1
|
Gümüşderelioğlu S, Sahabandu N, Elnatan D, Gregory EF, Chiba K, Niwa S, Luxton GWG, McKenney RJ, Starr DA. The KASH protein UNC-83 differentially regulates kinesin-1 activity to control developmental stage-specific nuclear migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641899. [PMID: 40093101 PMCID: PMC11908248 DOI: 10.1101/2025.03.06.641899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope KASH protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity. The shorter UNC-83c isoform promotes kinesin-1-dependent nuclear movement in embryonic hyp7 precursors, while longer UNC-83a/b isoforms facilitate dynein-mediated nuclear migration in larval P cells. We demonstrate that UNC-83a's N-terminal domain functions as a kinesin-1 inhibitory module by directly binding kinesin heavy chain (UNC-116). This isoform-specific inhibition, combined with differential affinity for kinesin light chain (KLC-2), establishes a molecular switch for directional control. Together, these interdisciplinary studies reveal how alternative isoforms of cargo adaptors can generate developmental stage-specific regulation of motor activity during development.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Natalie Sahabandu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| |
Collapse
|
2
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
4
|
Ho J, Guerrero LA, Libuda DE, Luxton GWG, Starr DA. Actin and CDC-42 contribute to nuclear migration through constricted spaces in C. elegans. Development 2023; 150:dev202115. [PMID: 37756590 PMCID: PMC10617605 DOI: 10.1242/dev.202115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.
Collapse
Affiliation(s)
- Jamie Ho
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Leslie A. Guerrero
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Diana E. Libuda
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Marks P, Petrie R. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Phys Biol 2021; 19. [PMID: 34936999 DOI: 10.1088/1478-3975/ac45e3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
As cells move from two-dimensional (2D) surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.
Collapse
Affiliation(s)
- Pragati Marks
- Department of Biology, Drexel University, 3245 CHESTNUT ST, PISB 401M1, PHILADELPHIA, Philadelphia, 19104-2816, UNITED STATES
| | - Ryan Petrie
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 419, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| |
Collapse
|
7
|
Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans. Mol Genet Genomics 2020; 296:1-20. [PMID: 32888055 DOI: 10.1007/s00438-020-01721-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
Forward genetics is a powerful tool to unravel molecular mechanisms of diverse biological processes. The success of genetic screens primarily relies on the ease of genetic manipulation of an organism and the availability of a plethora of genetic tools. The roundworm Caenorhabditis elegans has been one of the favorite models for genetic studies due to its hermaphroditic lifestyle, ease of maintenance, and availability of various genetic manipulation tools. The strength of C. elegans genetics is highlighted by the leading role of this organism in the discovery of several conserved biological processes. In this review, the principles and strategies for forward genetics in C. elegans are discussed. Further, the recent advancements that have drastically accelerated the otherwise time-consuming process of mutation identification, making forward genetic screens a method of choice for understanding biological functions, are discussed. The emphasis of the review has been on providing practical and conceptual pointers for designing genetic screens that will identify mutations, specifically disrupting the biological processes of interest.
Collapse
|
8
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Ho J, Valdez VA, Ma L, Starr DA. Characterizing Dynein's Role in P-cell Nuclear Migration using an Auxin-Induced Degradation System. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550376 PMCID: PMC7255844 DOI: 10.17912/w2w96j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jamie Ho
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Venecia A Valdez
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
KENGAKU M. Cytoskeletal control of nuclear migration in neurons and non-neuronal cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:337-349. [PMID: 30416174 PMCID: PMC6275330 DOI: 10.2183/pjab.94.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
Cell migration is a complex molecular event that requires translocation of a large, stiff nucleus, oftentimes through interstitial pores of submicron size in tissues. Remarkable progress in the past decade has uncovered an ever-increasing array of diverse nuclear dynamics and underlying cytoskeletal control in various cell models. In many cases, the microtubule motors dynein and kinesin directly interact with the nucleus via the LINC complex and steer directional nuclear movement, while actomyosin contractility and its global flow exert forces to deform and move the nucleus. In this review, I focus on the synergistic interplay of the cytoskeletal motors and spatiotemporal sites of force transmission in various nuclear migration models, with a special focus on neuronal migration in the vertebrate brain.
