1
|
Zhang W, Li Y, Li H, Liu X, Zheng T, Li G, Liu B, Lv T, Wei Z, Xing C, Jia S, Meng A, Wu X. Znf706 regulates germ plasm assembly and primordial germ cell development in zebrafish. J Genet Genomics 2025; 52:666-679. [PMID: 39571790 DOI: 10.1016/j.jgg.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 01/14/2025]
Abstract
The cell fate of primordial germ cell (PGC) in zebrafish is pre-determined by maternally deposited germ plasm, which is packaged into ribonucleoprotein complex in oocytes and inherited into PGC-fated cells in embryos. However, the maternal factors regulating the assembly of germ plasm and PGC development remain poorly understood. In this study, we report that the maternal transcription factor Znf706 regulates the assembly of germ plasm factors into a granule-like structure localized perinuclearly in PGC during migration. Maternal and zygotic mutants of znf706 exhibit deficient germ plasm scattering at the early embryonic stage, decreased PGC numbers with some mislocation during PGC migration, and a lower female ratio in adulthood. Notably, the implementation of Znf706 CUT&Tag and RNA-seq on immature oocytes uncovers that Znf706 in stage I oocytes may promote transcription of several mitochondrial genes in addition to other functions. Hence, we propose that Znf706 is implicated in germ plasm assembly and PGC development in zebrafish.
Collapse
Affiliation(s)
- Weiying Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqi Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Liu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zheng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boqi Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Lv
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zihang Wei
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, Guangdong 510320, China.
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Keeley S, Fernández-Lajarín M, Bergemann D, John N, Parrott L, Andrea BE, González-Rosa JM. Rapid and robust generation of cardiomyocyte-specific crispants in zebrafish using the cardiodeleter system. CELL REPORTS METHODS 2025; 5:101003. [PMID: 40132543 PMCID: PMC12049713 DOI: 10.1016/j.crmeth.2025.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
CRISPR-Cas9 has accelerated loss-of-function studies in zebrafish, but creating tissue-specific mutant lines is still labor intensive. While some tissue-specific Cas9 zebrafish lines exist, standardized methods for gene targeting, including guide RNA (gRNA) delivery, are lacking, limiting broader use in the community. To tackle these limitations, we develop a cardiomyocyte-specific Cas9 line, the cardiodeleter, that efficiently generates biallelic mutations in combination with gene-specific gRNAs. We create transposon-based guide shuttles that deliver gRNAs targeting a gene of interest while permanently labeling cells susceptible to becoming mutant. We validate this modular approach by deleting five genes (ect2, tnnt2a, cmlc2, amhc, and erbb2), resulting in the loss of the corresponding protein or phenocopy of established mutants. We provide detailed protocols for generating guide shuttles, facilitating the adoption of these techniques in the zebrafish community. Our approach enables rapid generation of tissue-specific crispants and analysis of mosaic phenotypes, making it a valuable tool for cell-autonomous studies and genetic screening.
Collapse
Affiliation(s)
- Sean Keeley
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA; Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02129, USA
| | - Miriam Fernández-Lajarín
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA; Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02129, USA
| | - David Bergemann
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02129, USA
| | - Nicolette John
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02129, USA
| | - Lily Parrott
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Brittany E Andrea
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02129, USA
| | - Juan Manuel González-Rosa
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA; Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
3
|
Hu Y, Chen Y, Zhang Y, Liu Z, Li J. Protocol for conditional mutagenesis in zebrafish germ cells using Tol2 transposon and a CRISPR-Cas9-based plasmid system. STAR Protoc 2025; 6:103516. [PMID: 39709609 PMCID: PMC11726784 DOI: 10.1016/j.xpro.2024.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Here, we present a protocol for conditional mutagenesis in zebrafish germ cells using Tol2 transposon and a CRISPR-Cas9-based plasmid system. We describe steps for conditional mutagenesis plasmid construction, zebrafish embryo microinjection, and screening for green fluorescence in the heart. This protocol is simple to execute, time efficient, and multifunctional, enabling the disruption of genes in zebrafish germ cells to be conducted with ease. For complete details on the use and execution of this protocol, please refer to Hu et al.1.
Collapse
Affiliation(s)
- Yixuan Hu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Yutao Chen
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Yu Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Zhiquan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Liu T, He W, Zhong Z, Lu C, Wu L, Wang Z, Smith WK, Shi Q, Long Q, Wang H. The circadian clock orchestrates spermatogonial differentiation and fertilization by regulating retinoic acid signaling in vertebrates. Natl Sci Rev 2025; 12:nwae456. [PMID: 40051524 PMCID: PMC11884735 DOI: 10.1093/nsr/nwae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 03/09/2025] Open
Abstract
The circadian clock generates and maintains ∼24-hour oscillations in almost all organs. The testis, however, remains mysterious, without a clear understanding of its circadian functions. Our time-series transcriptome analysis reveals more than 1000 rhythmically expressed genes in the zebrafish and mouse testes, respectively. Canonical circadian clock genes are rhythmically expressed in Sertoli cells and regulate retinoic acid (RA) production, which is also evidenced by their co-expression with RA synthesis genes in single Sertoli cells. Genetic and pharmacological manipulations and temporal desynchronization revealed that the circadian clock-regulated RA signaling synchronizes spermatogonial differentiation via zbtb16a and promotes fertilization via izumo1 in zebrafish. Our findings indicate that the testicular circadian clock contributes to reproduction in a cell-specific manner through RA signaling, highlighting circadian roles in male fertility.
Collapse
Affiliation(s)
- Taole Liu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Wei He
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Chenchen Lu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Lianxin Wu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ziming Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - William Kojo Smith
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Quan Shi
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qiaoming Long
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Siniscalco AM, Perera RP, Greenslade JE, Veeravenkatasubramanian H, Masters A, Doll HM, Raj B. Barcoding Notch signaling in the developing brain. Development 2024; 151:dev203102. [PMID: 39575683 DOI: 10.1242/dev.203102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control, while the recorder obtains mutations in ancestral cells where Notch is active. We combine SABER-seq with an expanded juvenile brain atlas to identify cell types derived from Notch-active founders. Our data reveal rare examples where differential Notch activities in ancestral progenitors are detected in terminally differentiated neuronal subtypes. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail M Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jessie E Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah M Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Desingu Rajan AR, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2a/b. Dis Model Mech 2024; 17:dmm050862. [PMID: 39415595 PMCID: PMC11646113 DOI: 10.1242/dmm.050862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF-2) is a dominantly inherited genetic disorder that results from variants in the tumor suppressor gene, neurofibromin 2 (NF2). Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by inducible genetic knockout of nf2a/b, the zebrafish homologs of human NF2. Analysis of nf2a and nf2b expression revealed ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displayed lower expression levels. Induction of nf2a/b knockout at early stages increased the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggered the development of a spectrum of tumors, including vestibular Schwannomas, spinal Schwannomas, meningiomas and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
- Ayyappa Raja Desingu Rajan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925 Vodnany, Czech Republic
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA 90089, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Zhang C, Wei W, Lu T, Zhang Y, Li J, Wang J, Chen A, Wen F, Shao M. Generation of Zebrafish Maternal Mutants via Oocyte-Specific Knockout System. Bio Protoc 2024; 14:e5092. [PMID: 39525965 PMCID: PMC11543609 DOI: 10.21769/bioprotoc.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Maternal mRNAs and proteins are produced during oogenesis by more than 60% of zebrafish genes. They are indispensable for fertilization and early embryogenesis. Generation and analysis of the maternal mutant is the most direct way to characterize the maternal function of the specific gene. However, due to the lethality of zygotic mutants, the maternal function of most genes in zebrafish remains elusive. Several methods have been developed to circumvent this obstacle, including mRNA rescue, germ-line replacement, oocyte microinjection in situ, mosaic mutation, and bacterial artificial chromosome (BAC)-mediated conditional rescue. Here, we provide an alternative approach to generate zebrafish maternal mutants rapidly and efficiently by introducing four tandem sgRNA expression cassettes into Tg(zpc:zcas9) embryos. This method is more technically feasible and cost- and time-effective than other established methods. Key features • This protocol can circumvent the lethality or infertility of the zygotic mutants to obtain maternal mutants of the target gene. • This protocol is time-saving (one fish generation). • Using this protocol, double-gene maternal mutants can be obtained in a single generation. • Stable lines can be established to continuously produce maternal mutant embryos for the gene of interest.
