1
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Pessoa ALS, Quesada AA, Nóbrega PR, Viana APO, de Oliveira KT, Figueiredo T, Santos S, Kok F. Neuropsychological Characterization of Autosomal Recessive Intellectual Developmental Disorder 59 Associated with IMPA1 (MRT59). Brain Sci 2023; 13:1048. [PMID: 37508980 PMCID: PMC10377093 DOI: 10.3390/brainsci13071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biallelic loss of function of IMPA1 causes autosomal recessive intellectual developmental disorder 59 (MRT59, OMIM #617323). MRT59 has been reported to present with significant intellectual disability and disruptive behavior, but little is known about the neurocognitive pattern of those patients. Thus, the aims of this study were: (1) to assess the cognitive profile of these patients, and (2) to evaluate their functional dependence levels. Eighteen adults, aged 37 to 89 years, participated in this study: nine MRT59 patients, five heterozygous carriers and four non-carrier family members. All of them were from a consanguineous family living in Northeast Brazil. All IMPA1 patients had the (c.489_493dupGGGCT) pathogenic variant in homozygosis. For cognitive assessment, the WASI battery was applied in nine MRT59 patients and compared to heterozygous carriers and non-carrier family members. Functional dependence was evaluated using the functional independence measure (FIM). Patients showed moderate to severe intellectual disability and severe functional disabilities. Heterozygous carriers did not differ from non-carriers. MRT59 patients should be followed up by health professionals in an interdisciplinary way to understand their cognitive disabilities and functional needs properly.
Collapse
Affiliation(s)
- Andre Luiz Santos Pessoa
- Albert Sabin Children's Hospital, Fortaleza 60410-794, Brazil
- Faculty of Medicine, State University of Ceará (UECE), Fortaleza 60714-903, Brazil
| | - Andrea Amaro Quesada
- The Edson Queiroz Foundation, University of Fortaleza (UNIFOR), Fortaleza 60811-905, Brazil
| | - Paulo Ribeiro Nóbrega
- Hospital Universitário Walter Cantídio-UFC, Fortaleza 60430-372, Brazil
- Faculty of Medicine, Centro Universitário Christus, Fortaleza 60160-230, Brazil
| | | | | | - Thalita Figueiredo
- Faculty of Medicine, Federal University of Alagoas (UFAL), Maceio 57200-000, Brazil
| | - Silvana Santos
- State University of Paraíba (UEPB), Campina Grande 58429-500, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo (USP), São Paulo 05508-220, Brazil
| |
Collapse
|
3
|
Mucci NC, Jones KA, Cao M, Wyatt MR, Foye S, Kauffman SJ, Richards GR, Taufer M, Chikaraishi Y, Steffan SA, Campagna SR, Goodrich-Blair H. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. mSystems 2022; 7:e0031222. [PMID: 35543104 PMCID: PMC9241642 DOI: 10.1128/msystems.00312-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.
Collapse
Affiliation(s)
- Nicholas C. Mucci
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Katarina A. Jones
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Mengyi Cao
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michael R. Wyatt
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Shane Foye
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Gregory R. Richards
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michela Taufer
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Japan
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- U.S. Department of Agriculture, Agricultural Research Service, Madison, Wisconsin, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Niu B, Nguyen Bach T, Chen X, Raghunath Chandratre K, Isaac Murray J, Zhao Z, Zhang M. Computational modeling and analysis of the morphogenetic domain signaling networks regulating C. elegans embryogenesis. Comput Struct Biotechnol J 2022; 20:3653-3666. [PMID: 35891777 PMCID: PMC9289785 DOI: 10.1016/j.csbj.2022.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022] Open
Abstract
Caenorhabditis elegans, often referred to as the ‘roundworm’, provides a powerful model for studying cell autonomous and cell–cell interactions through the direct observation of embryonic development in vivo. By leveraging the precisely mapped cell lineage at single cell resolution, we are able to study at a systems level how early embryonic cells communicate across morphogenetic domains for the coordinated processes of gene expressions and collective cellular behaviors that regulate tissue morphogenesis. In this study, we developed a computational framework for the exploration of the morphogenetic domain cell signaling networks that may regulate C. elegans gastrulation and embryonic organogenesis. We demonstrated its utility by producing the following results, i) established a virtual reference model of developing C. elegans embryos through the spatiotemporal alignment of individual embryo cell nuclear imaging samples; ii) integrated the single cell spatiotemporal gene expression profile with the established virtual embryo model by data pooling; iii) trained a Machine Learning model (Random Forest Regression), which predicts accurately the spatial positions of the cells given their gene expression profiles for a given developmental time (e.g. total cell number of the embryo); iv) enabled virtual 4-dimensional tomographic graphical modeling of single cell data; v) inferred the biology signaling pathways that act in each of morphogenetic domains by meta-data analysis. It is intriguing that the morphogenetic domain cell signaling network seems to involve some crosstalk of multiple biology signaling pathways during the formation of tissue boundary pattern. Lastly, we developed the Software tool ‘Embryo aligner version 1.0’ and provided it as an Open Source program to the research community for virtual embryo modeling, and phenotype perturbation analyses (https://github.com/csniuben/embryo_aligner/wiki and https://bioinfo89.github.io/C.elegansEmbryonicOrganogenesisweb/).
