1
|
Mark S, Weiss J, Sharma E, Liu T, Wang W, Claycomb JM, Cutter AD. Genome structure predicts modular transcriptome responses to genetic and environmental conditions. Mol Ecol 2019; 28:3681-3697. [PMID: 31325381 DOI: 10.1111/mec.15185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Understanding the plasticity, robustness and modularity of transcriptome expression to genetic and environmental conditions is crucial to deciphering how organisms adapt in nature. To test how genome architecture influences transcriptome profiles, we quantified expression responses for distinct temperature-adapted genotypes of the nematode Caenorhabditis briggsae when exposed to chronic temperature stresses throughout development. We found that 56% of the 8,795 differentially expressed genes show genotype-specific changes in expression in response to temperature (genotype-by-environment interactions, GxE). Most genotype-specific responses occur under heat stress, indicating that cold vs. heat stress responses involve distinct genomic architectures. The 22 co-expression modules that we identified differ in their enrichment of genes with genetic vs. environmental vs. interaction effects, as well as their genomic spatial distributions, functional attributes and rates of molecular evolution at the sequence level. Genes in modules enriched for simple effects of either genotype or temperature alone tend to evolve especially rapidly, consistent with disproportionate influence of adaptation or weaker constraint on these subsets of loci. Chromosome-scale heterogeneity in nucleotide polymorphism, however, rather than the scale of individual genes predominates as the source of genetic differences among expression profiles, and natural selection regimes are largely decoupled between coding sequences and noncoding flanking sequences that contain cis-regulatory elements. These results illustrate how the form of transcriptome modularity and genome structure contribute to predictable profiles of evolutionary change.
Collapse
Affiliation(s)
- Stephanie Mark
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Joerg Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Eesha Sharma
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ting Liu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Abstract
Micro-RNA (miRNA) genes encode abundant small regulatory RNAs that play key roles during development and in homeostasis by fine tuning and buffering gene expression. This layer of regulatory control over transcriptional networks is preserved by selection across deep evolutionary time, yet selection pressures on individual miRNA genes in contemporary populations remain poorly characterized in any organism. Here, we quantify nucleotide variability for 129 miRNAs in the genome of the nematode Caenorhabditis remanei to understand the microevolution of this important class of regulatory genes. Our analysis of three population samples and C. remanei's sister species revealed ongoing natural selection that constrains evolution of all sequence domains within miRNA hairpins. We also show that new miRNAs evolve faster than older miRNAs but that selection nevertheless favors their persistence. Despite the ongoing importance of purging of new mutations, we discover a trove of >400 natural miRNA sequence variants that include single nucleotide polymorphisms in seed motifs, indels that ablate miRNA functional domains, and origination of new miRNAs by duplication. Moreover, we demonstrate substantial nucleotide divergence of pre-miRNA hairpin alleles between populations and sister species. These findings from the first global survey of miRNA microevolution in Caenorhabditis support the idea that changes in gene expression, mediated through divergence in miRNA regulation, can contribute to phenotypic novelty and adaptation to specific environments in the present day as well as the distant past.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
4
|
The Effects and Mechanism of miR-92a and miR-126 on Myocardial Apoptosis in Mouse Ischemia-Reperfusion Model. Cell Biochem Biophys 2014; 70:1901-6. [DOI: 10.1007/s12013-014-0149-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Jovelin R. Pleiotropic constraints, expression level, and the evolution of miRNA sequences. J Mol Evol 2013; 77:206-20. [PMID: 24100521 DOI: 10.1007/s00239-013-9588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3'UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada,
| |
Collapse
|
6
|
