentiation.
Collapse
Affiliation(s)
- Junjian J Liu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael D Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Latrille T, Bastian M, Gaboriau T, Salamin N. Detecting diversifying selection for a trait from within and between-species genotypes and phenotypes. J Evol Biol 2024; 37:1538-1550. [PMID: 38991560 DOI: 10.1093/jeb/voae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
To quantify selection acting on a trait, methods have been developed using either within or between-species variation. However, methods using within-species variation do not integrate the changes at the macro-evolutionary scale. Conversely, current methods using between-species variation usually discard within-species variation, thus not accounting for processes at the micro-evolutionary scale. The main goal of this study is to define a neutrality index for a quantitative trait, by combining within- and between-species variation. This neutrality index integrates nucleotide polymorphism and divergence for normalizing trait variation. As such, it does not require estimation of population size nor of time of speciation for normalization. Our index can be used to seek deviation from the null model of neutral evolution, and test for diversifying selection. Applied to brain mass and body mass at the mammalian scale, we show that brain mass is under diversifying selection. Finally, we show that our test is not sensitive to the assumption that population sizes, mutation rates and generation time are constant across the phylogeny, and automatically adjust for it.
Collapse
Affiliation(s)
- T Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - M Bastian
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | - T Gaboriau
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - N Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Liu JJ, Edge MD. Error rates in Q ST - F ST comparisons depend on genetic architecture and estimation procedures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620737. [PMID: 39553965 PMCID: PMC11565820 DOI: 10.1101/2024.10.28.620737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Genetic and phenotypic variation among populations is one of the fundamental subjects of evolutionary genetics. One question that arises often in data on natural populations is whether differentiation among populations on a particular trait might be caused in part by natural selection. For the past several decades, researchers have usedQ S T - F S T approaches to compare the amount of trait differentiation among populations on one or more traits (measured by the statisticQ S T ) with differentiation on genome-wide genetic variants (measured byF S T ). Theory says that under neutrality,F S T andQ S T should be approximately equal in expectation, soQ S T values much larger thanF S T are consistent with local adaptation driving subpopulations' trait values apart, andQ S T values much smaller thanF S T are consistent with stabilizing selection on similar optima. At the same time, investigators have differed in their definitions of genome-wideF S T (such as "ratio of averages" vs. "average of ratios" versions ofF S T ) and in their definitions of the variance components inQ S T . Here, we show that these details matter. Different versions ofF S T andQ S T have different interpretations in terms of coalescence time, and comparing incompatible statistics can lead to elevated type I error rates, with some choices leading to type I error rates near one when the nominal rate is 5%. We conduct simulations under varying genetic architectures and forms of population structure and show how they affect the distribution ofQ S T . When many loci influence the trait, our simulations support procedures grounded in a coalescent-based framework for neutral phenotytpic differentiation.
Collapse
Affiliation(s)
- Junjian J. Liu
- Department of Quantitative and Computational Biology, University of Southern California
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California
| |
Collapse
|
4
|
Bastias CC, Estarague A, Vile D, Gaignon E, Lee CR, Exposito-Alonso M, Violle C, Vasseur F. Ecological trade-offs drive phenotypic and genetic differentiation of Arabidopsis thaliana in Europe. Nat Commun 2024; 15:5185. [PMID: 38890286 PMCID: PMC11189578 DOI: 10.1038/s41467-024-49267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Plant diversity is shaped by trade-offs between traits related to competitive ability, propagule dispersal, and stress resistance. However, we still lack a clear understanding of how these trade-offs influence species distribution and population dynamics. In Arabidopsis thaliana, recent genetic analyses revealed a group of cosmopolitan genotypes that successfully recolonized Europe from its center after the last glaciation, excluding older (relict) lineages from the distribution except for their north and south margins. Here, we tested the hypothesis that cosmopolitans expanded due to higher colonization ability, while relicts persisted at the margins due to higher tolerance to competition and/or stress. We compared the phenotypic and genetic differentiation between 71 European genotypes originating from the center, and the south and north margins. We showed that a trade-off between plant fecundity and seed mass shapes the differentiation of A. thaliana in Europe, suggesting that the success of the cosmopolitan groups could be explained by their high dispersal ability. However, at both north and south margins, we found evidence of selection for alleles conferring low dispersal but highly competitive and stress-resistance abilities. This study sheds light on the role of ecological trade-offs as evolutionary drivers of the distribution and dynamics of plant populations.
Collapse
Affiliation(s)
- Cristina C Bastias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain.
| | - Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Elza Gaignon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology & Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
5
|
Schmid M, Rueffler C, Lehmann L, Mullon C. Resource Variation Within and Between Patches: Where Exploitation Competition, Local Adaptation, and Kin Selection Meet. Am Nat 2024; 203:E19-E34. [PMID: 38207145 DOI: 10.1086/727483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractIn patch- or habitat-structured populations, different processes can favor adaptive polymorphism at different scales. While spatial heterogeneity can generate spatially disruptive selection favoring variation between patches, local competition can lead to locally disruptive selection promoting variation within patches. So far, almost all theory has studied these two processes in isolation. Here, we use mathematical modeling to investigate how resource variation within and between habitats influences the evolution of variation in a consumer population where individuals compete in finite patches connected by dispersal. We find that locally and spatially disruptive selection typically act in concert, favoring polymorphism under a wider range of conditions than when in isolation. But when patches are small and dispersal between them is low, kin competition inhibits the emergence of polymorphism, especially when the latter is driven by local competition for resources. We further use our model to clarify what comparisons between trait and neutral genetic differentiation (Q ST / F ST comparisons) can tell about the nature of selection. Overall, our results help us understand the interaction between two major drivers of polymorphism: locally and spatially disruptive selection, and how this interaction is modulated by the unavoidable effects of kin selection under limited dispersal.
Collapse
|
6
|
Goudet J, Weir BS. An allele-sharing, moment-based estimator of global, population-specific and population-pair FST under a general model of population structure. PLoS Genet 2023; 19:e1010871. [PMID: 38011288 PMCID: PMC10703327 DOI: 10.1371/journal.pgen.1010871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Being able to properly quantify genetic differentiation is key to understanding the evolutionary potential of a species. One central parameter in this context is FST, the mean coancestry within populations relative to the mean coancestry between populations. Researchers have been estimating FST globally or between pairs of populations for a long time. More recently, it has been proposed to estimate population-specific FST values, and population-pair mean relative coancestry. Here, we review the several definitions and estimation methods of FST, and stress that they provide values relative to a reference population. We show the good statistical properties of an allele-sharing, method of moments based estimator of FST (global, population-specific and population-pair) under a very general model of population structure. We point to the limitation of existing likelihood and Bayesian estimators when the populations are not independent. Last, we show that recent attempts to estimate absolute, rather than relative, mean coancestry fail to do so.
Collapse
Affiliation(s)
- Jerome Goudet
- Dept Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of BioInformatics, University of Lausanne, Lausanne, Switzerland
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Chung MY, Merilä J, Kim Y, Mao K, López‐Pujol J, Chung MG. A review on Q ST- F ST comparisons of seed plants: Insights for conservation. Ecol Evol 2023; 13:e9926. [PMID: 37006890 PMCID: PMC10049885 DOI: 10.1002/ece3.9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants, regarding both within-population and among-population components. We then introduce the estimates of among-population genetic differentiation in quantitative traits (Q ST) and neutral markers (F ST) to plant biology and summarize conservation applications derived from Q ST-F ST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of NGV and AGV, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, Q ST is about 3.6, 1.5, and 1.1 times greater than F ST in woody plants, annuals, and herbaceous perennials, respectively. Hence, conservation and management policies or suggestions based solely on inference on F ST could be misleading, particularly in woody species. To maximize the preservation of the maximum levels of both AGV and NGV, we suggest using maximum Q ST rather than average Q ST. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, particularly woody species.