Collapse
Affiliation(s)
- Chong Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Wenlu Wei
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiaguang Li
- Shandong University Taishan College, Qingdao, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Fenfen Wen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Shandong University Taishan College, Qingdao, China
| |
Collapse
|
8
|
Keeley S, Fernández-Lajarín M, Bergemann D, John N, Parrott L, Andrea BE, González-Rosa JM. Optimization of methods for rapid and robust generation of cardiomyocyte-specific crispants in zebrafish using the cardiodeleter system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615502. [PMID: 39651137 PMCID: PMC11623696 DOI: 10.1101/2024.09.27.615502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
CRISPR/Cas9 has massively accelerated the generation of gene loss-of-function models in zebrafish. However, establishing tissue-specific mutant lines remains a laborious and time-consuming process. Although a few dozen tissue-specific Cas9 zebrafish lines have been developed, the lack of standardization of some key methods, including gRNA delivery, has limited the implementation of these approaches in the zebrafish community. To tackle these limitations, we have established a cardiomyocyte-specific Cas9 line, the cardiodeleter , which efficiently generates biallelic mutations in combination with gene-specific gRNAs. We have also optimized the development of transposon-based guide shuttles that carry gRNAs targeting a gene of interest and permanently label the cells susceptible to becoming mutant. We validated this modular approach by deleting five genes ( ect2 , tnnt2a , cmlc2 , amhc , and erbb2 ), all resulting in the loss of the corresponding protein or phenocopying established mutants. Additionally, we provide detailed protocols describing how to generate guide shuttles , which will facilitate the dissemination of these techniques in the zebrafish community. Our approach enables the rapid generation of tissue-specific crispants and analysis of mosaic phenotypes, bypassing limitations such as embryonic lethality, making it a valuable tool for cell-autonomous studies and genetic screenings.
Collapse
|
9
|
Petrosky SJ, Williams TM, Rebeiz M. A genetic screen of transcription factors in the Drosophila melanogaster abdomen identifies novel pigmentation genes. G3 (BETHESDA, MD.) 2024; 14:jkae097. [PMID: 38820091 PMCID: PMC11373662 DOI: 10.1093/g3journal/jkae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 06/02/2024]
Abstract
Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical School to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.
Collapse
Affiliation(s)
- Sarah J Petrosky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Park SJ, Silic MR, Staab PL, Chen J, Zackschewski EL, Zhang G. Evolution of two-pore domain potassium channels and their gene expression in zebrafish embryos. Dev Dyn 2024; 253:722-749. [PMID: 38270285 PMCID: PMC11269526 DOI: 10.1002/dvdy.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The two-pore domain potassium (K2P) channels are a major type of potassium channels that maintain the cell membrane potential by conducting passive potassium leak currents independent of voltage change. They play prominent roles in multiple physiological processes, including neuromodulation, perception of pain, breathing and mood control, and response to volatile anesthetics. Mutations in K2P channels have been linked to many human diseases, such as neuronal and cardiovascular disorders and cancers. Significant progress has been made to understand their protein structures, physiological functions, and pharmacological modifiers. However, their expression and function during embryonic development remain largely unknown. RESULTS We employed the zebrafish model and identified 23 k2p genes using BLAST search and gene cloning. We first analyzed vertebrate K2P channel evolution by phylogenetic and syntenic analyses. Our data revealed that the six subtypes of the K2P genes have already evolved in invertebrates long before the emergence of vertebrates. Moreover, the vertebrate K2P gene number increased, most likely due to two whole-genome duplications. Furthermore, we examined zebrafish k2p gene expression during early embryogenesis by in situ hybridization. Each subgroup's genes showed similar but distinct gene expression domains with some exceptions. Most of them were expressed in neural tissues consistent with their known function of neural excitability regulation. However, a few k2p genes were expressed temporarily in specific tissues or organs, suggesting that these K2P channels may be needed for embryonic development. CONCLUSIONS Our phylogenetic and developmental analyses of K2P channels shed light on their evolutionary history and potential roles during embryogenesis related to their physiological functions and human channelopathies.
Collapse
Affiliation(s)
- Sung Jun Park
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
| | - Martin R. Silic
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
| | - Peyton L. Staab
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
| | - Jiapei Chen
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
| | - Ethan L. Zackschewski
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
- Purdue University Center for Cancer Research, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, Indiana. 47906. USA
| |
Collapse
|
11
|
Kang Q, Jia J, Dean ED, Yuan H, Dai C, Li Z, Jiang F, Zhang XK, Powers AC, Chen W, Li M. ErbB3 is required for hyperaminoacidemia-induced pancreatic α cell hyperplasia. J Biol Chem 2024; 300:107499. [PMID: 38944125 PMCID: PMC11326907 DOI: 10.1016/j.jbc.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 07/01/2024] Open
Abstract
Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - E Danielle Dean
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hang Yuan
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chunhua Dai
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhehui Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Alvin C Powers
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Wenbiao Chen
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Perlee S, Ma Y, Hunter MV, Swanson JB, Ming Z, Xia J, Lionnet T, McGrail M, White RM. Identifying in vivo genetic dependencies of melanocyte and melanoma development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586101. [PMID: 38562693 PMCID: PMC10983904 DOI: 10.1101/2024.03.22.586101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.
Collapse
|
13
|
Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, Arulsamy A. Beyond drug discovery: Exploring the physiological and methodological dimensions of zebrafish in diabetes research. Exp Physiol 2024; 109:847-872. [PMID: 38279951 PMCID: PMC11140176 DOI: 10.1113/ep091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Syed Faizan
- Department of Pharmaceutical ChemistryJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Mohd. Farooq Shaikh
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Kamsagara Linganna Krishna
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Seema Mehdi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Nabeel Kinattingal
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
14
|
Rajan ARD, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590787. [PMID: 38712289 PMCID: PMC11071375 DOI: 10.1101/2024.04.23.590787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neurofibromatosis Type 2 (NF-2) is a dominantly inherited genetic disorder that results from mutations in the tumor suppressor gene, neurofibromin 2 (NF2) gene. Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by an inducible genetic knockout of nf2a/b, the zebrafish homolog of human NF2. Analysis of nf2a and nf2b expression reveals ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displays lower expression levels. Induction of nf2a/b knockout at early stages increases the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggers the development of a spectrum of tumors, including vestibular schwannomas, spinal schwannomas, meningiomas, and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital NHS Foundation Trust, Cambridge, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
15
|
Mitic N, Neuschulz A, Spanjaard B, Schneider J, Fresmann N, Novoselc KT, Strunk T, Münster L, Olivares-Chauvet P, Ninkovic J, Junker JP. Dissecting the spatiotemporal diversity of adult neural stem cells. Mol Syst Biol 2024; 20:321-337. [PMID: 38365956 PMCID: PMC10987636 DOI: 10.1038/s44320-024-00022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Adult stem cells are important for tissue turnover and regeneration. However, in most adult systems it remains elusive how stem cells assume different functional states and support spatially patterned tissue architecture. Here, we dissected the diversity of neural stem cells in the adult zebrafish brain, an organ that is characterized by pronounced zonation and high regenerative capacity. We combined single-cell transcriptomics of dissected brain regions with massively parallel lineage tracing and in vivo RNA metabolic labeling to analyze the regulation of neural stem cells in space and time. We detected a large diversity of neural stem cells, with some subtypes being restricted to a single brain region, while others were found globally across the brain. Global stem cell states are linked to neurogenic differentiation, with different states being involved in proliferative and non-proliferative differentiation. Our work reveals principles of adult stem cell organization and establishes a resource for the functional manipulation of neural stem cell subtypes.
