1
|
Taank Y, Agnihotri N. Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex. Clin Transl Oncol 2021; 23:2448-2459. [PMID: 34426910 DOI: 10.1007/s12094-021-02686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Aberrant Wnt/β-catenin signaling is central to colorectal cancer carcinogenesis. The well-known potential of targeting the canonical Wnt signaling pathway for the treatment of CRC is largely attributed to the ability of this pathway to regulate various cellular processes such as cell proliferation, metastasis, drug resistance, immune response, apoptosis, and cellular metabolism. However, with the current approach of targeting this pathway, none of the Wnt-targeted agents have been successfully implicated in clinical practice. Instead of using classical approaches to target this pathway, there is a growing need to find new and modified approaches to achieve the same. For this, a better understanding of the regulation of β-catenin, a major effector of the canonical Wnt pathway is a must. The present review addresses the importance of understanding the regulation of β-catenin beyond the destruction complex. Few recently discovered β-catenin regulators such as ZNF281, TTPAL, AGR2, ARHGAP25, TREM2, and TIPE1 showed significant potential in regulating the development of CRC through modulation of the Wnt/β-catenin signaling pathway in both in vitro and in vivo studies. Although the expression and activity of β-catenin is influenced by many protein regulators, the abovementioned proteins not only influence its expression and activation but are also directly involved in the development of CRC and various other solid tumors. Therefore, we hypothesise that focusing the current research on finding the detailed mechanism of action of these regulators may assist in providing with a better treatment approach or improve the current therapeutic regimens.
Collapse
Affiliation(s)
- Y Taank
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - N Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Hsa_circ_0009361 acts as the sponge of miR-582 to suppress colorectal cancer progression by regulating APC2 expression. Clin Sci (Lond) 2019; 133:1197-1213. [PMID: 31109967 DOI: 10.1042/cs20190286] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
Abstract
Circular RNA (circRNA) plays an important role in the development of human malignant tumors. Recently, an increasing number of circRNAs have been identified and investigated in various tumors. However, the expression pattern and biological function of circRNAs in colorectal cancer (CRC) still remain largely unexplored. In the present study, hsa_circ_0009361 was significantly down-regulated in CRC tissues and cells. Low expression level of hsa_circ_0009361 promoted the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of CRC cells. Hsa_circ_0009361 was identified as the sponge of miR-582 by fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP), and luciferase reporter assays. Overexpression of hsa_circ_0009361 up-regulated the expression of adenomatous polyposis coli 2 (APC2) and inhibited the activity of the Wnt/β-catenin pathway by competitively combining with miR-582. Exogenous miR-582 and APC2 interventions could reverse the multiple biological functions mediated by hsa_circ_0009361 in CRC cells. In vivo experiments also confirmed that hsa_circ_0009361 inhibited the growth and metastasis of CRC. Hsa_circ_0009361 acted as a tumor suppressive sponge of miR-582, which could up-regulate the expression of APC2, inhibit the Wnt/β-catenin signaling, and suppress the growth and metastasis of CRC. Collectively, the hsa_circ_0009361/miR-582/APC2 network could be employed as a potential therapeutic target for CRC patients.
Collapse
|
3
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Young MA, Daly CS, Taylor E, James R, Clarke AR, Reed KR. Subtle Deregulation of the Wnt-Signaling Pathway Through Loss of Apc2 Reduces the Fitness of Intestinal Stem Cells. Stem Cells 2018; 36:114-122. [PMID: 29027285 PMCID: PMC5765519 DOI: 10.1002/stem.2712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
The importance of the Wnt-signaling pathway on the regulation and maintenance of the intestinal stem cell (ISC) population is well recognized. However, our current knowledge base is founded on models using systems of gross deregulation of the Wnt-signaling pathway. Given the importance of this signaling pathway on intestinal homeostasis, there is a need to explore the role of more subtle alterations in Wnt-signaling levels within this tissue. Herein, we have used a model of Apc2 loss to meet this aim. Apc2 is a homolog of Apc which can also form a destruction complex capable of binding β-catenin, albeit less efficiently than Apc. We show that systemic loss of Apc2 results in an increase in the number of cells displaying nuclear β-catenin at the base of the intestinal crypt. This subsequently impacts the expression levels of several ISC markers and the fitness of ISCs as assessed by organoid formation efficiency. This work provides the first evidence that the function and fitness of ISCs can be altered by even minor misregulation of the Wnt-signaling pathway. Our data highlights the importance of correct maintenance of this crucial signaling pathway in the maintenance and function of the ISC population. Stem Cells 2018;36:114-122.