Collapse
|
5
|
Deficiency of Inositol Monophosphatase Activity Decreases Phosphoinositide Lipids and Enhances TRPV1 Function In Vivo. J Neurosci 2020; 41:408-423. [PMID: 33239401 PMCID: PMC7821860 DOI: 10.1523/jneurosci.0803-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1) channel contributes to neurogenic inflammation and pain hypersensitivity, in part because of its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, and behavioral, biochemical, and functional analyses in Caenorhabditis elegans As capsaicin elicits heat and pain sensations in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response in vivo.
Collapse
|
6
|
Baram Y. Primal categories of neural polarity codes. Cogn Neurodyn 2019; 14:125-135. [PMID: 32015771 DOI: 10.1007/s11571-019-09552-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/28/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022] Open
Abstract
Neuronal membrane and synapse polarities have been attracting considerable interest in recent years. Certain functional roles for such polarities have been suggested, yet, they have largely remained a subject for speculation and debate. Here, we note that neural circuit polarity codes, defined as sets of polarity permutations, divide into primal-size circuit polarity subcodes, which, sharing certain connectivity attributes, are called categories. Two long-debated, seemingly competing paradigms of neuronal self-feedback, namely, axonal discharge and synaptic mediation, are shown to jointly define the distinction between these categories. However, as the second paradigm contains the first, it is mathematically sufficient for complete specification of all categories. The analysis of primal-size circuit polarity categories is found to reveal, explain and extend experimentally observed cortical information capacity values termed "magical numbers", associated with "working memory". While these have been previously argued on grounds of psychological experiments, here they are further supported on analytic grounds by the so-called Hebbian memory paradigm. The information dimensionality associated with these capacities is found to be a consequence of prime factorization of composite circuit polarity code sizes. Different categories of circuit polarity, identical in size and neuronal parameters, are shown to generate different firing rate dynamics.
Collapse
Affiliation(s)
- Yoram Baram
- Computer Science Department, Technion- Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
7
|
Baram Y. Circuit Polarity Effect of Cortical Connectivity, Activity, and Memory. Neural Comput 2018; 30:3037-3071. [PMID: 30216139 DOI: 10.1162/neco_a_01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Experimental constraints have traditionally implied separate studies of different cortical functions, such as memory and sensory-motor control. Yet certain cortical modalities, while repeatedly observed and reported, have not been clearly identified with one cortical function or another. Specifically, while neuronal membrane and synapse polarities with respect to a certain potential value have been attracting considerable interest in recent years, the purposes of such polarities have largely remained a subject for speculation and debate. Formally identifying these polarities as on-off neuronal polarity gates, we analytically show that cortical circuit structure, behavior, and memory are all governed by the combined potent effect of these gates, which we collectively term circuit polarity. Employing widely accepted and biologically validated firing rate and plasticity paradigms, we show that circuit polarity is mathematically embedded in the corresponding models. Moreover, we show that the firing rate dynamics implied by these models are driven by ongoing circuit polarity gating dynamics. Furthermore, circuit polarity is shown to segregate cortical circuits into internally synchronous, externally asynchronous subcircuits, defining their firing rate modes in accordance with different cortical tasks. In contrast to the Hebbian paradigm, which is shown to be susceptible to mutual neuronal interference in the face of asynchrony, circuit polarity is shown to block such interference. Noting convergence of synaptic weights, we show that circuit polarity holds the key to cortical memory, having a segregated capacity linear in the number of neurons. While memory concealment is implied by complete neuronal silencing, memory is restored by reactivating the original circuit polarity. Finally, we show that incomplete deterioration or restoration of circuit polarity results in memory modification, which may be associated with partial or false recall, or novel innovation.