Collapse
Affiliation(s)
- Nina Mitic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Anika Neuschulz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Bastiaan Spanjaard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Julia Schneider
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Stem Cell Research, Munich, Germany
- Biomedical Center Munich (BMC), Department of Cell Biology and Anatomy, Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
| | - Nora Fresmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klara Tereza Novoselc
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Stem Cell Research, Munich, Germany
- Biomedical Center Munich (BMC), Department of Cell Biology and Anatomy, Medical Faculty, LMU, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU, Munich, Germany
| | - Taraneh Strunk
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Lisa Münster
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Pedro Olivares-Chauvet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Jovica Ninkovic
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Stem Cell Research, Munich, Germany
- Biomedical Center Munich (BMC), Department of Cell Biology and Anatomy, Medical Faculty, LMU, Munich, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Bin JM, Suminaite D, Benito-Kwiecinski SK, Kegel L, Rubio-Brotons M, Early JJ, Soong D, Livesey MR, Poole RJ, Lyons DA. Importin 13-dependent axon diameter growth regulates conduction speeds along myelinated CNS axons. Nat Commun 2024; 15:1790. [PMID: 38413580 PMCID: PMC10899189 DOI: 10.1038/s41467-024-45908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Maria Rubio-Brotons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Daniel Soong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
17
|
Montal E, Suresh S, Ma Y, Tagore MM, White RM. Cancer Modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). Methods Mol Biol 2024; 2707:83-97. [PMID: 37668906 DOI: 10.1007/978-1-0716-3401-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Transgenic expression of genes is a mainstay of cancer modeling in zebrafish. Traditional transgenic techniques rely upon injection into one-cell embryos, but ideally these transgenes would be expressed only in adult somatic tissues. We provide a method to model cancer in adult zebrafish in which transgenes can be expressed via electroporation. Using melanoma as an example, we demonstrate the feasibility of expressing oncogenes such as BRAFV600E as well as CRISPR/Cas9 inactivation of tumor suppressors such as PTEN. These approaches can be performed in any genetic background such as existing fluorophore reporter lines or the casper line. These methods can readily be extended to other cell types allowing for rapid adult modeling of cancer in zebrafish.
Collapse
Affiliation(s)
- Emily Montal
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shruthy Suresh
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilun Ma
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohita M Tagore
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Shiraki T, Kawakami K. Generation of Transgenic Fish Harboring CRISPR/Cas9-Mediated Somatic Mutations Via a tRNA-Based Multiplex sgRNA Expression. Methods Mol Biol 2024; 2707:305-318. [PMID: 37668921 DOI: 10.1007/978-1-0716-3401-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The controlled expression of Cas9 and/or sgRNA in transgenic zebrafish made it possible to knock out a gene in a spatially and/or temporally controlled manner. This transgenic approach can be more useful if multiple sgRNAs are efficiently expressed since we can improve the biallelic frame-shift mutation rate and circumvent the functional redundancy of genes and genetic compensation. We developed the tRNA-based system to express multiple functional sgRNAs from a single transcript in zebrafish and found that it is applicable to the transgenic expression of multiple sgRNAs. In this chapter, we describe a procedure for the generation of plasmids containing multiple sgRNAs flanked by tRNAs and a method to induce multiple CRISPR/Cas9-mediated genome modifications in transgenic zebrafish.
Collapse
Affiliation(s)
- Tomoya Shiraki
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
19
|
Tagore M, Hergenreder E, Perlee SC, Cruz NM, Menocal L, Suresh S, Chan E, Baron M, Melendez S, Dave A, Chatila WK, Nsengimana J, Koche RP, Hollmann TJ, Ideker T, Studer L, Schietinger A, White RM. GABA Regulates Electrical Activity and Tumor Initiation in Melanoma. Cancer Discov 2023; 13:2270-2291. [PMID: 37553760 PMCID: PMC10551668 DOI: 10.1158/2159-8290.cd-23-0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Oncogenes can initiate tumors only in certain cellular contexts, which is referred to as oncogenic competence. In melanoma, whether cells in the microenvironment can endow such competence remains unclear. Using a combination of zebrafish transgenesis coupled with human tissues, we demonstrate that GABAergic signaling between keratinocytes and melanocytes promotes melanoma initiation by BRAFV600E. GABA is synthesized in melanoma cells, which then acts on GABA-A receptors in keratinocytes. Electron microscopy demonstrates specialized cell-cell junctions between keratinocytes and melanoma cells, and multielectrode array analysis shows that GABA acts to inhibit electrical activity in melanoma/keratinocyte cocultures. Genetic and pharmacologic perturbation of GABA synthesis abrogates melanoma initiation in vivo. These data suggest that GABAergic signaling across the skin microenvironment regulates the ability of oncogenes to initiate melanoma. SIGNIFICANCE This study shows evidence of GABA-mediated regulation of electrical activity between melanoma cells and keratinocytes, providing a new mechanism by which the microenvironment promotes tumor initiation. This provides insights into the role of the skin microenvironment in early melanomas while identifying GABA as a potential therapeutic target in melanoma. See related commentary by Ceol, p. 2128. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Sarah C. Perlee
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelly M. Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Menocal
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maayan Baron
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Stephanie Melendez
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J. Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Pinto-Pinho P, Ferreira AF, Pinto-Leite R, Fardilha M, Colaço B. The History and Prospects of Rabbit Sperm Sexing. Vet Sci 2023; 10:509. [PMID: 37624296 PMCID: PMC10459625 DOI: 10.3390/vetsci10080509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Sperm sex selection is a longstanding challenge in the field of animal reproduction. The cuniculture industry, in particular producers of males or females for breeding purposes, would greatly benefit from the pre-selection of the offspring's sex. This review article overviews the current and future developments in rabbit sperm sexing technologies, as well as the implications of implementing these methodologies in cuniculture. The first attempts of sperm sexing were performed in rabbits; however, a both efficient and cost-effective methodology was not yet developed for this species. Those included sperm sexing according to differences in sperm density, surface electric charge, pH susceptibility, antisera reaction, and flow cytometry. Separation by flow cytometry has proven to be efficient in rabbits, yielding fractions with approximately 81% and 86% purity for X- and Y-sperm, respectively. However, it is not cost-effective for cuniculture and decreases sperm quality. The advantages, limitations, and practical considerations of each method are presented, highlighting their applicability and efficiency. Furthermore, herein we explore the potential of immunological-based techniques that overcome some of the limitations of earlier methods, as well as recent advancements in sperm sexing technologies in other animal models, which could be applied to rabbits. Finally, the challenges associated with the development and widespread implementation of rabbit sperm sexing technologies are addressed. By understanding the advantages and limitations of existing and emerging methods, researchers can direct their efforts towards the most promising directions, ultimately contributing to a more efficient, profitable, and sustainable cuniculture.