Collapse
Affiliation(s)
- Mi Yoon Chung
- Department of Biological SciencesChungnam National UniversityDaejeon34134South Korea
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFI‐00014Finland
- Area of Ecology & BiodiversitySchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Yuseob Kim
- Division of EcoScienceEwha Womans UniversitySeoul03760South Korea
- Department of Life ScienceEwha Womans UniversitySeoul03760South Korea
| | - Kangshan Mao
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of Education, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610065China
| | - Jordi López‐Pujol
- Botanic Institute of Barcelona (IBB), CSIC‐Ajuntament de BarcelonaBarcelona08038CataloniaSpain
- Universidad Espíritu Santo (UEES)Samborondón091650Ecuador
| | - Myong Gi Chung
- Division of Life Science and RINSGyeongsang National UniversityJinju52828South Korea
| |
Collapse
|
8
|
Ramírez-Valiente JA, Solé-Medina A, Robledo-Arnuncio JJ, Ortego J. Genomic data and common garden experiments reveal climate-driven selection on ecophysiological traits in two Mediterranean oaks. Mol Ecol 2023; 32:983-999. [PMID: 36479963 DOI: 10.1111/mec.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches. We genotyped 182 individuals from 24 natural populations of the two species using restriction-site-associated DNA sequencing and conducted a thorough functional characterization in 1602 seedlings from 21 populations cultivated in common garden experiments under contrasting watering treatments. Our genomic data revealed that both Q. faginea and Q. lusitanica have very weak population genetic structure, probably as a result of high rates of pollen-mediated gene flow among populations and large effective population sizes. In contrast, common garden experiments showed evidence of climate-driven divergent selection among populations on traits related to leaf morphology, physiology and growth in both species. Overall, our study suggests that climate is an important selective factor for Mediterranean oaks and that ecophysiological traits have evolved in drought-prone environments even in a context of very high rates of gene flow among populations.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Aida Solé-Medina
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| |
Collapse
|
9
|
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Genetic diversity is a prerequisite for evolutionary change in all kinds of organisms. It is generally acknowledged that populations lacking genetic variation are unable to evolve in response to new environmental conditions (e.g., climate change) and thus may face an increased risk of extinction. Although the importance of incorporating genetic diversity into the design of conservation measures is now well understood, less attention has been paid to the distinction between neutral (NGV) and adaptive (AGV) genetic variation. In this review, we first focus on the utility of NGV by examining the ways to quantify it, reviewing applications of NGV to infer ecological and evolutionary processes, and by exploring its utility in designing conservation measures for plant populations and species. Against this background, we then summarize the ways to identify and estimate AGV and discuss its potential use in plant conservation. After comparing NGV and AGV and considering their pros and cons in a conservation context, we conclude that there is an urgent need for a better understanding of AGV and its role in climate change adaptation. To date, however, there are only a few AGV studies on non-model plant species aimed at deciphering the genetic and genomic basis of complex trait variation. Therefore, conservation researchers and practitioners should keep utilizing NGV to develop relevant strategies for rare and endangered plant species until more estimates of AGV are available.
Collapse
|
10
|
Iglesias PP, Machado FA, Llanes S, Hasson E, Soto EM. Opportunities and Constraints Imposed by the G matrix of Drosophila buzzatii Wings. Evol Biol 2023. [DOI: 10.1007/s11692-022-09593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Cooper HF, Best RJ, Andrews LV, Corbin JPM, Garthwaite I, Grady KC, Gehring CA, Hultine KR, Whitham TG, Allan GJ. Evidence of climate-driven selection on tree traits and trait plasticity across the climatic range of a riparian foundation species. Mol Ecol 2022; 31:5024-5040. [PMID: 35947510 DOI: 10.1111/mec.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: 1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. 2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. 3) Traits and/or their plasticity were often correlated with population source climate (R2 up to 0.77 and 0.66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.
Collapse
Affiliation(s)
- Hillary F Cooper
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Lela V Andrews
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
| | - Jaclyn P M Corbin
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Iris Garthwaite
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine A Gehring
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - Thomas G Whitham
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Gerard J Allan
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
12
|
Blanc J, Kremling KAG, Buckler E, Josephs EB. Local adaptation contributes to gene expression divergence in maize. G3-GENES GENOMES GENETICS 2021; 11:6114460. [PMID: 33604670 PMCID: PMC8022924 DOI: 10.1093/g3journal/jkab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 11/14/2022]
Abstract
Gene expression links genotypes to phenotypes, so identifying genes whose expression is shaped by selection will be important for understanding the traits and processes underlying local adaptation. However, detecting local adaptation for gene expression will require distinguishing between divergence due to selection and divergence due to genetic drift. Here, we adapt a QST−FST framework to detect local adaptation for transcriptome-wide gene expression levels in a population of diverse maize genotypes. We compare the number and types of selected genes across a wide range of maize populations and tissues, as well as selection on cold-response genes, drought-response genes, and coexpression clusters. We identify a number of genes whose expression levels are consistent with local adaptation and show that genes involved in stress response show enrichment for selection. Due to its history of intense selective breeding and domestication, maize evolution has long been of interest to researchers, and our study provides insight into the genes and processes important for in local adaptation of maize.
Collapse
Affiliation(s)
- Jennifer Blanc
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Karl A G Kremling
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Inari Agriculture, Cambridge, MA 02139, USA
| | - Edward Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Barthelemy E, Fortunel C, Jaunatre M, Munoz F. Imprints of Past Habitat Area Reduction on Extant Taxonomic, Functional, and Phylogenetic Composition. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Past environmental changes have shaped the evolutionary and ecological diversity of extant organisms. Specifically, climatic fluctuations have made environmental conditions alternatively common or rare over time. Accordingly, most taxa have undergone restriction of their distribution to local refugia during habitat contraction, from which they could expand when suitable habitat became more common. Assessing how past restrictions in refugia have shaped species distributions and genetic diversity has motivated much research in evolutionary biology and biogeography. But there is still lack of clear synthesis on whether and how the taxonomic, functional and phylogenetic composition of extant multispecies assemblages retains the imprint of past restriction in refugia. We devised an original eco-evolutionary model to investigate the temporal dynamics of a regional species pool inhabiting a given habitat today, and which have experienced habitat reduction in the past. The model includes three components: (i) a demographic component driving stochastic changes in population sizes and extinctions due to habitat availability, (ii) a mutation and speciation component representing how divergent genotypes emerge and define new species over time, and (iii) a trait evolution component representing how trait values have changed across descendants over time. We used this model to simulate dynamics of multispecies assemblages that occupied a restricted refugia in the past and could expand their distribution subsequently. We characterized the past restriction in refugia in terms of two parameters representing the ending time of past refugia, and the extent of habitat restriction in the refugia. We characterized extant patterns of taxonomic, functional and phylogenetic diversity depending on these parameters. We found that extant relative abundances reflect the lasting influence of more recent refugia on demographic dynamics, while phylogenetic composition reflects the influence of more ancient habitat change. Extant functional diversity depends on the interplay between diversification dynamics and trait evolution, offering new options to jointly infer current trait adaptation and past trait evolution dynamics.
Collapse
|
14
|
Correlational selection in the age of genomics. Nat Ecol Evol 2021; 5:562-573. [PMID: 33859374 DOI: 10.1038/s41559-021-01413-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/11/2021] [Indexed: 02/01/2023]
Abstract
Ecologists and evolutionary biologists are well aware that natural and sexual selection do not operate on traits in isolation, but instead act on combinations of traits. This long-recognized and pervasive phenomenon is known as multivariate selection, or-in the particular case where it favours correlations between interacting traits-correlational selection. Despite broad acknowledgement of correlational selection, the relevant theory has often been overlooked in genomic research. Here, we discuss theory and empirical findings from ecological, quantitative genetic and genomic research, linking key insights from different fields. Correlational selection can operate on both discrete trait combinations and quantitative characters, with profound implications for genomic architecture, linkage, pleiotropy, evolvability, modularity, phenotypic integration and phenotypic plasticity. We synthesize current knowledge and discuss promising research approaches that will enable us to understand how correlational selection shapes genomic architecture, thereby linking quantitative genetic approaches with emerging genomic methods. We suggest that research on correlational selection has great potential to integrate multiple fields in evolutionary biology, including developmental and functional biology, ecology, quantitative genetics, phenotypic polymorphisms, hybrid zones and speciation processes.