Collapse
Affiliation(s)
- Madeleine A. Young
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Carl S. Daly
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
- Department of Health and Applied ScienceUniversity of the West of EnglandBristolUnited Kingdom
| | - Elaine Taylor
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Rhiannon James
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Alan Richard Clarke
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Karen Ruth Reed
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| |
Collapse
|
5
|
Dokanehiifard S, Soltani BM. Hsa-miR-11181 regulates Wnt signaling pathway through targeting of APC2 transcripts in SW480 cell line. Gene 2018; 641:297-302. [DOI: 10.1016/j.gene.2017.10.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
|
6
|
Thorvaldsen TE. Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol 2017; 121:81-88. [PMID: 28371398 DOI: 10.1111/bcpt.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Aberrant WNT signalling activity is linked to various diseases due to the WNT dependency of fundamental processes during development and in adult tissue homeostasis. Mutations in components of the multi-protein β-catenin destruction complex promote excessive amounts of the main transcriptional activator β-catenin and are particularly common in colorectal cancer (CRC). The tankyrase enzymes were recently implicated as negative regulators of destruction complex activity by mediating degradation of the scaffolding protein AXIN. Indeed, tankyrase inhibitors (TNKSi) have emerged as promising therapeutics by restoring functional signal-limiting destruction complexes in CRCs. Furthermore, as TNKSi-induced destruction complexes (so-called degradasomes) can be visualized by microscopy, they have served as a valuable experimental model system to address unresolved aspects regarding the structure, function and composition of the β-catenin destruction complex. This MiniReview provides an overview of the current knowledge on the regulatory mechanisms and interactions that govern the β-catenin destruction complex activity. It further highlights the potential of TNKSi as anticancer drugs and as a novel research tool to dissect the WNT signalling pathway.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
7
|
Dokanehiifard S, Yasari A, Najafi H, Jafarzadeh M, Nikkhah M, Mowla SJ, Soltani BM. A novel microRNA located in the TrkC gene regulates the Wnt signaling pathway and is differentially expressed in colorectal cancer specimens. J Biol Chem 2017; 292:7566-7577. [PMID: 28100780 DOI: 10.1074/jbc.m116.760710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/18/2017] [Indexed: 01/12/2023] Open
Abstract
Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis, differentiation, and tumorigenesis. TrkC diverse functions might be attributed to the hypothetical non-coding RNAs embedded within the gene. Using bioinformatics approaches, a novel microRNA named TrkC-miR2 was predicted within the TrkC gene capable of regulating the Wnt pathway. For experimental verification of this microRNA, the predicted TrkC-premir2 sequence was overexpressed in SW480 cells, which led to the detection of two mature TrkC-miR2 isomiRs, and their endogenous forms were detected in human cell lines as well. Later, an independent promoter was deduced for TrkC-miR2 after the treatment of HCT116 cells with 5-azacytidine, which resulted in differential expression of TrkC-miR2 and TrkC host gene. RT-quantitative PCR and luciferase assays indicated that the APC2 gene is targeted by TrkC-miR2, and Wnt signaling is up-regulated. Also, Wnt inhibition by using small molecules along with TrkC-miR2 overexpression and TOP/FOP flash assays confirmed the positive effect of TrkC-miR2 on the Wnt pathway. Consistently, TrkC-miR2 overexpression promoted SW480 cell survival, which was detected by flow cytometry, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, and crystal violate analysis. RT-qPCR analysis revealed that TrkC-miR2 is significantly up-regulated (∼70 times) in colorectal tumor tissues compared with their normal pairs. Moreover, the TrkC-miR2 expression level discriminated grades of tumor malignancies, which was consistent with its endogenous levels in HCT116, HT29, and SW480 colorectal cancer cell lines. Finally, an opposite expression pattern was observed for TrkC-miR2 and the APC2 gene in colorectal cancer specimens. In conclusion, here we introduce TrkC-miR2 as a novel regulator of Wnt signaling, which might be a candidate oncogenic colorectal cancer biomarker.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- From the Department of Molecular Genetics, Faculty of Biological Sciences and
| | - Atena Yasari
- From the Department of Molecular Genetics, Faculty of Biological Sciences and
| | - Hadi Najafi
- From the Department of Molecular Genetics, Faculty of Biological Sciences and
| | - Meisam Jafarzadeh
- From the Department of Molecular Genetics, Faculty of Biological Sciences and