Collapse
Affiliation(s)
- Patrícia Pinto-Pinho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory of Signal Transduction, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E, 5000-508 Vila Real, Portugal;
- Experimental Pathology and Terapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - Ana F. Ferreira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - Rosário Pinto-Leite
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E, 5000-508 Vila Real, Portugal;
- Experimental Pathology and Terapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| |
Collapse
|
21
|
Jimenez Gonzalez A, Baranasic D, Müller F. Zebrafish regulatory genomic resources for disease modelling and regeneration. Dis Model Mech 2023; 16:dmm050280. [PMID: 37529920 PMCID: PMC10417509 DOI: 10.1242/dmm.050280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish.
Collapse
Affiliation(s)
- Ada Jimenez Gonzalez
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London SW7 2AZ, UK
- MRC London Institute of Medical Sciences, London W12 0NN, UK
- Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Chong-Morrison V, Mayes S, Simões FC, Senanayake U, Carroll DS, Riley PR, Wilson SW, Sauka-Spengler T. Ac/Ds transposition for CRISPR/dCas9-SID4x epigenome modulation in zebrafish. Biol Open 2023; 12:bio059995. [PMID: 37367831 PMCID: PMC10320716 DOI: 10.1242/bio.059995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.
Collapse
Affiliation(s)
- Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Sarah Mayes
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Filipa C. Simões
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Dervla S. Carroll
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Paul R. Riley
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Stephen W. Wilson
- University College London, Department of Cell & Developmental Biology, London WC1E 6BT, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
23
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
24
|
Gong Y, Yang B, Zhang D, Zhang Y, Tang Z, Yang L, Coate KC, Yin L, Covington BA, Patel RS, Siv WA, Sellick K, Shou M, Chang W, Danielle Dean E, Powers AC, Chen W. Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways. Nat Commun 2023; 14:235. [PMID: 36646689 PMCID: PMC9842633 DOI: 10.1038/s41467-022-35705-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.
Collapse
Affiliation(s)
- Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Dingdong Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Liu Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Ravi S Patel
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Walter A Siv
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Matthew Shou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Wenhan Chang
- University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, 94158, USA
| | - E Danielle Dean
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
25
|
Kang Q, Zheng J, Jia J, Xu Y, Bai X, Chen X, Zhang XK, Wong FS, Zhang C, Li M. Disruption of the glucagon receptor increases glucagon expression beyond α-cell hyperplasia in zebrafish. J Biol Chem 2022; 298:102665. [PMID: 36334626 PMCID: PMC9719020 DOI: 10.1016/j.jbc.2022.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jihong Zheng
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ying Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Bai
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
26
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
27
|
Wang G, Li Q, Xu J, Zhao S, Zhou R, Chen Z, Jiang W, Gao X, Zhou S, Chen Z, Sun Q, Ma C, Chen L, Shi B, Guo Y, Wang H, Wang X, Li H, Cai T, Wang Y, Chen Z, Wang F, Liu Q. Somatic Genetics Analysis of Sleep in Adult Mice. J Neurosci 2022; 42:5617-5640. [PMID: 35667851 PMCID: PMC9295845 DOI: 10.1523/jneurosci.0089-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Classical forward and reverse mouse genetics require germline mutations and, thus, are unwieldy to study sleep functions of essential genes or redundant pathways. It is also time-consuming to conduct EEG/EMG-based mouse sleep screening because of labor-intensive surgeries and genetic crosses. Here, we describe a highly accurate SleepV (video) system and adeno-associated virus (AAV)-based adult brain chimeric (ABC)-expression/KO platform for somatic genetics analysis of sleep in adult male or female mice. A pilot ABC screen identifies CREB and CRTC1, of which constitutive or inducible expression significantly reduces quantity and/or quality of non-rapid eye movement sleep. Whereas ABC-KO of exon 13 of Sik3 by AAV-Cre injection in Sik3-E13flox/flox adult mice phenocopies Sleepy (Sik3 Slp/+ ) mice, ABC-CRISPR of Slp/Sik3 reverses hypersomnia of Sleepy mice, indicating a direct role of SLP/SIK3 kinase in sleep regulation. Multiplex ABC-CRISPR of both orexin/hypocretin receptors causes narcolepsy episodes, enabling one-step analysis of redundant genes in adult mice. Therefore, this somatic genetics approach should facilitate high-throughput analysis of sleep regulatory genes, especially for essential or redundant genes, in adult mice by skipping mouse development and minimizing genetic crosses.SIGNIFICANCE STATEMENT The molecular mechanisms of mammalian sleep regulation remain unclear. Classical germline mouse genetics are unwieldy to study sleep functions of essential genes or redundant pathways. The EEG/EMG-based mouse sleep screening is time-consuming because of labor-intensive surgeries and lengthy genetic crosses. To overcome these "bottlenecks," we developed a highly accurate video-based sleep analysis system and adeno-associated virus-mediated ABC-expression/KO platform for somatic genetics analysis of sleep in adult mice. These methodologies facilitate rapid identification of sleep regulatory genes, but also efficient mechanistic studies of the molecular pathways of sleep regulation in mice.
Collapse
Affiliation(s)
- Guodong Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Junjie Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shuai Zhao
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Rui Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Biological Sciences, China Agriculture University, Beijing, 100094, China
| | - Zhenkang Chen
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75235
| | - Wentong Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xue Gao
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhiyu Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Quanzhi Sun
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Chengyuan Ma
- Chinese Institute of Brain Science, Beijing, 102206, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Haiyan Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Xia Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Huaiye Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yibing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Zhineng Chen
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
28
|
Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet Sci 2022; 9:vetsci9070312. [PMID: 35878329 PMCID: PMC9323928 DOI: 10.3390/vetsci9070312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Diabetes is a chronic metabolic disease characterized by high blood glucose levels (hyperglycemia). Type 2 diabetes mellitus (T2DM) and its complications are a worldwide public health problem, affecting people from all developed and developing countries. Hyperglycemia can cause damage to the vascular system and dysfunction of organs, such as the kidneys, heart, retina of the eyes, and nerves. Diabetic nephropathy (DN) is one of the most severe micro-vascular complications, which can lead to ESRD (end-stage renal disease). Zebrafish are ideal for wide-scale analysis or screening, due to their small size, quick growth, transparent embryos, vast number of offspring, and gene similarity with humans, which combine to make zebrafish an ideal model for diabetes. The readily available tools for gene editing using morpholinos or CRISPR/Cas9, as well as chemical/drug therapy by microinjection or skin absorption, enable zebrafish diabetes mellitus models to be established in a number of ways. In this review, we emphasize the physiological and pathological processes relating to micro-vascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish. This study specifies the benefits and drawbacks and future perspective of using zebrafish as a disease model. Abstract Diabetes mellitus (DM) is a complicated metabolic illness that has had a worldwide impact and placed an unsustainable load on both developed and developing countries’ health care systems. According to the International Diabetes Federation, roughly 537 million individuals had diabetes in 2021, with type 2 diabetes mellitus accounting for the majority of cases (T2DM). T2DM is a chronic illness defined by insufficient insulin production from pancreatic islet cells. T2DM generates various micro and macrovascular problems, with diabetic nephropathy (DN) being one of the most serious microvascular consequences, and which can lead to end-stage renal disease. The zebrafish (Danio rerio) has set the way for its future as a disease model organism. As numerous essential developmental processes, such as glucose metabolism and reactive metabolite production pathways, have been identified in zebrafish that are comparable to those seen in humans, it is a good model for studying diabetes and its consequences. It also has many benefits over other vertebrate models, including the permeability of its embryos to small compounds, disease-driven therapeutic target selection, in vivo validation, and deconstruction of biological networks. The organism can also be utilized to investigate and understand the genetic abnormalities linked to the onset of diabetes problems. Zebrafish may be used to examine and visualize the growth, morphology, and function of organs under normal physiological and diabetic settings. The zebrafish has become one of the most useful models for studying DN, especially when combined with genetic alterations and/or mutant or transgenic fish lines. The significant advancements of CRISPR and next-generation sequencing technology for disease modelling in zebrafish, as well as developments in molecular and nano technologies, have advanced the understanding of the molecular mechanisms of several human diseases, including DN. In this review, we emphasize the physiological and pathological processes relating to microvascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish.
