1
|
Pullepu D, Uddin W, Narayanan A, Kabir MA. CSU52, a novel regulator functions as a repressor of L-sorbose utilization in Candida albicans. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:525-536. [PMID: 34557282 PMCID: PMC8421577 DOI: 10.18502/ijm.v13i4.6978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives Monosomy of chromosome 5 associated with utilization of non-canonical sugar L-sorbose is one of the well-studied aneuploidies in Candida albicans. Stress-induced ploidy changes are crucial determinants for pathogenicity and genetic diversity in C. albicans. The five scattered regulatory regions (A, B, C, 135, and 139) comprising of two functionally redundant pathways (SUR1 and SUR2) were found to be responsible for the growth on L-sorbose. So far, three genes such as CSU51, CSU53 and CSU57 have been identified in region A, region 135 and region C, respectively. In this study we have verified the role of region B in this regulatory pathway. Materials and Methods We employed a combinatorial gene deletion approach to verify the role of region B followed by co-over expression studies and qRT-PCR to identify the regulatory role of this region. Results We confirmed the role of region B in the regulation of SOU1 gene expression. The qRT-PCR results showed that regulation occurs at transcriptional level along with other two regions in SUR1 pathway. A previously uncharacterized open reading frame in region B has been implicated in this regulation and designated as CSU52. Integrating multiple copies of CSU52 in the genome at tandem, suppresses the growth of recipient strain on L-sorbose, establishing it as a repressor of SOU1 gene. Conclusion This finding completes the identification of regulators in SUR1 pathway. This result paves the way to study the underlying molecular mechanisms of SOU1 gene regulation that in-turn helps to understand stress induced aneuploidy.
Collapse
Affiliation(s)
- Dileep Pullepu
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Wasim Uddin
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
2
|
Sah SK, Hayes JJ, Rustchenko E. The role of aneuploidy in the emergence of echinocandin resistance in human fungal pathogen Candida albicans. PLoS Pathog 2021; 17:e1009564. [PMID: 34043737 PMCID: PMC8158998 DOI: 10.1371/journal.ppat.1009564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sudisht Kumar Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeffrey Joseph Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Zhang CG, Duan M, Zhang XY, Wang Y, Wu S, Feng LL, Song LL, Chen XY. Klebsiella pneumoniae infection secondary to spontaneous renal rupture that presents only as fever: A case report. World J Clin Cases 2021; 9:2602-2610. [PMID: 33889626 PMCID: PMC8040190 DOI: 10.12998/wjcc.v9.i11.2602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Spontaneous renal rupture is a rare disease in the clinic. The causes of spontaneous renal rupture include extrarenal factors, intrarenal factors, and idiopathic factors. Reports on infection secondary to spontaneous renal rupture and the complications of spontaneous renal rupture are scarce. Furthermore, there are few patients with spontaneous renal rupture who present only with fever.
CASE SUMMARY We present the case of a 52-year-old female patient who was admitted to our hospital. She presented only with fever, and the cause of the disease was unclear. She underwent a contrast-enhanced computed tomography (CT) scan, which showed that the left renal capsule had a crescent-shaped, low-density shadow; the perirenal fat was blurred, and exudation was visible with no sign of calculi, malignancies, instrumentation, or trauma. Under ultrasound guidance, a pigtail catheter was inserted into the hematoma, and fluid was drained and used for the bacterial test, which proved the presence of Klebsiella pneumoniae. Two months later, abdominal CT showed that the hematoma was absorbed, so the drainage tube was removed. The abdominal CT was normal after 4 mo.
CONCLUSION Spontaneous renal rupture due to intrarenal factors causes a higher proportion of shock and is more likely to cause anemia.