Collapse
Affiliation(s)
- Yoram Baram
- Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
8
|
Figueiredo T, Melo US, Pessoa ALS, Nobrega PR, Kitajima JP, Rusch H, Vaz F, Lucato LT, Zatz M, Kok F, Santos S. A homozygous loss-of-function mutation in inositol monophosphatase 1 (IMPA1) causes severe intellectual disability. Mol Psychiatry 2016; 21:1125-9. [PMID: 26416544 DOI: 10.1038/mp.2015.150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 11/09/2022]
Abstract
The genetic basis of intellectual disability (ID) is extremely heterogeneous and relatively little is known about the role of autosomal recessive traits. In a field study performed in a highly inbred area of Northeastern Brazil, we identified and investigated a large consanguineous family with nine adult members affected by severe ID associated with disruptive behavior. The Genome-Wide Human SNP Array 6.0 microarray was used to determine regions of homozygosity by descent from three affected and one normal family member. Whole-exome sequencing (WES) was performed in one affected patient using the Nextera Rapid-Capture Exome kit and Illumina HiSeq2500 system to identify the causative mutation. Potentially deleterious variants detected in regions of homozygosity by descent and not present in either 59 723 unrelated individuals from the Exome Aggregation Consortium (Browser) or 1484 Brazilians were subject to further scrutiny and segregation analysis by Sanger sequencing. Homozygosity-by-descent analysis disclosed a 20.7-Mb candidate region at 8q12.3-q21.2 (lod score: 3.11). WES identified a homozygous deleterious variant in inositol monophosphatase 1 (IMPA1) (NM_005536), consisting of a 5-bp duplication (c.489_493dupGGGCT; chr8: 82,583,247; GRCh37/hg19) leading to a frameshift and a premature stop codon (p.Ser165Trpfs*10) that cosegregated with the disease in 26 genotyped family members. The IMPA1 gene product is responsible for the final step of biotransformation of inositol triphosphate and diacylglycerol, two second messengers. Despite its many physiological functions, no clinical phenotype has been assigned to this gene dysfunction to date. Additionally, IMPA1 is the main target of lithium, a drug that is at the forefront of treatment for bipolar disorder.
Collapse
Affiliation(s)
- T Figueiredo
- Northeast Biotechnology Network (RENORBIO), Federal University of Paraiba (UFPB), Joao Pessoa, Brazil.,Department of Biology, Paraiba State University (UEPB), Campina Grande, Brazil.,Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - U S Melo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - A L S Pessoa
- Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil.,School of Medicine, Fortaleza University (UNIFOR), Fortaleza, Brazil
| | - P R Nobrega
- Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil
| | | | - H Rusch
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - F Vaz
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - L T Lucato
- Institute of Radiology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - M Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - F Kok
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Neurology, School of Medicine, University of Sao Paulo (USP), Sao Paulo, Brazil.,Mendelics Genomic Analysis, Sao Paulo, Brazil
| | - S Santos
- Northeast Biotechnology Network (RENORBIO), Federal University of Paraiba (UFPB), Joao Pessoa, Brazil.,Department of Biology, Paraiba State University (UEPB), Campina Grande, Brazil
| |
Collapse
|
9
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Fosu-Nyarko J, Tan JACH, Gill R, Agrez VG, Rao U, Jones MGK. De novo analysis of the transcriptome of Pratylenchus zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism. MOLECULAR PLANT PATHOLOGY 2016; 17:532-52. [PMID: 26292651 PMCID: PMC6638428 DOI: 10.1111/mpp.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The root lesion nematode Pratylenchus zeae, a migratory endoparasite, is an economically important pest of major crop plants (e.g. cereals, sugarcane). It enters host roots, migrates through root tissues and feeds from cortical cells, and defends itself against biotic and abiotic stresses in the soil and in host tissues. We report de novo sequencing of the P. zeae transcriptome using 454 FLX, and the identification of putative transcripts encoding proteins required for movement, response to stimuli, feeding and parasitism. Sequencing generated 347,443 good quality reads which were assembled into 10,163 contigs and 139,104 singletons: 65% of contigs and 28% of singletons matched sequences of free-living and parasitic nematodes. Three-quarters of the annotated transcripts were common to reference nematodes, mainly representing genes encoding proteins for structural integrity and fundamental biochemical processes. Over 15,000 transcripts were similar to Caenorhabditis elegans genes encoding proteins with roles in mechanical and neural control of movement, responses to chemicals, mechanical and thermal stresses. Notably, 766 transcripts matched parasitism genes employed by both migratory and sedentary endoparasites in host interactions, three of which hybridized to the gland cell region, suggesting that they might be secreted. Conversely, transcripts for effectors reported to be involved in feeding site formation by sedentary endoparasites were conspicuously absent. Transcripts similar to those encoding some secretory-excretory products at the host interface of Brugia malayi, the secretome of Meloidogyne incognita and products of gland cells of Heterodera glycines were also identified. This P. zeae transcriptome provides new information for genome annotation and functional analysis of possible targets for control of pratylenchid nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