Collapse
|
29
|
Blomme J, Develtere W, Köse A, Arraiza Ribera J, Brugmans C, Jaraba-Wallace J, Decaestecker W, Rombaut D, Baekelandt A, Daniel Fernández Fernández Á, Van Breusegem F, Inzé D, Jacobs T. The heat is on: a simple method to increase genome editing efficiency in plants. BMC PLANT BIOLOGY 2022; 22:142. [PMID: 35331142 PMCID: PMC8951696 DOI: 10.1186/s12870-022-03519-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. RESULTS Here, we present a simplified heat stress assay that can be completed in six days using commonly-available laboratory equipment. We show that three heat shocks (3xHS) efficiently increases indel efficiency of LbCas12a and Cas9, irrespective of the target sequence or the promoter used to express the nuclease. The generated indels are primarily somatic, but for three out of five targets we demonstrate that up to 25% more biallelic mutations are transmitted to the progeny when heat is applied compared to non-heat controls. We also applied our heat treatment to lines containing CRISPR base editors and observed a 22-27% increase in the percentage of C-to-T base editing. Furthermore, we test the effect of 3xHS on generating large deletions and a homologous recombination reporter. Interestingly, we observed no positive effect of 3xHS treatment on either approach using our conditions. CONCLUSIONS Together, our experiments show that heat treatment is consistently effective at increasing the number of somatic mutations using many CRISPR approaches in plants and in some cases can increase the recovery of mutant progeny.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Phycology Research Group, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Ayse Köse
- Bioengineering Department, Ege University, 35100, Izmir, Turkey
| | - Júlia Arraiza Ribera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Christophe Brugmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jessica Jaraba-Wallace
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Álvaro Daniel Fernández Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Thomas Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
30
|
Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Vet Sci 2022; 9:vetsci9020092. [PMID: 35202345 PMCID: PMC8879510 DOI: 10.3390/vetsci9020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Zebrafish are widely used to investigate candidate genes for human diseases. While the emergence of CRISPR-Cas9 technology has revolutionized gene editing, the use of individual guide RNAs limits the efficiency and application of this technology in functional genetics research. Multiplexed genome editing significantly enhances the efficiency and scope of gene editing. Herein, we describe an efficient multiplexed genome editing strategy to generate zebrafish mutants. Following behavioural tests and histological examination, we identified one new candidate gene (tmem183a) for hearing loss. This study provides a robust genetic platform to quickly obtain zebrafish mutants and to identify candidate genes by phenotypic readouts.
Collapse
|
31
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Efficient gene editing in a medaka ( Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ Sci B 2022; 23:74-83. [PMID: 35029089 PMCID: PMC8758932 DOI: 10.1631/jzus.b2100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China.
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Shi DL. Circumventing Zygotic Lethality to Generate Maternal Mutants in Zebrafish. BIOLOGY 2022; 11:102. [PMID: 35053100 PMCID: PMC8773025 DOI: 10.3390/biology11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022]
Abstract
Maternal gene products accumulated during oogenesis are essential for supporting early developmental processes in both invertebrates and vertebrates. Therefore, understanding their regulatory functions should provide insights into the maternal control of embryogenesis. The CRISPR/Cas9 genome editing technology has provided a powerful tool for creating genetic mutations to study gene functions and developing disease models to identify new therapeutics. However, many maternal genes are also essential after zygotic genome activation; as a result, loss of their zygotic functions often leads to lethality or sterility, thus preventing the generation of maternal mutants by classical crossing between zygotic homozygous mutant adult animals. Although several approaches, such as the rescue of mutant phenotypes through an injection of the wild-type mRNA, germ-line replacement, and the generation of genetically mosaic females, have been developed to overcome this difficulty, they are often technically challenging and time-consuming or inappropriate for many genes that are essential for late developmental events or for germ-line formation. Recently, a method based on the oocyte transgenic expression of CRISPR/Cas9 and guide RNAs has been designed to eliminate maternal gene products in zebrafish. This approach introduces several tandem guide RNA expression cassettes and a GFP reporter into transgenic embryos expressing Cas9 to create biallelic mutations and inactivate genes of interest specifically in the developing oocytes. It is particularly accessible and allows for the elimination of maternal gene products in one fish generation. By further improving its efficiency, this method can be used for the systematic characterization of maternal-effect genes.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, 75005 Paris, France
| |
Collapse
|
33
|
Takasugi PR, Wang S, Truong KT, Drage EP, Kanishka SN, Higbee MA, Bamidele N, Ojelabi O, Sontheimer EJ, Gagnon JA. Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos. Genetics 2022; 220:iyab196. [PMID: 34735006 PMCID: PMC8733422 DOI: 10.1093/genetics/iyab196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/26/2021] [Indexed: 11/15/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is the most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from S. pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1) are orthogonal systems capable of operating simultaneously in zebrafish. CRISPR systems from Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) were also active in embryos. We implemented multichannel CRISPR recording using three CRISPR systems and show that LbaCas12a may provide superior information density compared with previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. Our results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.
Collapse
Affiliation(s)
- Paige R Takasugi
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Shengzhou Wang
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kimberly T Truong
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
| | - Evan P Drage
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sahar N Kanishka
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marissa A Higbee
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan Bamidele
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ogooluwa Ojelabi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
34
|
Douglas C, Maciulyte V, Zohren J, Snell DM, Mahadevaiah SK, Ojarikre OA, Ellis PJI, Turner JMA. CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes. Nat Commun 2021; 12:6926. [PMID: 34862376 PMCID: PMC8642469 DOI: 10.1038/s41467-021-27227-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/09/2022] Open
Abstract
Animals are essential genetic tools in scientific research and global resources in agriculture. In both arenas, a single sex is often required in surplus. The ethical and financial burden of producing and culling animals of the undesired sex is considerable. Using the mouse as a model, we develop a synthetic lethal, bicomponent CRISPR-Cas9 strategy that produces male- or female-only litters with one hundred percent efficiency. Strikingly, we observe a degree of litter size compensation relative to control matings, indicating that our system has the potential to increase the yield of the desired sex in comparison to standard breeding designs. The bicomponent system can also be repurposed to generate postnatal sex-specific phenotypes. Our approach, harnessing the technological applications of CRISPR-Cas9, may be applicable to other vertebrate species, and provides strides towards ethical improvements for laboratory research and agriculture.