Collapse
|
15
|
Wendt FR, Pathak GA, Overstreet C, Tylee DS, Gelernter J, Atkinson EG, Polimanti R. Characterizing the effect of background selection on the polygenicity of brain-related traits. Genomics 2021; 113:111-119. [PMID: 33278486 PMCID: PMC7855394 DOI: 10.1016/j.ygeno.2020.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have demonstrated that psychopathology phenotypes are affected by many risk alleles with small effect (polygenicity). It is unclear how ubiquitously evolutionary pressures influence the genetic architecture of these traits. METHODS We partitioned SNP heritability to assess the contribution of background (BGS) and positive selection, Neanderthal local ancestry, functional significance, and genotype networks in 75 brain-related traits (8411 ≤ N ≤ 1,131,181, mean N = 205,289). We applied binary annotations by dichotomizing each measure based on top 2%, 1%, and 0.5% of all scores genome-wide. Effect size distribution features were calculated using GENESIS. We tested the relationship between effect size distribution descriptive statistics and natural selection. In a subset of traits, we explore the inclusion of diagnostic heterogeneity (e.g., number of diagnostic combinations and total symptoms) in the tested relationship. RESULTS SNP-heritability was enriched (false discovery rate q < 0.05) for loci with elevated BGS (7 phenotypes) and in genic (34 phenotypes) and loss-of-function (LoF)-intolerant regions (67 phenotypes). These effects were strongest in GWAS of schizophrenia (1.90-fold BGS, 1.16-fold genic, and 1.92-fold LoF), educational attainment (1.86-fold BGS, 1.12-fold genic, and 1.79-fold LoF), and cognitive performance (2.29-fold BGS, 1.12-fold genic, and 1.79-fold LoF). BGS (top 2%) significantly predicted effect size variance for trait-associated loci (σ2 parameter) in 75 brain-related traits (β = 4.39 × 10-5, p = 1.43 × 10-5, model r2 = 0.548). Considering the number of DSM-5 diagnostic combinations per psychiatric disorder improved model fit (σ2 ~ BTop2% × Genic × diagnostic combinations; model r2 = 0.661). CONCLUSIONS Brain-related phenotypes with larger variance in risk locus effect sizes are associated with loci under BGS. We show exploratory results suggesting that diagnostic complexity may also contribute to the increased polygenicity of psychiatric disorders.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA
| | - Cassie Overstreet
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA CT Healthcare System and Department of Psychiatry, Yale University School of Medicine, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA; Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elizabeth G Atkinson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
16
|
Two centuries of monarch butterfly collections reveal contrasting effects of range expansion and migration loss on wing traits. Proc Natl Acad Sci U S A 2020; 117:28887-28893. [PMID: 33139548 DOI: 10.1073/pnas.2001283117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Migratory animals exhibit traits that allow them to exploit seasonally variable habitats. In environments where migration is no longer beneficial, such as oceanic islands, migration-association traits may be selected against or be under relaxed selection. Monarch butterflies are best known for their continent-scale migration in North America but have repeatedly become established as nonmigrants in the tropical Americas and on Atlantic and Pacific Islands. These replicated nonmigratory populations provide natural laboratories for understanding the rate of evolution of migration-associated traits. We measured >6,000 museum specimens of monarch butterflies collected from 1856 to the present as well as contemporary wild-caught monarchs from around the world. We determined 1) how wing morphology varies across the monarch's global range, 2) whether initial long-distance founders were particularly suited for migration, and 3) whether recently established nonmigrants show evidence for contemporary phenotypic evolution. We further reared >1,000 monarchs from six populations around the world under controlled conditions and measured migration-associated traits. Historical specimens show that 1) initial founders are well suited for long-distance movement and 2) loss of seasonal migration is associated with reductions in forewing size and elongation. Monarch butterflies raised in a common garden from four derived nonmigratory populations exhibit genetically based reductions in forewing size, consistent with a previous study. Our findings provide a compelling example of how migration-associated traits may be favored during the early stages of range expansion, and also the rate of reductions in those same traits upon loss of migration.
Collapse
|
17
|
Csilléry K, Buchmann N, Fady B. Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir ( Abies alba Mill.) populations. Evol Appl 2020; 13:2357-2376. [PMID: 33042220 PMCID: PMC7539328 DOI: 10.1111/eva.13029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Drought is one of the most important selection pressures for forest trees in the context of climate change. Yet, the different evolutionary mechanisms, and their environmental drivers, by which certain populations become more drought tolerant than others is still little understood. We studied adaptation to drought in 16 silver fir (Abies alba Mill.) populations from the French Mediterranean Alps by combining observations on seedlings from a greenhouse experiment (N = 8,199) and on adult tress in situ (N = 315). In the greenhouse, we followed half-sib families for four growing seasons for growth and phenology traits, and tested their water stress response in a "drought until death" experiment. Adult trees in the field were assessed for δ 13C, a proxy for water use efficiency, and genotyped at 357 SNP loci. SNP data was used to generate a null expectation for seedling trait divergence between populations in order to detect the signature of selection, and 31 environmental variables were used to identify the selective environment. We found that seedlings originating from populations with low soil water capacity grew more slowly, attained a smaller stature, and resisted water stress for a longer period of time in the greenhouse. Additionally, adult trees of these populations exhibited a higher water use efficiency as evidenced by their δ 13C. These results suggest a correlated evolution of the growth-drought tolerance trait complex. Population divergence in bud break phenology was adaptive only in the second growing season, and evolved independently from the growth-drought tolerance trait complex. Adaptive divergence in bud break phenology was principally driven by the inter- and intra-annual variation in temperature at the geographic origin of the population. Our results illustrate the different evolutionary strategies used by populations to cope with drought stress at the range limits across a highly heterogeneous landscape, and can be used to inform assisted migration programs.
Collapse
Affiliation(s)
- Katalin Csilléry
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
- Biodiversity & Conservation BiologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Nina Buchmann
- Institute of Agricultural SciencesETH ZürichZürichSwitzerland
| | - Bruno Fady
- INRAEcology of Mediterranean Forests (URFM)UR629AvignonFrance
| |
Collapse
|
18
|
Abstract
Distinguishing which traits have evolved under natural selection, as opposed to neutral evolution, is a major goal of evolutionary biology. Several tests have been proposed to accomplish this, but these either rely on false assumptions or suffer from low power. Here, I introduce an approach to detecting selection that makes minimal assumptions and only requires phenotypic data from ∼10 individuals. The test compares the phenotypic difference between two populations to what would be expected by chance under neutral evolution, which can be estimated from the phenotypic distribution of an F2 cross between those populations. Simulations show that the test is robust to variation in the number of loci affecting the trait, the distribution of locus effect sizes, heritability, dominance, and epistasis. Comparing its performance to the QTL sign test-an existing test of selection that requires both genotype and phenotype data-the new test achieves comparable power with 50- to 100-fold fewer individuals (and no genotype data). Applying the test to empirical data spanning over a century shows strong directional selection in many crops, as well as on naturally selected traits such as head shape in Hawaiian Drosophila and skin color in humans. Applied to gene expression data, the test reveals that the strength of stabilizing selection acting on mRNA levels in a species is strongly associated with that species' effective population size. In sum, this test is applicable to phenotypic data from almost any genetic cross, allowing selection to be detected more easily and powerfully than previously possible.