Collapse
Affiliation(s)
- Chen-Guang Zhang
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Min Duan
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiang-Yang Zhang
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yan Wang
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Sheng Wu
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Li-Li Feng
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Lin-Lin Song
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xu-Yan Chen
- Department of Emergency Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
4
|
Reddy PK, Pullepu D, Dhabalia D, Udaya Prakash SM, Kabir MA. CSU57 encodes a novel repressor of sorbose utilization in opportunistic human fungal pathogen Candida albicans. Yeast 2020; 38:222-238. [PMID: 33179314 DOI: 10.1002/yea.3537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022] Open
Abstract
Human fungal pathogen Candida albicans cannot utilize L-sorbose as a sole carbon source. However, chromosome 5 monosomic strains can grow on sorbose as repressors present on this chromosome get diminished allowing the expression of sorbose utilization gene (SOU1) located on chromosome 4. Functional identification of these repressors has been a difficult task as they are scattered on a large portion of the right arm of chromosome 5. Herein, we have applied the telomere-mediated chromosomal truncation approach to identify a novel repressor for sorbose utilization in this pathogen. Multiple systematic chromosomal truncations were performed on the right arm of Chr5 in the background of csu51∆/CSU51 to minimize the functional region to 6-kb chromosomal stretch. Further, truncation that removes the part of Orf19.3942 strongly suggested its role in sorbose utilization. However, compelling evidence comes from the observation that truncation at 1,044.288-kb position of Chr5 in the strain csu51∆/CSU51 orf19.3942∆/Orf.19.3942 produced Sou+ phenotype; otherwise, the strain remains Sou- . This confirms beyond doubt the role of Orf.19.3942 in the regulation of sorbose utilization and designated as CSU57. Comparison of SOU1 gene expression of Sou+ strains with wild type suggested its role at transcriptional level. Strain carrying double disruption of CSU57 remains Sou- . Co-overexpression of SOU1 and CSU57 together does not make the recipient strain Sou- ; however, multiple tandem copies of CSU57 produced diminished growth compared with control suggesting that it is a weak repressor. Taken together, we report that CSU57 encodes a novel repressor of L-sorbose utilization in this pathogen. TAKE AWAY: CSU57 encodes a repressor for L-sorbose utilization in Candida albicans. Csu57p acts in combination with Csu51p and other regulators. Csu57p exerts its repressing effect at transcriptional level of SOU1 gene. Utilization of sorbose positively correlates to the expression of SOU1 gene. Multiple copies of CSU57 can partially suppress Sou+ phenotype.
Collapse
Affiliation(s)
- Praveen Kumar Reddy
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Dileep Pullepu
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Darshan Dhabalia
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | | | - Mohammad Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
5
|
Wakabayashi H, Tucker C, Bethlendy G, Kravets A, Welle SL, Bulger M, Hayes JJ, Rustchenko E. NuA4 histone acetyltransferase activity is required for H4 acetylation on a dosage-compensated monosomic chromosome that confers resistance to fungal toxins. Epigenetics Chromatin 2017; 10:49. [PMID: 29061172 PMCID: PMC5653997 DOI: 10.1186/s13072-017-0156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major human fungal pathogen Candida albicans possesses a diploid genome, but responds to growth in challenging environments by employing chromosome aneuploidy as an adaptation mechanism. For example, we have shown that C. albicans adapts to growth on the toxic sugar L-sorbose by transitioning to a state in which one chromosome (chromosome 5, Ch5) becomes monosomic. Moreover, analysis showed that while expression of many genes on the monosomic Ch5 is altered in accordance with the chromosome ploidy, expression of a large fraction of genes is increased to the normal diploid level, presumably compensating for gene dose. RESULTS In order to understand the mechanism of the apparent dosage compensation, we now report genome-wide ChIP-microarray assays for a sorbose-resistant strain harboring a monosomic Ch5. These data show a significant chromosome-wide elevation in histone H4 acetylation on the mCh5, but not on any other chromosome. Importantly, strains lacking subunits of the NuA4 H4 histone acetyltransferase complex, orthologous to a complex previously shown in Drosophila to be associated with a similar gene dosage compensation mechanism, did not show an increase in H4 acetylation. Moreover, loss of NuA4 subunits severely compromised the adaptation to growth on sorbose. CONCLUSIONS Our results are consistent with a model wherein chromosome-wide elevation of H4 acetylation mediated by the NuA4 complex plays a role in increasing gene expression in compensation for gene dose and adaption to growth in a toxic environment.