| | - Maryam Nikkhah
- Department of Nano-Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran 111-14115
| | - Seyed Javad Mowla
- From the Department of Molecular Genetics, Faculty of Biological Sciences and
| | - Bahram M Soltani
- From the Department of Molecular Genetics, Faculty of Biological Sciences and
| |
Collapse
|
8
|
Pronobis MI, Deuitch N, Posham V, Mimori-Kiyosue Y, Peifer M. Reconstituting regulation of the canonical Wnt pathway by engineering a minimal β-catenin destruction machine. Mol Biol Cell 2016; 28:41-53. [PMID: 27852897 PMCID: PMC5221518 DOI: 10.1091/mbc.e16-07-0557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023] Open
Abstract
APC and Axin are key negative regulators of Wnt signaling in development and oncogenesis. They form a multiprotein complex targeting the key Wnt effector β-catenin for destruction. Essential components of APC and Axin required for their cooperative function are identified, and the data are used to design a minimal β-catenin–destruction machine. Negatively regulating key signaling pathways is critical to development and altered in cancer. Wnt signaling is kept off by the destruction complex, which is assembled around the tumor suppressors APC and Axin and targets β-catenin for destruction. Axin and APC are large proteins with many domains and motifs that bind other partners. We hypothesized that if we identified the essential regions required for APC:Axin cooperative function and used these data to design a minimal β-catenin-destruction machine, we would gain new insights into the core mechanisms of destruction complex function. We identified five key domains/motifs in APC or Axin that are essential for their function in reconstituting Wnt regulation. Strikingly, however, certain APC and Axin mutants that are nonfunctional on their own can complement one another in reducing β-catenin, revealing that the APC:Axin complex is a highly robust machine. We used these insights to design a minimal β-catenin-destruction machine, revealing that a minimized chimeric protein covalently linking the five essential regions of APC and Axin reconstitutes destruction complex internal structure, size, and dynamics, restoring efficient β-catenin destruction in colorectal tumor cells. On the basis of our data, we propose a new model of the mechanistic function of the destruction complex as an integrated machine.
Collapse
Affiliation(s)
- Mira I Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie Deuitch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Vinya Posham
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuko Mimori-Kiyosue
- Cellular Dynamics Analysis Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin. Development 2016; 143:2629-40. [PMID: 27287809 DOI: 10.1242/dev.130567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.
Collapse
Affiliation(s)
- Malachi A Blundon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Danielle R Schlesinger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amritha Parthasarathy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha L Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah M Kolev
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David A Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Vattulainen-Collanus S, Akinrinade O, Li M, Koskenvuo M, Li CG, Rao SP, de Jesus Perez V, Yuan K, Sawada H, Koskenvuo JW, Alvira C, Rabinovitch M, Alastalo TP. Loss of PPARγ in endothelial cells leads to impaired angiogenesis. J Cell Sci 2016; 129:693-705. [PMID: 26743080 DOI: 10.1242/jcs.169011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Tie2-promoter-mediated loss of peroxisome proliferator-activated receptor gamma (PPARγ, also known as PPARG) in mice leads to osteopetrosis and pulmonary arterial hypertension. Vascular disease is associated with loss of PPARγ in pulmonary microvascular endothelial cells (PMVEC); we evaluated the role of PPARγ in PMVEC functions, such as angiogenesis and migration. The role of PPARγ in angiogenesis was evaluated in Tie2CrePPARγ(flox/flox) and wild-type mice, and in mouse and human PMVECs. RNA sequencing and bioinformatic approaches were utilized to reveal angiogenesis-associated targets for PPARγ. Tie2CrePPARγ(flox/flox) mice showed an impaired angiogenic capacity. Analysis of endothelial progenitor-like cells using bone marrow transplantation combined with evaluation of isolated PMVECs revealed that loss of PPARγ attenuates the migration and angiogenic capacity of mature PMVECs. PPARγ-deficient human PMVECs showed a similar migration defect in culture. Bioinformatic and experimental analyses newly revealed E2F1 as a target of PPARγ in the regulation of PMVEC migration. Disruption of the PPARγ-E2F1 axis was associated with a dysregulated Wnt pathway related to the GSK3B interacting protein (GSKIP). In conclusion, PPARγ plays an important role in sustaining angiogenic potential in mature PMVECs through E2F1-mediated gene regulation.