Collapse
Affiliation(s)
- Charlotte Douglas
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Daniel M Snell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Obah A Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
35
|
Silic MR, Murata SH, Park SJ, Zhang G. Evolution of inwardly rectifying potassium channels and their gene expression in zebrafish embryos. Dev Dyn 2021; 251:687-713. [PMID: 34558132 DOI: 10.1002/dvdy.425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inwardly rectifying potassium channels are essential for normal potassium homeostasis, maintaining the cellular resting membrane potential, and regulating electrolyte transportation. Mutations in Kir channels have been known to cause debilitating diseases ranging from neurological abnormalities to renal and cardiac failures. Many efforts have been made to understand their protein structures, physiological functions, and pharmacological modifiers. However, their expression and functions during embryonic development remain largely unknown. RESULTS Using zebrafish as a model, we identified and renamed 31 kir genes. We also analyzed Kir gene evolution by phylogenetic and syntenic analyses. Our data indicated that the four subtypes of the Kir genes might have already evolved out in chordates. These vertebrate Kir genes most likely resulted from both whole-genome duplications and tandem duplications. In addition, we examined zebrafish kir gene expression during early embryogenesis. Each subgroup's genes showed similar but distinct gene expression domains. The gene expression of ohnologous genes from teleost-specific whole-genome duplication indicated subfunctionalization. Varied temporal gene expression domains suggest that Kir channels may be needed for embryonic patterning or regulation. CONCLUSIONS Our phylogenetic and developmental analyses of Kir channels shed light on their evolutionary history and potential functions during embryogenesis related to congenital diseases and human channelopathies.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Sarah Haruka Murata
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Sung Jun Park
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
36
|
Sahu A, Devi S, Jui J, Goldman D. Notch signaling via Hey1 and Id2b regulates Müller glia's regenerative response to retinal injury. Glia 2021; 69:2882-2898. [PMID: 34415582 DOI: 10.1002/glia.24075] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/01/2023]
Abstract
Zebrafish Müller glia (MG) respond to retinal injury by suppressing Notch signaling and producing progenitors for retinal repair. A certain threshold of injury-derived signal must be exceeded in order to engage MG in a regenerative response (MG's injury-response threshold). Pan-retinal Notch inhibition expands the zone of injury-responsive MG at the site of focal injury, suggesting that Notch signaling regulates MG's injury-response threshold. We found that Notch signaling enhanced chromatin accessibility and gene expression at a subset of regeneration-associated genes in the uninjured retina. Two Notch effector genes, hey1 and id2b, were identified that reflect bifurcation of the Notch signaling pathway, and differentially regulate MG's injury-response threshold and proliferation of MG-derived progenitors. Furthermore, Notch signaling component gene repression in the injured retina suggests a role for Dll4, Dlb, and Notch3 in regulating Notch signaling in MG and epistasis experiments confirm that the Dll4/Dlb-Notch3-Hey1/Id2b signaling pathway regulates MG's injury-response threshold and proliferation.
Collapse
Affiliation(s)
- Aresh Sahu
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sulochana Devi
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Jui
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Zhang C, Li J, Tarique I, Zhang Y, Lu T, Wang J, Chen A, Wen F, Zhang Z, Zhang Y, Shao M. A Time-Saving Strategy to Generate Double Maternal Mutants by an Oocyte-Specific Conditional Knockout System in Zebrafish. BIOLOGY 2021; 10:biology10080777. [PMID: 34440009 PMCID: PMC8389640 DOI: 10.3390/biology10080777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Maternally supplied mRNAs and proteins, termed maternal factors, are produced by over 14,000 coding genes in zebrafish. They play exclusive roles in controlling the formation of oocytes and the development of early embryos. These maternal factors can also compensate for the loss of function of its corresponding zygotic gene products. Thus, eliminating both maternal and zygotic gene products is essential to elucidate the functions of more than half of zebrafish genes. However, it is always challenging to inactivate maternal factors, because traditional genetic methods are either technically demanding or time-consuming. Our recent work established a rapid conditional knockout method to generate maternal or maternal and zygotic mutants in one fish generation. Here, we further test the feasibility of this approach to knock out two maternal genes with functional redundancy simultaneously. As a proof of principle, we successfully generated double maternal mutant embryos for dvl2 and dvl3a genes in three months for the first time. The cell movement defects in mutant embryos obtained by this approach mimic the genuine mutant embryos generated after fifteen months of time-consuming screening following the previously reported mosaic strategy. Therefore, this method has the potential to speed up the functional study of paralogous maternal genes. Abstract Maternal products are those mRNAs and proteins deposited during oogenesis, which play critical roles in controlling oocyte formation, fertilization, and early embryonic development. However, loss-of-function studies for these maternal factors are still lacking, mainly because of the prolonged period of transgenerational screening and technical barriers that prevent the generation of maternal (M) and maternal and zygotic (MZ) mutant embryos. By the transgenic expression of multiple sgRNAs targeting a single gene of interest in the background of a transgenic line Tg(zpc:zcas9) with oocyte-specific cas9 expression, we have successfully obtained maternal or maternal–zygotic mutant for single genes in F1 embryos. In this work, we tandemly connected a maternal GFP marker and eight sgRNA expression units to target dvl2 and dvl3a simultaneously and introduced this construct to the genome of Tg(zpc:zcas9) by meganuclease I-Sce I. As expected, we confirmed the existence of Mdvl2;Mdvl3a embryos with strong defective convergence and extension movement during gastrulation among outcrossed GFP positive F1 offspring. The MZdvl2;MZdvl3a embryos were also obtained by crossing the mutant carrying mosaic F0 female with dvl2+/−;dvl3a−/− male fish. This proof-of-principle thus highlights the potential of this conditional knockout strategy to circumvent the current difficulty in the study of genes with multiple functionally redundant paralogs.
Collapse
Affiliation(s)
- Chong Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Jiaguang Li
- Taishan College, Shandong University, Qingdao 266237, China; (J.L.); (Z.Z.)
| | - Imran Tarique
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Fenfen Wen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Zhuoyu Zhang
- Taishan College, Shandong University, Qingdao 266237, China; (J.L.); (Z.Z.)
| | - Yanjun Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (C.Z.); (I.T.); (Y.Z.); (T.L.); (J.W.); (A.C.); (F.W.); (Y.Z.)
- Taishan College, Shandong University, Qingdao 266237, China; (J.L.); (Z.Z.)
- Correspondence:
| |
Collapse
|
38
|
Zhang C, Lu T, Zhang Y, Li J, Tarique I, Wen F, Chen A, Wang J, Zhang Z, Zhang Y, Shi DL, Shao M. Rapid generation of maternal mutants via oocyte transgenic expression of CRISPR-Cas9 and sgRNAs in zebrafish. SCIENCE ADVANCES 2021; 7:eabg4243. [PMID: 34362733 PMCID: PMC8346210 DOI: 10.1126/sciadv.abg4243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/21/2021] [Indexed: 05/08/2023]
Abstract
Maternal products are exclusive factors to drive oogenesis and early embryonic development. As disrupting maternal gene functions is either time-consuming or technically challenging, early developmental programs regulated by maternal factors remain mostly elusive. We provide a transgenic approach to inactivate maternal genes in zebrafish primary oocytes. By introducing three tandem single guide RNA (sgRNA) expression cassettes and a green fluorescent protein (GFP) reporter into Tg(zpc:zcas9) embryos, we efficiently obtained maternal nanog and ctnnb2 mutants among GFP-positive F1 offspring. Notably, most of these maternal mutants displayed either sgRNA site-spanning genomic deletions or unintended large deletions extending distantly from the sgRNA targets, suggesting a prominent deletion-prone tendency of genome editing in the oocyte. Thus, our method allows maternal gene knockout in the absence of viable and fertile homozygous mutant adults. This approach is particularly time-saving and can be applied for functional screening of maternal factors and generating genomic deletions in zebrafish.