Collapse
Affiliation(s)
- Hironao Wakabayashi
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA.
| | - Christopher Tucker
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Gabor Bethlendy
- Roche Diagnostics Corporation, Indianapolis, IN, USA.,Parabase Genomics, Dorchester, MA, USA
| | - Anatoliy Kravets
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L Welle
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pediatrics, Center for Pediatric Biochemical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Bulger
- Department of Pediatrics, Center for Pediatric Biochemical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Tolerance to Caspofungin in Candida albicans Is Associated with at Least Three Distinctive Mechanisms That Govern Expression of FKS Genes and Cell Wall Remodeling. Antimicrob Agents Chemother 2017; 61:AAC.00071-17. [PMID: 28223384 DOI: 10.1128/aac.00071-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
Expanding echinocandin use to prevent or treat invasive fungal infections has led to an increase in the number of breakthrough infections due to resistant Candida species. Although it is uncommon, echinocandin resistance is well documented for Candida albicans, which is among the most prevalent bloodstream organisms. A better understanding is needed to assess the cellular factors that promote tolerance and predispose infecting cells to clinical breakthrough. We previously showed that some mutants that were adapted to growth in the presence of toxic sorbose due to loss of one chromosome 5 (Ch5) also became more tolerant to caspofungin. We found here, following direct selection of mutants on caspofungin, that tolerance can be conferred by at least three mechanisms: (i) monosomy of Ch5, (ii) combined monosomy of the left arm and trisomy of the right arm of Ch5, and (iii) an aneuploidy-independent mechanism. Tolerant mutants possessed cell walls with elevated chitin and showed downregulation of genes involved in cell wall biosynthesis, namely, FKS, located outside Ch5, and CHT2, located on Ch5, irrespective of Ch5 ploidy. Also irrespective of Ch5 ploidy, the CNB1 and MID1 genes on Ch5, which are involved in the calcineurin signaling pathway, were expressed at the diploid level. Thus, multiple mechanisms can affect the relative expression of the aforementioned genes, controlling them in similar ways. Although breakthrough mutations in two specific regions of FKS1 have previously been associated with caspofungin resistance, we found mechanisms of caspofungin tolerance that are independent of FKS1 and thus represent an earlier event in resistance development.
Collapse
|
7
|
Chromosome 5 of Human Pathogen Candida albicans Carries Multiple Genes for Negative Control of Caspofungin and Anidulafungin Susceptibility. Antimicrob Agents Chemother 2016; 60:7457-7467. [PMID: 27736768 DOI: 10.1128/aac.01888-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an important fungal pathogen with a diploid genome that can adapt to caspofungin, a major drug from the echinocandin class, by a reversible loss of one copy of chromosome 5 (Ch5). Here, we explore a hypothesis that more than one gene for negative regulation of echinocandin tolerance is carried on Ch5. We constructed C. albicans strains that each lacked one of the following Ch5 genes: CHT2 for chitinase, PGA4 for glucanosyltransferase, and CSU51, a putative transcription factor. We demonstrate that independent deletion of each of these genes increased tolerance for caspofungin and anidulafungin, another echinocandin. Our data indicate that Ch5 carries multiple genes for negative control of echinocandin tolerance, although the final number has yet to be established.