Collapse
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
19
|
Wei S, Li Z, Momigliano P, Fu C, Wu H, Merilä J. The roles of climate, geography and natural selection as drivers of genetic and phenotypic differentiation in a widespread amphibian Hyla annectans (Anura: Hylidae). Mol Ecol 2020; 29:3667-3683. [PMID: 32762086 DOI: 10.1111/mec.15584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023]
Abstract
The role of geological events and Pleistocene climatic fluctuations as drivers of current patterns of genetic variation in extant species has been a topic of continued interest among evolutionary biologists. Nevertheless, comprehensive studies of widely distributed species are still rare, especially from Asia. Using geographically extensive sampling of many individuals and a large number of nuclear single nucleotide polymorphisms (SNPs), we studied the phylogeography and historical demography of Hyla annectans populations in southern China. Thirty-five sampled populations were grouped into seven clearly defined genetic clusters that closely match phenotype-based subspecies classification. These lineages diverged 2.32-5.23 million years ago (Ma), a timing that closely aligns with the rapid and drastic uplifting of the Qinghai-Tibet Plateau and adjacent southwest China. Demographic analyses and species distribution models indicate that different populations of this species have responded differently to past climatic changes. In the Hengduan Mountains, most populations experienced a bottleneck, whereas the populations located outside of the Hengduan Mountains have gradually declined in size since the end of the last glaciation. In addition, the levels of phenotypic and genetic divergence were strongly correlated across major clades. These results highlight the combined effects of geological events and past climatic fluctuations, as well as natural selection, as drivers of contemporary patterns of genetic and phenotypic variation in a widely distributed anuran in Asia.
Collapse
Affiliation(s)
- Shichao Wei
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Chao Fu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hua Wu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Marin S, Gibert A, Archambeau J, Bonhomme V, Lascoste M, Pujol B. Potential adaptive divergence between subspecies and populations of snapdragon plants inferred from Q ST -F ST comparisons. Mol Ecol 2020; 29:3010-3021. [PMID: 32652730 PMCID: PMC7540467 DOI: 10.1111/mec.15546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Phenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST ) and quantitative genetic (QST ) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomass-related traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies.
Collapse
Affiliation(s)
- Sara Marin
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, Toulouse, France
| | - Anaïs Gibert
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | | | - Vincent Bonhomme
- Institut des Sciences de l'Évolution (ISEM), Montpellier Cedex, France
| | - Mylène Lascoste
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, Toulouse, France
| | - Benoit Pujol
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, Toulouse, France
| |
Collapse
|
21
|
Gauzere J, Klein EK, Brendel O, Davi H, Oddou-Muratorio S. Microgeographic adaptation and the effect of pollen flow on the adaptive potential of a temperate tree species. THE NEW PHYTOLOGIST 2020; 227:641-653. [PMID: 32167572 DOI: 10.1111/nph.16537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
In species with long-distance dispersal capacities and inhabiting a large ecological niche, local selection and gene flow are expected to be major evolutionary forces affecting the genetic adaptation of natural populations. Yet, in species such as trees, evidence of microgeographic adaptation and the quantitative assessment of the impact of gene flow on adaptive genetic variation are still limited. Here, we used extensive genetic and phenotypic data from European beech seedlings collected along an elevation gradient, and grown in a common garden, to study the signature of selection on the divergence of eleven potentially adaptive traits, and to assess the role of gene flow in resupplying adaptive genetic variation. We found a significant signal of adaptive differentiation among plots separated by < 1 km, with selection acting on growth and phenological traits. Consistent with theoretical expectations, our results suggest that pollen dispersal contributes to increase genetic diversity for these locally differentiated traits. Our results thus highlight that local selection is an important evolutionary force in natural tree populations and suggest that management interventions to facilitate movement of gametes along short ecological gradients would boost genetic diversity of individual tree populations, and enhance their adaptive potential to rapidly changing environments.
Collapse
Affiliation(s)
- Julie Gauzere
- INRAE, URFM, Avignon, 84000, France
- INRAE, BioSP, Avignon, 84000, France
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | | | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, 54000, France
| | | | | |
Collapse
|
22
|
Varón-González C, Fraimout A, Delapré A, Debat V, Cornette R. Limited thermal plasticity and geographical divergence in the ovipositor of Drosophila suzukii. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191577. [PMID: 32218976 PMCID: PMC7029920 DOI: 10.1098/rsos.191577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Phenotypic plasticity has been repeatedly suggested to facilitate adaptation to new environmental conditions, as in invasions. Here, we investigate this possibility by focusing on the worldwide invasion of Drosophila suzukii: an invasive species that has rapidly colonized all continents over the last decade. This species is characterized by a highly developed ovipositor, allowing females to lay eggs through the skin of ripe fruits. Using a novel approach based on the combined use of scanning electron microscopy and photogrammetry, we quantified the ovipositor size and three-dimensional shape, contrasting invasive and native populations raised at three different developmental temperatures. We found a small but significant effect of temperature and geographical origin on the ovipositor shape, showing the occurrence of both geographical differentiation and plasticity to temperature. The shape reaction norms are in turn strikingly similar among populations, suggesting very little difference in shape plasticity among invasive and native populations, and therefore rejecting the hypothesis of a particular role for the plasticity of the ovipositor in the invasion success. Overall, the ovipositor shape seems to be a fairly robust trait, indicative of stabilizing selection. The large performance spectrum rather than the flexibility of the ovipositor would thus contribute to the success of D. suzukii worldwide invasion.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Antoine Fraimout
- Centre de Biologie pour la Gestion des Populations, UMR CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 755 avenue du Campus Agropolis CS 30016, 34988 Montferrier sur Lez cedex, France
| | - Arnaud Delapré
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
23
|
Fustier MA, Martínez-Ainsworth NE, Aguirre-Liguori JA, Venon A, Corti H, Rousselet A, Dumas F, Dittberner H, Camarena MG, Grimanelli D, Ovaskainen O, Falque M, Moreau L, de Meaux J, Montes-Hernández S, Eguiarte LE, Vigouroux Y, Manicacci D, Tenaillon MI. Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genet 2019; 15:e1008512. [PMID: 31860672 PMCID: PMC6944379 DOI: 10.1371/journal.pgen.1008512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/06/2020] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.
Collapse
Affiliation(s)
- Margaux-Alison Fustier
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Natalia E. Martínez-Ainsworth
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Jonás A. Aguirre-Liguori
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Venon
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Hélène Corti
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Agnès Rousselet
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Fabrice Dumas
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Hannes Dittberner
- Institute of Botany, University of Cologne Biocenter, Cologne, Germany
| | - María G. Camarena
- Campo Experimental Bajío, InstitutoNacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Mexico
| | - Daniel Grimanelli
- UMR Diversité, Adaptation et Développement des plantes, Université de Montpellier, Institut de Recherche pour le développement, Montpellier, France
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthieu Falque
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Laurence Moreau
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Juliette de Meaux
- Institute of Botany, University of Cologne Biocenter, Cologne, Germany
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, InstitutoNacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yves Vigouroux
- UMR Diversité, Adaptation et Développement des plantes, Université de Montpellier, Institut de Recherche pour le développement, Montpellier, France
| | - Domenica Manicacci
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Maud I. Tenaillon
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Li Z, Löytynoja A, Fraimout A, Merilä J. Effects of marker type and filtering criteria on Q ST- F ST comparisons. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190666. [PMID: 31827824 PMCID: PMC6894560 DOI: 10.1098/rsos.190666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Comparative studies of quantitative and neutral genetic differentiation (Q ST-F ST tests) provide means to detect adaptive population differentiation. However, Q ST-F ST tests can be overly liberal if the markers used deflate F ST below its expectation, or overly conservative if methodological biases lead to inflated F ST estimates. We investigated how marker type and filtering criteria for marker selection influence Q ST-F ST comparisons through their effects on F ST using simulations and empirical data on over 18 000 in silico genotyped microsatellites and 3.8 million single-locus polymorphism (SNP) loci from four populations of nine-spined sticklebacks (Pungitius pungitius). Empirical and simulated data revealed that F ST decreased with increasing marker variability, and was generally higher with SNPs than with microsatellites. The estimated baseline F ST levels were also sensitive to filtering criteria for SNPs: both minor alleles and linkage disequilibrium (LD) pruning influenced F ST estimation, as did marker ascertainment. However, in the case of stickleback data used here where Q ST is high, the choice of marker type, their genomic location, ascertainment and filtering made little difference to outcomes of Q ST-F ST tests. Nevertheless, we recommend that Q ST-F ST tests using microsatellites should discard the most variable loci, and those using SNPs should pay attention to marker ascertainment and properly account for LD before filtering SNPs. This may be especially important when level of quantitative trait differentiation is low and levels of neutral differentiation high.