Collapse
Affiliation(s)
- Sanna Vattulainen-Collanus
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Oyediran Akinrinade
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland Institute of Biomedicine, University of Helsinki, Helsinki 00290, Finland
| | - Molong Li
- The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Minna Koskenvuo
- Children's Hospital Helsinki, Division of Hematology-Oncology and Stem Cell Transplantation, University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Caiyun Grace Li
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Shailaja P Rao
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hirofumi Sawada
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA Department of Pediatrics, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Juha W Koskenvuo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Cristina Alvira
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Tero-Pekka Alastalo
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| |
Collapse
|
11
|
Kunttas-Tatli E, Von Kleeck RA, Greaves BD, Vinson D, Roberts DM, McCartney BM. The two SAMP repeats and their phosphorylation state in Drosophila Adenomatous polyposis coli-2 play mechanistically distinct roles in negatively regulating Wnt signaling. Mol Biol Cell 2015; 26:4503-18. [PMID: 26446838 PMCID: PMC4666143 DOI: 10.1091/mbc.e15-07-0515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
The colon cancer tumor suppressor Adenomatous polyposis coli (APC) negatively regulates Wnt signaling destruction complex by binding to β-catenin and facilitating its phosphorylation and degradation. The two SAMP repeats and their phosphorylation state in Drosophila APC2 play distinct roles in negatively regulating Wnt signaling. The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the β-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC’s tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation–based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ryan A Von Kleeck
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Bradford D Greaves
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - David Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
12
|
Kunttas-Tatli E, Roberts DM, McCartney BM. Self-association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex. Mol Biol Cell 2014; 25:3424-36. [PMID: 25208568 PMCID: PMC4214788 DOI: 10.1091/mbc.e14-04-0885] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
13
|
Testing models of the APC tumor suppressor/β-catenin interaction reshapes our view of the destruction complex in Wnt signaling. Genetics 2014; 197:1285-302. [PMID: 24931405 DOI: 10.1534/genetics.114.166496] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein "destruction complex" that targets the proto-oncogene β-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity β-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all β-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that β-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all β-catenin-binding sites (including the 15Rs) and find that a direct β-catenin/APC interaction is also not essential for β-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby β-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock β-catenin in the destruction complex to increase the efficiency of β-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of β-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of β-catenin likely accounts for this difference.
Collapse
|
14
|
Schneikert J, Vijaya Chandra SH, Ruppert JG, Ray S, Wenzel EM, Behrens J. Functional comparison of human adenomatous polyposis coli (APC) and APC-like in targeting beta-catenin for degradation. PLoS One 2013; 8:e68072. [PMID: 23840886 PMCID: PMC3698177 DOI: 10.1371/journal.pone.0068072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/25/2013] [Indexed: 01/17/2023] Open
Abstract
Truncating mutations affect the adenomatous polyposis coli (APC) gene in most cases of colon cancer, resulting in the stabilization of β-catenin and uncontrolled cell proliferation. We show here that colon cancer cell lines express also the paralog APC-like (APCL or APC2). RNA interference revealed that it controls the level and/or the activity of β-catenin, but it is less efficient and binds less well to β-catenin than APC, thereby providing one explanation as to why the gene is not mutated in colon cancer. A further comparison indicates that APCL down-regulates the β-catenin level despite the lack of the 15R region known to be important in APC. To understand this discrepancy, we performed immunoprecipitation experiments that revealed that phosphorylated β-catenin displays a preference for binding to the 15 amino acid repeats (15R) rather than the first 20 amino acid repeat of APC. This suggests that the 15R region constitutes a gate connecting the steps of β-catenin phosphorylation and subsequent ubiquitination/degradation. Using RNA interference and domain swapping experiments, we show that APCL benefits from the 15R of truncated APC to target β-catenin for degradation, in a process likely involving heterodimerization of the two partners. Our data suggest that the functional complementation of APCL by APC constitutes a substantial facet of tumour development, because the truncating mutations of APC in colorectal tumours from familial adenomatous polyposis (FAP) patients are almost always selected for the retention of at least one 15R.
Collapse
Affiliation(s)
- Jean Schneikert
- Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|