Collapse
|
8
|
Parasexual Ploidy Reduction Drives Population Heterogeneity Through Random and Transient Aneuploidy in Candida albicans. Genetics 2015; 200:781-94. [PMID: 25991822 PMCID: PMC4512543 DOI: 10.1534/genetics.115.178020] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
The opportunistic pathogen Candida albicans has a large repertoire of mechanisms to generate genetic and phenotypic diversity despite the lack of meiosis in its life cycle. Its parasexual cycle enables shifts in ploidy, which in turn facilitate recombination, aneuploidy, and homozygosis of whole chromosomes to fuel rapid adaptation. Here we show that the tetraploid state potentiates ploidy variation and drives population heterogeneity. In tetraploids, the rate of losing a single heterozygous marker [loss of heterozygosity (LOH)] is elevated ∼30-fold higher than the rate in diploid cells. Furthermore, isolates recovered after selection for LOH of one, two, or three markers were highly aneuploid, with a broad range of karyotypes including strains with a combination of di-, tri-, and tetrasomic chromosomes. We followed the ploidy trajectories for these tetraploid- and aneuploid-derived isolates, using a combination of flow cytometry and double-digestion restriction-site-associated DNA analyzed with next-generation sequencing. Isolates derived from either tetraploid or aneuploid isolates predominately resolved to a stable euploid state. The majority of isolates reduced to the conventional diploid state; however, stable triploid and tetraploid states were observed in ∼30% of the isolates. Notably, aneuploid isolates were more transient than tetraploid isolates, resolving to a euploid state within a few passages. Furthermore, the likelihood that a particular isolate will resolve to the same ploidy state in replicate evolution experiments is only ∼50%, supporting the idea that the chromosome loss process of the parasexual cycle is random and does not follow trajectories involving specific combinations of chromosomes. Together, our results indicate that tetraploid progenitors can produce populations of progeny cells with a high degree of genomic diversity, from altered ploidy to homozygosis, providing an excellent source of genetic variation upon which selection can act.
Collapse
|
9
|
Kravets A, Yang F, Bethlendy G, Cao Y, Sherman F, Rustchenko E. Adaptation of Candida albicans to growth on sorbose via monosomy of chromosome 5 accompanied by duplication of another chromosome carrying a gene responsible for sorbose utilization. FEMS Yeast Res 2014; 14:708-13. [PMID: 24702787 DOI: 10.1111/1567-1364.12155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/25/2014] [Indexed: 11/27/2022] Open
Abstract
Candida albicans, a fungus that normally inhabits the digestive tract and other mucosal surfaces, can become a pathogen in immunocompromised individuals, causing severe or even fatal infection. Mechanisms by which C. albicans can evade commonly used antifungal agents are not fully understood. We are studying a model system involving growth of C. albicans on toxic sugar sorbose, which represses synthesis of cell wall glucan and, as a result, kills fungi in a manner similar to drugs from the echinocandins class. Adaptation to sorbose occurs predominantly due to reversible loss of one homolog of chromosome 5 (Ch5), which results in upregulation of the metabolic gene SOU1 (SOrbose Utilization) on Ch4. Here, we show that growth on sorbose due to Ch5 monosomy can involve a facultative trisomy of a hybrid Ch4/7 that serves to increase copy number of the SOU1 gene. This shows that control of expression of SOU1 can involve multiple mechanisms; in this case, negative regulation and increase in gene copy number operating simultaneously in cell.
Collapse
Affiliation(s)
- Anatoliy Kravets
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
10
|
Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals. Antimicrob Agents Chemother 2013; 57:5026-36. [PMID: 23896475 DOI: 10.1128/aac.00516-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a prevailing fungal pathogen with a diploid genome that can adapt to environmental stresses by losing or gaining an entire chromosome or a large portion of a chromosome. We have previously found that the loss of one copy of chromosome 5 (Ch5) allows for adaptation to the toxic sugar l-sorbose. l-Sorbose is similar to caspofungin and other antifungals from the echinocandins class, in that it represses synthesis of cell wall glucan in fungi. Here, we extended the study of the phenotypes controlled by Ch5 copy number. We examined 57 strains, either disomic or monosomic for Ch5 and representing five different genetic backgrounds, and found that the monosomy of Ch5 causes elevated levels of chitin and repressed levels of 1,3-β-glucan components of the cell wall, as well as diminished cellular ergosterol. Increased deposition of chitin in the cell wall could be explained, at least partially, by a 2-fold downregulation of CHT2 on the monosomic Ch5 that encodes chitinase and a 1.5-fold upregulation of CHS7 on Ch1 that encodes the protein required for wild-type chitin synthase III activity. Other important outcomes of Ch5 monosomy consist of susceptibility changes to agents representing four major classes of antifungals. Susceptibility to caspofungin increased or decreased and susceptibility to 5-fluorocytosine decreased, whereas susceptibility to fluconazole and amphotericin B increased. Our results suggest that Ch5 monosomy represents an unrecognized C. albicans regulatory strategy that impinges on multiple stress response pathways.
Collapse
|