Collapse
Affiliation(s)
- Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
25
|
Peede D, Coughlan J. Digest: Biotic interactions shape local adaptation in teosinte populations*. Evolution 2019; 73:2343-2344. [DOI: 10.1111/evo.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 11/27/2022]
Affiliation(s)
- David Peede
- Biology DepartmentUniversity of North Carolina Chapel Hill North Carolina 27514
| | - Jenn Coughlan
- Biology DepartmentUniversity of North Carolina Chapel Hill North Carolina 27514
| |
Collapse
|
26
|
Cabalzar AP, Fields PD, Kato Y, Watanabe H, Ebert D. Parasite-mediated selection in a natural metapopulation of Daphnia magna. Mol Ecol 2019; 28:4770-4785. [PMID: 31591747 DOI: 10.1111/mec.15260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023]
Abstract
Parasite-mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease-related traits. However, nonadaptive processes like migration and extinction-(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life-history and disease-related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite-mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life-history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QST -FST -like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction-(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.
Collapse
Affiliation(s)
- Andrea P Cabalzar
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Yasuhiko Kato
- Department of Biotechnology, Division of Advance Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Division of Advance Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Tvärminne Zoological Station, Tvärminne, Finland
| |
Collapse
|
27
|
Sella G, Barton NH. Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies. Annu Rev Genomics Hum Genet 2019; 20:461-493. [DOI: 10.1146/annurev-genom-083115-022316] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many traits of interest are highly heritable and genetically complex, meaning that much of the variation they exhibit arises from differences at numerous loci in the genome. Complex traits and their evolution have been studied for more than a century, but only in the last decade have genome-wide association studies (GWASs) in humans begun to reveal their genetic basis. Here, we bring these threads of research together to ask how findings from GWASs can further our understanding of the processes that give rise to heritable variation in complex traits and of the genetic basis of complex trait evolution in response to changing selection pressures (i.e., of polygenic adaptation). Conversely, we ask how evolutionary thinking helps us to interpret findings from GWASs and informs related efforts of practical importance.
Collapse
Affiliation(s)
- Guy Sella
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA
| | - Nicholas H. Barton
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
28
|
O'Brien AM, Sawers RJ, Strauss SY, Ross‐Ibarra J. Adaptive phenotypic divergence in an annual grass differs across biotic contexts*. Evolution 2019; 73:2230-2246. [DOI: 10.1111/evo.13818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Anna M. O'Brien
- Center for Population Biology University of California Davis California 95616
- Department of Plant Sciences University of California Davis California 95616
- Department of Evolution and Ecology University of California Davis California 95616
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
| | - Ruairidh J.H. Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN) Irapuato 36821 Guanajuato Mexico
| | - Sharon Y. Strauss
- Center for Population Biology University of California Davis California 95616
- Department of Evolution and Ecology University of California Davis California 95616
| | - Jeffrey Ross‐Ibarra
- Center for Population Biology University of California Davis California 95616
- Department of Plant Sciences University of California Davis California 95616
- Department of Evolution and Ecology University of California Davis California 95616
- Genome Center University of California Davis California 95616
| |
Collapse
|
29
|
Lee KM, Coop G. Population genomics perspectives on convergent adaptation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180236. [PMID: 31154979 PMCID: PMC6560269 DOI: 10.1098/rstb.2018.0236] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Convergent adaptation is the independent evolution of similar traits conferring a fitness advantage in two or more lineages. Cases of convergent adaptation inform our ideas about the ecological and molecular basis of adaptation. In judging the degree to which putative cases of convergent adaptation provide an independent replication of the process of adaptation, it is necessary to establish the degree to which the evolutionary change is unexpected under null models and to show that selection has repeatedly, independently driven these changes. Here, we discuss the issues that arise from these questions particularly for closely related populations, where gene flow and standing variation add additional layers of complexity. We outline a conceptual framework to guide intuition as to the extent to which evolutionary change represents the independent gain of information owing to selection and show that this is a measure of how surprised we should be by convergence. Additionally, we summarize the ways population and quantitative genetics and genomics may help us address questions related to convergent adaptation, as well as open new questions and avenues of research. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Kristin M. Lee
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
30
|
Csilléry K, Ovaskainen O, Sperisen C, Buchmann N, Widmer A, Gugerli F. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity (Edinb) 2019; 124:77-92. [PMID: 31182819 DOI: 10.1038/s41437-019-0240-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
Heterogeneous environments, such as mountainous landscapes, create spatially varying selection pressure that potentially affects several traits simultaneously across different life stages, yet little is known about the general patterns and drivers of adaptation in such complex settings. We studied silver fir (Abies alba Mill.) populations across Switzerland and characterized its mountainous landscape using downscaled historical climate data. We sampled 387 trees from 19 populations and genotyped them at 374 single-nucleotide polymorphisms (SNPs) to estimate their demographic distances. Seedling morphology, growth and phenology traits were recorded in a common garden, and a proxy for water use efficiency was estimated for adult trees. We tested whether populations have more strongly diverged at quantitative traits than expected based on genetic drift alone in a multi-trait framework, and identified potential environmental drivers of selection. We found two main responses to selection: (i) populations from warmer and more thermally stable locations have evolved towards a taller stature, and (ii) the growth timing of populations evolved towards two extreme strategies, 'start early and grow slowly' or 'start late and grow fast', driven by precipitation seasonality. Populations following the 'start early and grow slowly' strategy had higher water use efficiency and came from inner Alpine valleys characterized by pronounced summer droughts. Our results suggest that contrasting adaptive life-history strategies exist in silver fir across different life stages (seedling to adult), and that some of the characterized populations may provide suitable seed sources for tree growth under future climatic conditions.
Collapse
Affiliation(s)
- Katalin Csilléry
- Center for Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland. .,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Otso Ovaskainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
31
|
Koch EM. The Effects of Demography and Genetics on the Neutral Distribution of Quantitative Traits. Genetics 2019; 211:1371-1394. [PMID: 30782599 PMCID: PMC6456309 DOI: 10.1534/genetics.118.301839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022] Open
Abstract
Neutral models for quantitative trait evolution are useful for identifying phenotypes under selection. These models often assume normally distributed phenotypes. This assumption may be violated when a trait is affected by relatively few variants or when the effects of those variants arise from skewed or heavy tailed distributions. Molecular phenotypes such as gene expression levels may have these properties. To accommodate deviations from normality, models making fewer assumptions about the underlying genetics and patterns of variation are needed. Here, we develop a general neutral model for quantitative trait variation using a coalescent approach. This model allows interpretation of trait distributions in terms of familiar population genetic parameters because it is based on the coalescent. We show how the normal distribution resulting from the infinitesimal limit, where the number of loci grows large as the effect size per mutation becomes small, depends only on expected pairwise coalescent times. We then demonstrate how deviations from normality depend on demography through the distribution of coalescence times as well as through genetic parameters. In particular, population growth events exacerbate deviations while bottlenecks reduce them. We demonstrate the practical applications of this model by showing how to sample from the neutral distribution of [Formula: see text], the ratio of the variance between subpopulations to that in the overall population. We further show it is likely impossible to distinguish sparsity from skewed or heavy tailed mutational effects using only sampled trait values. The model analyzed here greatly expands the parameter space for neutral trait models.