Collapse
Affiliation(s)
- Chong Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaguang Li
- Shandong University Taishan College, Qingdao 266237, China
| | - Imran Tarique
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Fenfen Wen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhuoyu Zhang
- Shandong University Taishan College, Qingdao 266237, China
| | - Yanjun Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Developmental Biology Laboratory, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, Paris 75005, France
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
- Shandong University Taishan College, Qingdao 266237, China
| |
Collapse
|
39
|
Isiaku AI, Zhang Z, Pazhakh V, Manley HR, Thompson ER, Fox LC, Yerneni S, Blombery P, Lieschke GJ. Transient, flexible gene editing in zebrafish neutrophils and macrophages for determination of cell-autonomous functions. Dis Model Mech 2021; 14:271018. [PMID: 34296745 PMCID: PMC8319549 DOI: 10.1242/dmm.047431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
Zebrafish are an important model for studying phagocyte function, but rigorous experimental systems to distinguish whether phagocyte-dependent effects are neutrophil or macrophage specific have been lacking. We have developed and validated transgenic lines that enable superior demonstration of cell-autonomous neutrophil and macrophage genetic requirements. We coupled well-characterized neutrophil- and macrophage-specific Gal4 driver lines with UAS:Cas9 transgenes for selective expression of Cas9 in either neutrophils or macrophages. Efficient gene editing, confirmed by both Sanger and next-generation sequencing, occurred in both lineages following microinjection of efficacious synthetic guide RNAs into zebrafish embryos. In proof-of-principle experiments, we demonstrated molecular and/or functional evidence of on-target gene editing for several genes (mCherry, lamin B receptor, trim33) in either neutrophils or macrophages as intended. These new UAS:Cas9 tools provide an improved resource for assessing individual contributions of neutrophil- and macrophage-expressed genes to the many physiological processes and diseases modelled in zebrafish. Furthermore, this gene-editing functionality can be exploited in any cell lineage for which a lineage-specific Gal4 driver is available. This article has an associated First Person interview with the first author of the paper. Summary: We developed new tools for lineage-specific gene editing in neutrophils or macrophages based on leukocyte-specific Cas9 expression, that can be used with injected synthetic gRNAs.
Collapse
Affiliation(s)
- Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zuobing Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.,Department of Biological Sciences, School of Life Science, Shanxi University, Taiyuan, Shanxi Province 030006, China
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ella R Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lucy C Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Satwica Yerneni
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
40
|
Wang Y, Hsu AY, Walton EM, Park SJ, Syahirah R, Wang T, Zhou W, Ding C, Lemke AP, Zhang G, Tobin DM, Deng Q. A robust and flexible CRISPR/Cas9-based system for neutrophil-specific gene inactivation in zebrafish. J Cell Sci 2021; 134:237799. [PMID: 33722979 DOI: 10.1242/jcs.258574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9-based tissue-specific knockout techniques are essential for probing the functions of genes in embryonic development and disease using zebrafish. However, the lack of capacity to perform gene-specific rescue or live imaging in the tissue-specific knockout background has limited the utility of this approach. Here, we report a robust and flexible gateway system for tissue-specific gene inactivation in neutrophils. Using a transgenic fish line with neutrophil-restricted expression of Cas9 and ubiquitous expression of single guide (sg)RNAs targeting rac2, specific disruption of the rac2 gene in neutrophils is achieved. Transient expression of sgRNAs targeting rac2 or cdk2 in the neutrophil-restricted Cas9 line also results in significantly decreased cell motility. Re-expressing sgRNA-resistant rac2 or cdk2 genes restores neutrophil motility in the corresponding knockout background. Moreover, active Rac and force-bearing F-actins localize to both the cell front and the contracting tail during neutrophil interstitial migration in an oscillating fashion that is disrupted when rac2 is knocked out. Together, our work provides a potent tool that can be used to advance the utility of zebrafish in identifying and characterizing gene functions in a tissue-specific manner.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Eric M Walton
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sung Jun Park
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Abby Pei Lemke
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
41
|
Silic MR, Black MM, Zhang G. Phylogenetic and developmental analyses indicate complex functions of calcium-activated potassium channels in zebrafish embryonic development. Dev Dyn 2021; 250:1477-1493. [PMID: 33728688 PMCID: PMC8518378 DOI: 10.1002/dvdy.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Calcium-activated potassium channels (KCa) are a specific type of potassium channel activated by intracellular calcium concentration changes. This group of potassium channels plays fundamental roles ranging from regulating neuronal excitability to immune cell activation. Many human diseases such as schizophrenia, hypertension, epilepsy, and cancers have been linked to mutations in this group of potassium channels. Although the KCa channels have been extensively studied electrophysiologically and pharmacologically, their spatiotemporal gene expression during embryogenesis remains mostly unknown. RESULTS Using zebrafish as a model, we identified and renamed 14 KCa genes. We further performed phylogenetic and syntenic analyses on vertebrate KCa genes. Our data revealed that the number of KCa genes in zebrafish was increased, most likely due to teleost-specific whole-genome duplication. Moreover, we examined zebrafish KCa gene expression during early embryogenesis. The duplicated ohnologous genes show distinct and overlapped gene expression. Furthermore, we found that zebrafish KCa genes are expressed in various tissues and organs (somites, fins, olfactory regions, eye, kidney, and so on) and neuronal tissues, suggesting that they may play important roles during zebrafish embryogenesis. CONCLUSIONS Our phylogenetic and developmental analyses shed light on the potential functions of the KCa genes during embryogenesis related to congenital diseases and human channelopathies.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Maya M Black
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neuroscience; Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
42
|
Salehpour A, Rezaei M, Khoradmehr A, Tahamtani Y, Tamadon A. Which Hyperglycemic Model of Zebrafish ( Danio rerio) Suites My Type 2 Diabetes Mellitus Research? A Scoring System for Available Methods. Front Cell Dev Biol 2021; 9:652061. [PMID: 33791308 PMCID: PMC8005598 DOI: 10.3389/fcell.2021.652061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Despite extensive studies on type 2 diabetes mellitus (T2DM), there is no definitive cure, drug, or prevention. Therefore, for developing new therapeutics, proper study models of T2DM is necessary to conduct further preclinical researches. Diabetes has been induced in animals using chemical, genetic, hormonal, antibody, viral, and surgical methods or a combination of them. Beside different approaches of diabetes induction, different animal species have been suggested. Although more than 85% of articles have proposed rat (genus Rattus) as the proper model for diabetes induction, zebrafish (Danio rerio) models of diabetes are being used more frequently in diabetes related studies. In this systematic review, we compare different aspects of available methods of inducing hyperglycemia referred as T2DM in zebrafish by utilizing a scoring system. Evaluating 26 approved models of T2DM in zebrafish, this scoring system may help researchers to compare different T2DM zebrafish models and select the best one regarding their own research theme. Eventually, glyoxalase1 (glo1-/-) knockout model of hyperglycemia achieved the highest score. In addition to assessment of hyperglycemic induction methods in zebrafish, eight most commonly proposed diabetic induction approval methods are suggested to help researchers confirm their subsequent proposed models.