- Nemgenix Pty Ltd, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
| | - Jo-Anne C H Tan
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Vaughan G Agrez
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Uma Rao
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Michael G K Jones
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
11
|
Ratnasekhar C, Sonane M, Satish A, Mudiam MKR. Metabolomics reveals the perturbations in the metabolome ofCaenorhabditis elegansexposed to titanium dioxide nanoparticles. Nanotoxicology 2015; 9:994-1004. [DOI: 10.3109/17435390.2014.993345] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Burke SL, Hammell M, Ambros V. Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans. Genetics 2015; 200:1201-18. [PMID: 26078280 PMCID: PMC4574240 DOI: 10.1534/genetics.115.179184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022] Open
Abstract
Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically protecting against stress from temperature changes. Furthermore, our results indicate that mir-34 and mir-83 may modulate the integrin signaling involved in distal tip cell migration by potentially targeting the GTPase cdc-42 and the beta-integrin pat-3. Our findings suggest a role for mir-34 and mir-83 in integrin-controlled cell migrations that may be conserved through higher organisms. They also provide yet another example of microRNA-based developmental robustness in response to a specific environmental stress, rapid temperature fluctuations.
Collapse
Affiliation(s)
- Samantha L Burke
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Molly Hammell
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
13
|
The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans. PLoS One 2014; 9:e113060. [PMID: 25422944 PMCID: PMC4244091 DOI: 10.1371/journal.pone.0113060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
During ischemic stroke, malfunction of excitatory amino acid transporters and reduced synaptic clearance causes accumulation of Glutamate (Glu) and excessive stimulation of postsynaptic neurons, which can lead to their degeneration by excitotoxicity. The balance between cell death-promoting (neurotoxic) and survival-promoting (neuroprotective) signaling cascades determines the fate of neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF Signaling (IIS) cascade can participate in this balance, as it controls cell stress resistance in nematodes and mammals. Blocking the IIS cascade allows the transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a transcriptional program that protects cells from a range of insults. We study the effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity, where a mutation in a central Glu transporter (glt-3) in a sensitizing background causes Glu-Receptor -dependent neuronal necrosis. We expand our studies on the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity: mutations that are expected to reduce the complex's ability to produce PIP2 and inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2 production enhances neurodegeneration. Our observations therefore affirm the importance of the IIS cascade in determining the susceptibility to necrotic neurodegeneration in nematode excitotoxicity, and demonstrate the ability of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.
Collapse
|
14
|
Ohnishi T, Murata T, Watanabe A, Hida A, Ohba H, Iwayama Y, Mishima K, Gondo Y, Yoshikawa T. Defective craniofacial development and brain function in a mouse model for depletion of intracellular inositol synthesis. J Biol Chem 2014; 289:10785-10796. [PMID: 24554717 DOI: 10.1074/jbc.m113.536706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol is an essential biomolecule that is synthesized by myo-inositol monophosphatase (IMPase) from inositol monophosphate species. The enzymatic activity of IMPase is inhibited by lithium, a drug used for the treatment of mood swings seen in bipolar disorder. Therefore, myo-inositol is thought to have an important role in the mechanism of bipolar disorder, although the details remain elusive. We screened an ethyl nitrosourea mutant mouse library for IMPase gene (Impa) mutations and identified an Impa1 T95K missense mutation. The mutant protein possessed undetectable enzymatic activity. Homozygotes died perinatally, and E18.5 embryos exhibited striking developmental defects, including hypoplasia of the mandible and asymmetric fusion of ribs to the sternum. Perinatal lethality and morphological defects in homozygotes were rescued by dietary myo-inositol. Rescued homozygotes raised on normal drinking water after weaning exhibited a hyper-locomotive trait and prolonged circadian periods, as reported in rodents treated with lithium. Our mice should be advantageous, compared with those generated by the conventional gene knock-out strategy, because they carry minimal genomic damage, e.g. a point mutation. In conclusion, our results reveal critical roles for intracellular myo-inositol synthesis in craniofacial development and the maintenance of proper brain function. Furthermore, this mouse model for cellular inositol depletion could be beneficial for understanding the molecular mechanisms underlying the clinical effect of lithium and myo-inositol-mediated skeletal development.