Collapse
Affiliation(s)
- Evan M Koch
- Department of Ecology and Evolution, University of Chicago, Illinois 60637
| |
Collapse
|
32
|
Josephs EB, Berg JJ, Ross-Ibarra J, Coop G. Detecting Adaptive Differentiation in Structured Populations with Genomic Data and Common Gardens. Genetics 2019; 211:989-1004. [PMID: 30679259 PMCID: PMC6404252 DOI: 10.1534/genetics.118.301786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Adaptation in quantitative traits often occurs through subtle shifts in allele frequencies at many loci-a process called polygenic adaptation. While a number of methods have been developed to detect polygenic adaptation in human populations, we lack clear strategies for doing so in many other systems. In particular, there is an opportunity to develop new methods that leverage datasets with genomic data and common garden trait measurements to systematically detect the quantitative traits important for adaptation. Here, we develop methods that do just this, using principal components of the relatedness matrix to detect excess divergence consistent with polygenic adaptation, and using a conditional test to control for confounding effects due to population structure. We apply these methods to inbred maize lines from the United States Department of Agriculture germplasm pool and maize landraces from Europe. Ultimately, these methods can be applied to additional domesticated and wild species to give us a broader picture of the specific traits that contribute to adaptation and the overall importance of polygenic adaptation in shaping quantitative trait variation.
Collapse
Affiliation(s)
- Emily B Josephs
- Department of Evolution and Ecology, University of California, Davis, California 95616
- Center for Population Biology, University of California, Davis, California 95616
| | - Jeremy J Berg
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616
- Center for Population Biology, University of California, Davis, California 95616
| | - Graham Coop
- Department of Evolution and Ecology, University of California, Davis, California 95616
- Center for Population Biology, University of California, Davis, California 95616
| |
Collapse
|
33
|
Ravindran SP, Herrmann M, Cordellier M. Contrasting patterns of divergence at the regulatory and sequence level in European Daphnia galeata natural populations. Ecol Evol 2019; 9:2487-2504. [PMID: 30891195 PMCID: PMC6405927 DOI: 10.1002/ece3.4894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding the genetic basis of local adaptation has long been a focus of evolutionary biology. Recently, there has been increased interest in deciphering the evolutionary role of Daphnia's plasticity and the molecular mechanisms of local adaptation. Using transcriptome data, we assessed the differences in gene expression profiles and sequences in four European Daphnia galeata populations. In total, ~33% of 32,903 transcripts were differentially expressed between populations. Among 10,280 differentially expressed transcripts, 5,209 transcripts deviated from neutral expectations and their population-specific expression pattern is likely the result of local adaptation processes. Furthermore, a SNP analysis allowed inferring population structure and distribution of genetic variation. The population divergence at the sequence level was comparatively higher than the gene expression level by several orders of magnitude consistent with strong founder effects and lack of gene flow between populations. Using sequence homology, the candidate transcripts were annotated using a comparative genomics approach. Additionally, we also performed a weighted gene co-expression analysis to identify population-specific regulatory patterns of transcripts in D. galeata. Thus, we identified candidate transcriptomic regions for local adaptation in this key species of aquatic ecosystems in the absence of any laboratory-induced stressor.
Collapse
Affiliation(s)
| | - Maike Herrmann
- Department of Veterinary MedicinePaul‐Ehrlich‐InstitutLangenGermany
| | | |
Collapse
|
34
|
Mendes FK, Fuentes-González JA, Schraiber JG, Hahn MW. A multispecies coalescent model for quantitative traits. eLife 2018; 7:e36482. [PMID: 29969096 PMCID: PMC6092125 DOI: 10.7554/elife.36482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
We present a multispecies coalescent model for quantitative traits that allows for evolutionary inferences at micro- and macroevolutionary scales. A major advantage of this model is its ability to incorporate genealogical discordance underlying a quantitative trait. We show that discordance causes a decrease in the expected trait covariance between more closely related species relative to more distantly related species. If unaccounted for, this outcome can lead to an overestimation of a trait's evolutionary rate, to a decrease in its phylogenetic signal, and to errors when examining shifts in mean trait values. The number of loci controlling a quantitative trait appears to be irrelevant to all trends reported, and discordance also affected discrete, threshold traits. Our model and analyses point to the conditions under which different methods should fare better or worse, in addition to indicating current and future approaches that can mitigate the effects of discordance.
Collapse
Affiliation(s)
- Fábio K Mendes
- Department of BiologyIndiana UniversityBloomingtonUnited States
| | - Jesualdo A Fuentes-González
- Department of BiologyIndiana UniversityBloomingtonUnited States
- School of Life SciencesArizona State UniversityTempeUnited States
| | - Joshua G Schraiber
- Department of BiologyTemple UniversityPhiladelphiaUnited States
- Center for Computational Genetics and GenomicsTemple UniversityPhiladelphiaUnited States
- Institute for Genomics and Evolutionary MedicineTemple UniversityPhiladelphiaUnited States
| | - Matthew W Hahn
- Department of BiologyIndiana UniversityBloomingtonUnited States
- Department of Computer ScienceIndiana UniversityBloomingtonUnited States
| |
Collapse
|
35
|
Josephs EB. Determining the evolutionary forces shaping G × E. THE NEW PHYTOLOGIST 2018; 219:31-36. [PMID: 29574919 DOI: 10.1111/nph.15103] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 31 I. Introduction 31 II. The maintenance of genetic variation for plasticity 32 III. Why is there environmental variation for genetic effects? 33 IV. Conclusions 35 Acknowledgements 35 References 35 SUMMARY: Phenotypic plasticity is common in nature, yet we lack a comprehensive understanding of the evolutionary forces that shape genetic variation for plasticity. This endeavor is especially important because variation for plasticity will result in genotype-by-environment interactions (G × E), a crucial component of variation in quantitative traits. Here, I review our understanding of the evolutionary forces shaping G × E, focusing specifically on: what evolutionary forces maintain variation for plasticity; and what forces maintain different genetic architectures across environments. My specific goal is to show that genomic data can be leveraged to explain the maintenance of G × E by contrasting patterns of genetic variation for plasticity with neutral expectations.
Collapse
Affiliation(s)
- Emily B Josephs
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
- Center for Population Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
36
|
Schäfer MA, Berger D, Rohner PT, Kjaersgaard A, Bauerfeind SS, Guillaume F, Fox CW, Blanckenhorn WU. Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies. Evolution 2018; 72:1629-1644. [PMID: 29911337 DOI: 10.1111/evo.13517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/23/2018] [Indexed: 01/05/2023]
Abstract
Geographic clines offer insights about putative targets and agents of natural selection as well as tempo and mode of adaptation. However, demographic processes can lead to clines that are indistinguishable from adaptive divergence. Using the widespread yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), we examine quantitative genetic differentiation (QST ) of wing shape across North America, Europe, and Japan, and compare this differentiation with that of ten microsatellites (FST ). Morphometric analyses of 28 populations reared at three temperatures revealed significant thermal plasticity, sexual dimorphism, and geographic differentiation in wing shape. In North America morphological differentiation followed the decline in microsatellite variability along the presumed route of recent colonization from the southeast to the northwest. Across Europe, where S. stercoraria presumably existed for much longer time and where no molecular pattern of isolation by distance was evident, clinal variation was less pronounced despite significant morphological differentiation (QST >FST ). Shape vector comparisons further indicate that thermal plasticity (hot-to-cold) does not mirror patterns of latitudinal divergence (south-to-north), as might have been expected under a scenario with temperature as the major agent of selection. Our findings illustrate the importance of detailed phylogeographic information when interpreting geographic clines of dispersal traits in an adaptive evolutionary framework.