Félix MA, Jovelin R, Ferrari C, Han S, Cho YR, Andersen EC, Cutter AD, Braendle C. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. BMC Evol Biol 2013; 13:10. [PMID: 23311925 PMCID: PMC3556333 DOI: 10.1186/1471-2148-13-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. METHODS Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. RESULTS Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. CONCLUSIONS The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS - ENS - INSERM, 46 rue d’Ulm, Paris cedex 05, 75230, France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS, UMR7277, Parc Valrose, Nice cedex 02, 06108, France
- INSERM, U1091, Nice cedex 02, 06108, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice cedex 02, 06108, France
| | - Shery Han
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Young Ran Cho
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Erik C Andersen
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS, UMR7277, Parc Valrose, Nice cedex 02, 06108, France
- INSERM, U1091, Nice cedex 02, 06108, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice cedex 02, 06108, France
| |
Collapse
|
7
|
Hicks KA, Denver DR, Estes S. Natural variation in Caenorhabditis briggsae mitochondrial form and function suggests a novel model of organelle dynamics. Mitochondrion 2012; 13:44-51. [PMID: 23269324 DOI: 10.1016/j.mito.2012.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 01/28/2023]
Abstract
Mitochondrial functioning and morphology are known to be connected through cycles of organelle fusion and fission that depend upon the mitochondrial membrane potential (ΔΨM); however, we lack an understanding of the features and dynamics of natural mitochondrial populations. Using data from our recent study of univariate mitochondrial phenotypic variation in Caenorhabditis briggsae nematodes, we analyzed patterns of phenotypic correlation for 24 mitochondrial traits. Our findings support a role for ΔΨM in shaping mitochondrial dynamics, but no role for mitochondrial ROS. Further, our study suggests a novel model of mitochondrial population dynamics dependent upon cellular environmental context and with implications for mitochondrial genome integrity.
Collapse
Affiliation(s)
- Kiley A Hicks
- Biology Department, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA.
| | | | | |
Collapse
|
8
|
Stegeman GW, de Mesquita MB, Ryu WS, Cutter AD. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae. ACTA ACUST UNITED AC 2012; 216:850-8. [PMID: 23155083 DOI: 10.1242/jeb.075408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.
Collapse
Affiliation(s)
- Gregory W Stegeman
- University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | | | | | | |
Collapse
|
9
|
Hicks KA, Howe DK, Leung A, Denver DR, Estes S. In vivo quantification reveals extensive natural variation in mitochondrial form and function in Caenorhabditis briggsae. PLoS One 2012; 7:e43837. [PMID: 22952781 PMCID: PMC3429487 DOI: 10.1371/journal.pone.0043837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/30/2012] [Indexed: 12/18/2022] Open
Abstract
We have analyzed natural variation in mitochondrial form and function among a set of Caenorhabditis briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5Δ) that correlates negatively with organismal fitness. We performed in vivo quantification of 24 mitochondrial phenotypes including reactive oxygen species level, membrane potential, and aspects of organelle morphology, and observed significant among-isolate variation in 18 traits. Although several mitochondrial phenotypes were non-linearly associated with nad5Δ levels, most of the among-isolate phenotypic variation could be accounted for by phylogeographic clade membership. In particular, isolate-specific mitochondrial membrane potential was an excellent predictor of clade membership. We interpret this result in light of recent evidence for local adaptation to temperature in C. briggsae. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. This study demonstrates that multicellular eukaryotic species are capable of extensive natural variation in organellar phenotypes and highlights the potential of integrating evolutionary and cell biology perspectives.
Collapse
Affiliation(s)
- Kiley A. Hicks
- Biology Department, Portland State University, Portland, Oregon, United States of America
| | - Dana K. Howe
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Aubrey Leung
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Dee R. Denver
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Suzanne Estes
- Biology Department, Portland State University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
10
|
Selfish little circles: transmission bias and evolution of large deletion-bearing mitochondrial DNA in Caenorhabditis briggsae nematodes. PLoS One 2012; 7:e41433. [PMID: 22859984 PMCID: PMC3409194 DOI: 10.1371/journal.pone.0041433] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/25/2012] [Indexed: 01/19/2023] Open
Abstract
Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.
Collapse
|