Collapse
Affiliation(s)
- Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| | - Yaser Tahamtani
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
- Center of Marine Experimental and Comparative Medicine, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| |
Collapse
|
43
|
Sharma P, Sharma BS, Verma RJ. CRISPR-based genome editing of zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:69-84. [PMID: 33934838 DOI: 10.1016/bs.pmbts.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9, once discovered as an adaptive immune system in bacteria, has emerged as a disruptive technology in the field of genetic engineering. Technological advancements in the recent past has enhanced the applicability of CRISPR/Cas9 tool for gene editing, gene therapies, developmental studies and mutational analysis in various model organisms. Zebrafish, one of the excellent animal models, is preferred for conducting CRISPR/Cas9 studies to assess the functional implication of specific genes of interest. CRISPR/Cas9 mediated gene editing techniques, such as, knock-out and knock-in approaches, provide evidences to identify the role of different genes through loss-of-function studies. Also, CRISPR/Cas9 has been proved to be an efficient tool for designing disease models for gene expression studies based on phenotypic screening. The present chapter provides an overview of CRISPR/Cas9 mechanism, different strategies for DNA modifications and gene function analysis, highlighting the translational applications for future prospects, such as screening of drug toxicity and efficacy.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Zoology, Biomedical Technology & Human Genetics, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India; PanGenomics International Pvt Ltd, Sterling Accuris Diagnostics, Ellis Bridge, Ahmedabad, Gujarat, India.
| | - B Sharan Sharma
- Rivaara Labs Pvt Ltd, KD Hospital, Vaishnodevi Circle, Ahmedabad, Gujarat, India
| | - Ramtej J Verma
- Department of Zoology, Biomedical Technology & Human Genetics, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
44
|
Ballios BG, Pierce EA, Huckfeldt RM. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021; 36:176-184. [PMID: 33621144 DOI: 10.1080/08820538.2021.1887903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Collapse
Affiliation(s)
- Brian G Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Hans S, Zöller D, Hammer J, Stucke J, Spieß S, Kesavan G, Kroehne V, Eguiguren JS, Ezhkova D, Petzold A, Dahl A, Brand M. Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish. Nat Commun 2021; 12:1125. [PMID: 33602923 PMCID: PMC7893016 DOI: 10.1038/s41467-021-21427-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Conditional gene inactivation is a powerful tool to determine gene function when constitutive mutations result in detrimental effects. The most commonly used technique to achieve conditional gene inactivation employs the Cre/loxP system and its ability to delete DNA sequences flanked by two loxP sites. However, targeting a gene with two loxP sites is time and labor consuming. Here, we show Cre-Controlled CRISPR (3C) mutagenesis to circumvent these issues. 3C relies on gRNA and Cre-dependent Cas9-GFP expression from the same transgene. Exogenous or transgenic supply of Cre results in Cas9-GFP expression and subsequent mutagenesis of the gene of interest. The recombined cells become fluorescently visible enabling their isolation and subjection to various omics techniques. Hence, 3C mutagenesis provides a valuable alternative to the production of loxP-flanked alleles. It might even enable the conditional inactivation of multiple genes simultaneously and should be applicable to other model organisms amenable to single integration transgenesis.
Collapse
Affiliation(s)
- Stefan Hans
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| | - Daniela Zöller
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Juliane Hammer
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Johanna Stucke
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sandra Spieß
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gokul Kesavan
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Volker Kroehne
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Juan Sebastian Eguiguren
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Diana Ezhkova
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- Center for Molecular and Cellular Bioengineering (CMCB), DRESDEN-Concept Genome Center, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Center for Molecular and Cellular Bioengineering (CMCB), DRESDEN-Concept Genome Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
46
|
Chen Q, Zhang Y, Yin H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv Drug Deliv Rev 2021; 168:246-258. [PMID: 33122087 DOI: 10.1016/j.addr.2020.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
The discovery and applications of clustered regularly interspaced short palindromic repeat (CRISPR) systems have revolutionized our ability to track and manipulate specific nucleic acid sequences in many cell types of various organisms. The robustness and simplicity of these platforms have rapidly extended their applications from basic research to the development of therapeutics. However, many hurdles remain on the path to translation of the CRISPR systems to therapeutic applications: efficient delivery, detectable off-target effects, potential immunogenicity, and others. Chemical modifications provide a variety of protection options for guide RNA, Cas9 mRNA and donor templates. For example, chemically modified gRNA demonstrated enhanced on-target editing efficiency, minimized immune response and decreased off-target genome editing. In this review, we summarize the use of chemically modified nucleotides for CRISPR-mediated genome editing and emphasize open questions that remain to be addressed in clinical applications.
Collapse
Affiliation(s)
- Qiubing Chen
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Zhang
- Medical Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Hao Yin
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
47
|
Cryopreservation of Pooled Sperm Samples. Methods Mol Biol 2021; 2218:99-115. [PMID: 33606226 DOI: 10.1007/978-1-0716-0970-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cryopreservation of sperm cells is currently the most efficient tool for managing large and small collections of valuable genetic resources. Cryopreservation minimizes expenses for animal and facility maintenance such as personnel, water, power, and space. It extends the time offspring can be produced from individual organisms, reduces the need to maintain live populations, provides flexibility for planning future experiments and research projects, and can prevent catastrophic loss of irreplaceable research lines. In this chapter, we present the sperm collection, dilution, cryopreservation, thawing, and in vitro fertilization procedures used at the Zebrafish International Resource Center (ZIRC).
Collapse
|
48
|
Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Int J Mol Sci 2020; 22:E148. [PMID: 33375682 PMCID: PMC7794770 DOI: 10.3390/ijms22010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.
Collapse
Affiliation(s)
- Ekaterina S. Potekhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dina Y. Bass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
| | - Alexander V. Ivanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
49
|
Yang B, Maddison LA, Zaborska KE, Dai C, Yin L, Tang Z, Zang L, Jacobson DA, Powers AC, Chen W. RIPK3-mediated inflammation is a conserved β cell response to ER stress. SCIENCE ADVANCES 2020; 6:eabd7272. [PMID: 33355143 PMCID: PMC11206196 DOI: 10.1126/sciadv.abd7272] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Islet inflammation is an important etiopathology of type 2 diabetes; however, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered RIPK3-dependent IL1B induction in β cells as an instigator of islet inflammation. In cultured β cells, ER stress activated RIPK3, leading to NF-kB-mediated proinflammatory gene expression. In a zebrafish muscle insulin resistance model, overnutrition caused islet inflammation, β cell dysfunction, and loss in an ER stress-, ripk3-, and il1b-dependent manner. In mouse islets, high-fat diet triggered the IL1B expression in β cells before macrophage recruitment in vivo, and RIPK3 inhibition suppressed palmitate-induced β cell dysfunction and Il1b expression in vitro. Furthermore, in human islets grafted in hyperglycemic mice, a marked increase in ER stress, RIPK3, and NF-kB activation in β cells were accompanied with murine macrophage infiltration. Thus, RIPK3-mediated induction of proinflammatory mediators is a conserved, previously unrecognized β cell response to metabolic stress and a mediator of the ensuing islet inflammation.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Lisette A Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare, 1310 24th Ave. S, Nashville, TN 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
50
|
Zhang M, Eshraghian EA, Jammal OA, Zhang Z, Zhu X. CRISPR technology: The engine that drives cancer therapy. Biomed Pharmacother 2020; 133:111007. [PMID: 33227699 DOI: 10.1016/j.biopha.2020.111007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
CRISPR gene editing technology belongs to the third generation of gene editing technology. Since its discovery, it has attracted the attention of a large number of researchers. Investigators have published a series of academic articles and obtained breakthrough research results through in-depth research. In recent years, this technology has developed rapidly and been widely applied in many fields, especially in medicine. This review focuses on concepts of CRISPR gene editing technology, its application in cancer treatments, its existing limitations, and the new progress in recent years for detailed analysis and sharing.
Collapse
Affiliation(s)
- Mingtao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Emily A Eshraghian
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, CA 92093, USA
| | - Omar Al Jammal
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, CA 92093, USA
| | - Zhibi Zhang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|