Collapse
Affiliation(s)
- Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Animal Ecology at Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d, SE-75236 Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anders Kjaersgaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Charles W Fox
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40506
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
37
|
Ramírez‐Valiente JA, Deacon NJ, Etterson J, Center A, Sparks JP, Sparks KL, Longwell T, Pilz G, Cavender‐Bares J. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak
Quercus oleoides. Mol Ecol 2018; 27:2176-2192. [DOI: 10.1111/mec.14566] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Affiliation(s)
| | - Nicholas J. Deacon
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
| | - Julie Etterson
- Department of Biology University of Minnesota Duluth Duluth MN USA
| | - Alyson Center
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
- Department of Biology Normandale Community College Bloomington MN USA
| | - Jed P. Sparks
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Kimberlee L. Sparks
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | | | - George Pilz
- Herbarium Paul C. Standley Escuela Agricola Panamericana Tegucigalpa Honduras
| | | |
Collapse
|
38
|
Racimo F, Berg JJ, Pickrell JK. Detecting Polygenic Adaptation in Admixture Graphs. Genetics 2018; 208:1565-1584. [PMID: 29348143 PMCID: PMC5887149 DOI: 10.1534/genetics.117.300489] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023] Open
Abstract
An open question in human evolution is the importance of polygenic adaptation: adaptive changes in the mean of a multifactorial trait due to shifts in allele frequencies across many loci. In recent years, several methods have been developed to detect polygenic adaptation using loci identified in genome-wide association studies (GWAS). Though powerful, these methods suffer from limited interpretability: they can detect which sets of populations have evidence for polygenic adaptation, but are unable to reveal where in the history of multiple populations these processes occurred. To address this, we created a method to detect polygenic adaptation in an admixture graph, which is a representation of the historical divergences and admixture events relating different populations through time. We developed a Markov chain Monte Carlo (MCMC) algorithm to infer branch-specific parameters reflecting the strength of selection in each branch of a graph. Additionally, we developed a set of summary statistics that are fast to compute and can indicate which branches are most likely to have experienced polygenic adaptation. We show via simulations that this method-which we call PolyGraph-has good power to detect polygenic adaptation, and applied it to human population genomic data from around the world. We also provide evidence that variants associated with several traits, including height, educational attainment, and self-reported unibrow, have been influenced by polygenic adaptation in different populations during human evolution.
Collapse
Affiliation(s)
- Fernando Racimo
- New York Genome Center, New York, New York 10013
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Denmark
| | - Jeremy J Berg
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Joseph K Pickrell
- New York Genome Center, New York, New York 10013
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
39
|
Häkli K, Østbye K, Kahilainen KK, Amundsen P, Præbel K. Diversifying selection drives parallel evolution of gill raker number and body size along the speciation continuum of European whitefish. Ecol Evol 2018; 8:2617-2631. [PMID: 29531681 PMCID: PMC5838045 DOI: 10.1002/ece3.3876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Adaptive radiation is the evolution of ecological and phenotypical diversity. It arises via ecological opportunity that promotes the exploration of underutilized or novel niches mediating specialization and reproductive isolation. The assumed precondition for rapid local adaptation is diversifying natural selection, but random genetic drift could also be a major driver of this process. We used 27 populations of European whitefish (Coregonus lavaretus) from nine lakes distributed in three neighboring subarctic watercourses in northern Fennoscandia as a model to test the importance of random drift versus diversifying natural selection for parallel evolution of adaptive phenotypic traits. We contrasted variation for two key adaptive phenotypic traits correlated with resource utilization of polymorphic fish; the number of gill rakers and the total length of fish, with the posterior distribution of neutral genetic differentiation from 13 microsatellite loci, to test whether the observed phenotypic divergence could be achieved by random genetic drift alone. Our results show that both traits have been under diversifying selection and that the evolution of these morphs has been driven by isolation through habitat adaptations. We conclude that diversifying selection acting on gill raker number and body size has played a significant role in the ongoing adaptive radiation of European whitefish morphs in this region.
Collapse
Affiliation(s)
- Katja Häkli
- Faculty of Biosciences, Fisheries and EconomicsNorwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| | - Kjartan Østbye
- Faculty of Applied Ecology and Agricultural SciencesHedmark University of Applied ScienceElverumNorway
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
| | - Kimmo K. Kahilainen
- Faculty of Biosciences, Fisheries and EconomicsNorwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| | - Per‐Arne Amundsen
- Department of Arctic and Marine BiologyFaculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
| | - Kim Præbel
- Faculty of Biosciences, Fisheries and EconomicsNorwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
40
|
Morozov S, Leinonen T, Merilä J, McCairns RJS. Selection on the morphology-physiology-performance nexus: Lessons from freshwater stickleback morphs. Ecol Evol 2018; 8:1286-1299. [PMID: 29375798 PMCID: PMC5773335 DOI: 10.1002/ece3.3644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Conspecifics inhabiting divergent environments frequently differ in morphology, physiology, and performance, but the interrelationships amongst traits and with Darwinian fitness remains poorly understood. We investigated population differentiation in morphology, metabolic rate, and swimming performance in three-spined sticklebacks (Gasterosteus aculeatus L.), contrasting a marine/ancestral population with two distinct freshwater morphotypes derived from it: the "typical" low-plated morph, and a unique "small-plated" morph. We test the hypothesis that similar to plate loss in other freshwater populations, reduction in lateral plate size also evolved in response to selection. Additionally, we test how morphology, physiology, and performance have evolved in concert as a response to differences in selection between marine and freshwater environments. We raised pure-bred second-generation fish originating from three populations and quantified their lateral plate coverage, burst- and critical swimming speeds, as well as standard and active metabolic rates. Using a multivariate QST-FST framework, we detected signals of directional selection on metabolic physiology and lateral plate coverage, notably demonstrating that selection is responsible for the reduction in lateral plate coverage in a small-plated stickleback population. We also uncovered signals of multivariate selection amongst all bivariate trait combinations except the two metrics of swimming performance. Divergence between the freshwater and marine populations exceeded neutral expectation in morphology and in most physiological and performance traits, indicating that adaptation to freshwater habitats has occurred, but through different combinations of traits in different populations. These results highlight both the complex interplay between morphology, physiology and performance in local adaptation, and a framework for their investigation.
Collapse
Affiliation(s)
- Sergey Morozov
- Ecological Genetics Research UnitUniversity of HelsinkiHelsinkiFinland
| | - Tuomas Leinonen
- Ecological Genetics Research UnitUniversity of HelsinkiHelsinkiFinland
- Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
| | - Juha Merilä
- Ecological Genetics Research UnitUniversity of HelsinkiHelsinkiFinland
| | - R. J. Scott McCairns
- Ecological Genetics Research UnitUniversity of HelsinkiHelsinkiFinland
- ESE, Ecology and Ecosystem HealthINRARennesFrance
| |
Collapse
|
41
|
Reger J, Lind MI, Robinson MR, Beckerman AP. Predation drives local adaptation of phenotypic plasticity. Nat Ecol Evol 2017; 2:100-107. [DOI: 10.1038/s41559-017-0373-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022]
|
42
|
Firmat C, Delzon S, Louvet JM, Parmentier J, Kremer A. Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. J Evol Biol 2017; 30:2116-2131. [PMID: 28977711 DOI: 10.1111/jeb.13185] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023]
Abstract
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long-lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common-garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change-induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short-term population survival in a changing climate.