Collapse
Affiliation(s)
- Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198.
| | - Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198
| | - Akiko Hida
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198
| | - Kazuo Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198
| |
Collapse
|
15
|
Lueke K, Kaiser T, Svetlitchny A, Welzel O, Wenzel EM, Tyagarajan S, Kornhuber J, Groemer TW. Basic presynaptic functions in hippocampal neurons are not affected by acute or chronic lithium treatment. J Neural Transm (Vienna) 2013; 121:211-9. [DOI: 10.1007/s00702-013-1087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/27/2013] [Indexed: 01/27/2023]
|
16
|
Scifo E, Szwajda A, Dębski J, Uusi-Rauva K, Kesti T, Dadlez M, Gingras AC, Tyynelä J, Baumann MH, Jalanko A, Lalowski M. Drafting the CLN3 protein interactome in SH-SY5Y human neuroblastoma cells: a label-free quantitative proteomics approach. J Proteome Res 2013; 12:2101-15. [PMID: 23464991 DOI: 10.1021/pr301125k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive encephalopathies of childhood. One of the most prevalent forms of NCL, Juvenile neuronal ceroid lipofuscinosis (JNCL) or CLN3 disease (OMIM: 204200), is caused by mutations in the CLN3 gene on chromosome 16p12.1. Despite progress in the NCL field, the primary function of ceroid-lipofuscinosis neuronal protein 3 (CLN3) remains elusive. In this study, we aimed to clarify the role of human CLN3 in the brain by identifying CLN3-associated proteins using a Tandem Affinity Purification coupled to Mass Spectrometry (TAP-MS) strategy combined with Significance Analysis of Interactome (SAINT). Human SH-SY5Y-NTAP-CLN3 stable cells were used to isolate native protein complexes for subsequent TAP-MS. Bioinformatic analyses of isolated complexes yielded 58 CLN3 interacting partners (IP) including 42 novel CLN3 IP, as well as 16 CLN3 high confidence interacting partners (HCIP) previously identified in another high-throughput study by Behrends et al., 2010. Moreover, 31 IP of ceroid-lipofuscinosis neuronal protein 5 (CLN5) were identified (18 of which were in common with the CLN3 bait). Our findings support previously suggested involvement of CLN3 in transmembrane transport, lipid homeostasis and neuronal excitability, as well as link it to G-protein signaling and protein folding/sorting in the ER.
Collapse
Affiliation(s)
- Enzo Scifo
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Anatomy, and Finnish Graduate School of Neuroscience, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ohnishi T, Tanizawa Y, Watanabe A, Nakamura T, Ohba H, Hirata H, Kaneda C, Iwayama Y, Arimoto T, Watanabe K, Mori I, Yoshikawa T. Human myo-inositol monophosphatase 2 rescues the nematode thermotaxis mutant ttx-7 more efficiently than IMPA1: functional and evolutionary considerations of the two mammalian myo-inositol monophosphatase genes. J Neurochem 2012. [PMID: 23205734 DOI: 10.1111/jnc.12112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammals express two myo-inositol monophosphatase (IMPase) genes, IMPA1/Impa1 and IMPA2/Impa2. In this study, we compared the spatial expression patterns of the two IMPase gene transcripts and proteins in mouse tissues. Results indicated discrete expression of the two IMPase genes and their protein products in various organs, including the brain. In Caenorhabditis elegans, loss of the IMPase gene, ttx-7, disrupts cellular polarity in RIA neurons, eliciting abnormal thermotaxis behavior. We performed a rescue experiment in mutant nematodes using mammalian IMPases. Human IMPA2 rescued the abnormal behavioral phenotype in the ttx-7 mutants more efficiently than IMPA1. These results raise a question about the phylogenetic origin of IMPases and the biological roles of mammalian IMPase 2 in mammals. Impa2 knockout mice generated in our laboratory, exhibited neither behavioral abnormalities nor a significant reduction in myo-inositol content in the brain and other examined tissues. Given the ability of human IMPA2 to rescue the ttx-7 mutant, and its genetic association with multiple neuropsychiatric disorders, close scrutiny of IMPA2 function and the evolutionary origin of IMPase genes is warranted.
Collapse
Affiliation(s)
- Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|