Collapse
Affiliation(s)
- Mineko KENGAKU
- Kyoto University Institute for Advanced Study, Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Japan
| |
Collapse
|
11
|
Fridolfsson HN, Herrera LA, Brandt JN, Cain NE, Hermann GJ, Starr DA. Genetic Analysis of Nuclear Migration and Anchorage to Study LINC Complexes During Development of Caenorhabditis elegans. Methods Mol Biol 2018; 1840:163-180. [PMID: 30141045 DOI: 10.1007/978-1-4939-8691-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studying nuclear positioning in developing tissues of the model nematode Caenorhabditis elegans greatly contributed to the discovery of SUN and KASH proteins and the formation of the LINC model. Such studies continue to make important contributions into both how LINC complexes are regulated and how defects in LINC components disrupt normal development. The methods described explain how to observe and quantify the following: nuclear migration in embryonic dorsal hypodermal cells, nuclear migration through constricted spaces in larval P cells, nuclear positioning in the embryonic intestinal primordia, and nuclear anchorage in syncytial hypodermal cells. These methods will allow others to employ nuclear positioning in C. elegans as a model to further explore LINC complex regulation and function.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Leslie A Herrera
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - James N Brandt
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Greg J Hermann
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Abstract
Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
14
|
Abstract
The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, which have multiple roles including positioning the nucleus, maintaining its structural organization, and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse new and stimulating results relating to nuclear organization and genome function from across kingdoms were presented in a session stream entitled “Dynamic Organization of the Nucleus” at this year's Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first session stream run by the Nuclear Dynamics Special Interest Group, which was organized by David Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, USA). The session featured presentations on areas relating to nuclear organization across kingdoms including the nuclear envelope, chromatin organization, and genome function.
Collapse
Affiliation(s)
- Stephen D Thorpe
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| | | |
Collapse
|
15
|
Bone CR, Chang YT, Cain NE, Murphy SP, Starr DA. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells. Development 2016; 143:4193-4202. [PMID: 27697906 DOI: 10.1242/dev.141192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shaun P Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
17
|
Razafsky D, Hodzic D. Nuclear envelope: positioning nuclei and organizing synapses. Curr Opin Cell Biol 2015; 34:84-93. [PMID: 26079712 DOI: 10.1016/j.ceb.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about A-type lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Didier Hodzic
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
18
|
Bone CR, Tapley EC, Gorjánácz M, Starr DA. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Mol Biol Cell 2014; 25:2853-65. [PMID: 25057012 PMCID: PMC4161519 DOI: 10.1091/mbc.e14-05-0971] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleoplasmic domain of the Caenorhabditis elegans SUN protein UNC-84 interacts with lamin. If this interaction is disrupted, a partial failure in nuclear migration occurs. Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Mátyás Gorjánácz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
19
|
Cain NE, Tapley EC, McDonald KL, Cain BM, Starr DA. The SUN protein UNC-84 is required only in force-bearing cells to maintain nuclear envelope architecture. ACTA ACUST UNITED AC 2014; 206:163-72. [PMID: 25023515 PMCID: PMC4107780 DOI: 10.1083/jcb.201405081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SUN-KASH bridges that connect the nucleoskeleton to the cytoskeleton are only required to maintain nuclear envelope spacing in cells subjected to increased mechanical forces, such as muscle cells. The nuclear envelope (NE) consists of two evenly spaced bilayers, the inner and outer nuclear membranes. The Sad1p and UNC-84 (SUN) proteins and Klarsicht, ANC-1, and Syne homology (KASH) proteins that interact to form LINC (linker of nucleoskeleton and cytoskeleton) complexes connecting the nucleoskeleton to the cytoskeleton have been implicated in maintaining NE spacing. Surprisingly, the NE morphology of most Caenorhabditis elegans nuclei was normal in the absence of functional SUN proteins. Distortions of the perinuclear space observed in unc-84 mutant muscle nuclei resembled those previously observed in HeLa cells, suggesting that SUN proteins are required to maintain NE architecture in cells under high mechanical strain. The UNC-84 protein with large deletions in its luminal domain was able to form functional NE bridges but had no observable effect on NE architecture. Therefore, SUN-KASH bridges are only required to maintain NE spacing in cells subjected to increased mechanical forces. Furthermore, SUN proteins do not dictate the width of the NE.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Benjamin M Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Daniel A Starr
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
20
|
Hu PJ. Whole genome sequencing and the transformation of C. elegans forward genetics. Methods 2014; 68:437-40. [PMID: 24874788 DOI: 10.1016/j.ymeth.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 11/16/2022] Open
Abstract
Forward genetics has been an undeniably powerful approach in Caenorhabditis elegans and other model organisms. However, the trek from mutant isolation to identification of the causative molecular lesion can be time-consuming and fraught with obstacles. This has changed with the advent of whole genome sequencing (WGS). The widespread availability of high-throughput sequencing technology, coupled with the increasing affordability of WGS, has enabled the routine use of WGS in the analysis of forward genetic screens. The noteworthy development of one-step mapping/sequencing approaches has largely eliminated the bottleneck of conventional high-resolution mapping, greatly accelerating the journey from mutagenesis to gene discovery. By enabling the use of increasingly complex and diverse genetic backgrounds as substrates for mutagenesis, WGS is expanding the landscape of biological problems that can be interrogated using forward genetic approaches in C. elegans and other organisms.
Collapse
Affiliation(s)
- Patrick J Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|