Collapse
Affiliation(s)
- C Firmat
- INRA, URP3F, Lusignan, France.,INRA, UMR 1202 BIOGECO, University of Bordeaux, Cestas, France
| | - S Delzon
- INRA, UMR 1202 BIOGECO, University of Bordeaux, Cestas, France
| | - J-M Louvet
- INRA, UMR 1202 BIOGECO, University of Bordeaux, Cestas, France
| | - J Parmentier
- INRA, UE 0393, Unité Expérimentale Arboricole, Centre de Recherche Bordeaux-Aquitaine, Toulenne, France
| | - A Kremer
- INRA, UMR 1202 BIOGECO, University of Bordeaux, Cestas, France
| |
Collapse
|
43
|
Jueterbock A, Franssen SU, Bergmann N, Gu J, Coyer JA, Reusch TBH, Bornberg-Bauer E, Olsen JL. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures inZostera marina, a globally important seagrass. Mol Ecol 2016; 25:5396-5411. [DOI: 10.1111/mec.13829] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Affiliation(s)
- A. Jueterbock
- Faculty of Biosciences and Aquaculture; Nord University; Universitetsalleen 11 Bodø 8049 Norway
| | - S. U. Franssen
- Institut für Populationsgenetik; Vetmeduni Vienna; Veterinärplatz 1 Vienna 1210 Austria
- Institute for Evolution and Biodiversity; University of Münster; Hüfferstr. 1 Münster 48149 Germany
| | - N. Bergmann
- Integrated School of Ocean Sciences (ISOS); Kiel University; Leibnizstr. 3 Kiel 24098 Germany
| | - J. Gu
- Institute for Evolution and Biodiversity; University of Münster; Hüfferstr. 1 Münster 48149 Germany
| | - J. A. Coyer
- Shoals Marine Laboratory; University of New Hampshire; Durham NH 03824 USA
- Groningen Institute for Evolutionary Life Sciences; Ecological and Evolutionary Genomics Group; University of Groningen; P.O. Box 11103 Groningen 9700 CC The Netherlands
| | - T. B. H. Reusch
- GEOMAR Helmholtz-Centre for Ocean Research Kiel; Evolutionary Ecology of Marine Fishes; Düsternbrooker Weg 20 Kiel 24105 Germany
| | - E. Bornberg-Bauer
- Institute for Evolution and Biodiversity; University of Münster; Hüfferstr. 1 Münster 48149 Germany
| | - J. L. Olsen
- Groningen Institute for Evolutionary Life Sciences; Ecological and Evolutionary Genomics Group; University of Groningen; P.O. Box 11103 Groningen 9700 CC The Netherlands
| |
Collapse
|
44
|
Milano ER, Kenney AM, Juenger TE. Adaptive differentiation in floral traits in the presence of high gene flow in scarlet gilia (
Ipomopsis aggregata
). Mol Ecol 2016; 25:5862-5875. [DOI: 10.1111/mec.13752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Elizabeth R. Milano
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Amanda M. Kenney
- Department of Biological Sciences St. Edward's University 3001 S. Congress Ave. Austin TX 78704 USA
| | - Thomas E. Juenger
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| |
Collapse
|
45
|
Howell PE, Lundrigan B, Scribner KT. Environmental and genealogical effects on emergence of cranial morphometric variability in reintroduced American martens. J Mammal 2016. [DOI: 10.1093/jmammal/gyw008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Burri R, Antoniazza S, Gaigher A, Ducrest AL, Simon C, Fumagalli L, Goudet J, Roulin A. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 2015; 70:140-53. [DOI: 10.1111/evo.12824] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/08/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Sylvain Antoniazza
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
- Swiss Ornithological Institute; Seerose 1 CH-6204 Sempach Switzerland
| | - Arnaud Gaigher
- Laboratory for Conservation Biology, Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Céline Simon
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | | |
Collapse
|
47
|
De Kort H, Vander Mijnsbrugge K, Vandepitte K, Mergeay J, Ovaskainen O, Honnay O. Evolution, plasticity and evolving plasticity of phenology in the tree species Alnus glutinosa. J Evol Biol 2015; 29:253-64. [DOI: 10.1111/jeb.12777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/12/2022]
Affiliation(s)
- H. De Kort
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Heverlee Belgium
| | - K. Vander Mijnsbrugge
- Research Institute for Nature and Forest; Geraardsbergen Belgium
- Agency for Nature and Forest; Brussels Belgium
| | - K. Vandepitte
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Heverlee Belgium
| | - J. Mergeay
- Research Institute for Nature and Forest; Geraardsbergen Belgium
| | - O. Ovaskainen
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - O. Honnay
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Heverlee Belgium
| |
Collapse
|
48
|
Robinson MR, Hemani G, Medina-Gomez C, Mezzavilla M, Esko T, Shakhbazov K, Powell JE, Vinkhuyzen A, Berndt SI, Gustafsson S, Justice AE, Kahali B, Locke AE, Pers TH, Vedantam S, Wood AR, van Rheenen W, Andreassen OA, Gasparini P, Metspalu A, Berg LHVD, Veldink JH, Rivadeneira F, Werge TM, Abecasis GR, Boomsma DI, Chasman DI, de Geus EJC, Frayling TM, Hirschhorn JN, Hottenga JJ, Ingelsson E, Loos RJF, Magnusson PKE, Martin NG, Montgomery GW, North KE, Pedersen NL, Spector TD, Speliotes EK, Goddard ME, Yang J, Visscher PM. Population genetic differentiation of height and body mass index across Europe. Nat Genet 2015; 47:1357-62. [PMID: 26366552 PMCID: PMC4984852 DOI: 10.1038/ng.3401] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10(-8); BMI, P < 5.95 × 10(-4)), and we find an among-population genetic correlation for tall and slender individuals (r = -0.80, 95% CI = -0.95, -0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).
Collapse
Affiliation(s)
- Matthew R Robinson
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Gibran Hemani
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) 'Burlo Garofolo', Trieste, Italy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantin Shakhbazov
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Joseph E Powell
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anna Vinkhuyzen
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bratati Kahali
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam E Locke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tune H Pers
- Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Sailaja Vedantam
- Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paolo Gasparini
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) 'Burlo Garofolo', Trieste, Italy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thomas M Werge
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Devices Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, (iPSYCH), Aarhus, Denmark
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dorret I Boomsma
- Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Daniel I Chasman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Eco J C de Geus
- Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Joel N Hirschhorn
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jouke Jan Hottenga
- Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ruth J F Loos
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kari E North
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, UK
| | - Elizabeth K Speliotes
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael E Goddard
- Biosciences Research Division, Department of Primary Industries, Melbourne, Victoria, Australia
- Department of Food and Agricultural Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Jian Yang
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Peter M Visscher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Common garden experiments in the genomic era: new perspectives and opportunities. Heredity (Edinb) 2015; 116:249-54. [PMID: 26486610 DOI: 10.1038/hdy.2015.93] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
The study of local adaptation is rendered difficult by many evolutionary confounding phenomena (for example, genetic drift and demographic history). When complex traits are involved in local adaptation, phenomena such as phenotypic plasticity further hamper evolutionary biologists to study the complex relationships between phenotype, genotype and environment. In this perspective paper, we suggest that the common garden experiment, specifically designed to deal with phenotypic plasticity, has a clear role to play in the study of local adaptation, even (if not specifically) in the genomic era. After a quick review of some high-throughput genotyping protocols relevant in the context of a common garden, we explore how to improve common garden analyses with dense marker panel data and recent statistical methods. We then show how combining approaches from population genomics and genome-wide association studies with the settings of a common garden can yield to a very efficient, thorough and integrative study of local adaptation. Especially, evidence from genomic (for example, genome scan) and phenotypic origins constitute independent insights into the possibility of local adaptation scenarios, and genome-wide association studies in the context of a common garden experiment allow to decipher the genetic bases of adaptive traits.
Collapse
|
50
|
Monceau K. The next meeting for animal personality: population genetics. ETHOL ECOL EVOL 2015. [DOI: 10.1080/03949370.2014.984345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|