1
|
Zhou ZX, Dou W, Wang M, Shang F, Wang JJ. Bursicon regulates wing expansion via PKA in the oriental fruit fly, Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2024; 80:388-396. [PMID: 37708392 DOI: 10.1002/ps.7768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Bursicon is a heterodimeric neuropeptide that is involved in many physiological activities such as cuticle tanning, wing expansion, reproduction and immunity in insects. In this study, the role of bursicon in the wing expansion was investigated in Bactrocera dorsalis, an important invasive insect pest in agriculture. RESULTS The cDNA sequences and deduced amino acids of bursicon genes (named BdBurs-α and BdBurs-β) were determined, and two proteins typically contained 11 cysteine residues in conserved positions that were highly conserved in other insect species. The spatiotemporal expressions of bursicon genes showed that higher expression occurred at the pupal, early adult stage and ovaries, and lower expression at the late larval stage and in wing tissue (8-day-old pupae). Dysfunction of bursicon genes by dsRNA microinjection into 5-day-old pupae reduced PKA (a downstream component of the bursicon pathway) activity and resulted in malformed adult wings. PKA inhibitor injection into 5-day-old pupae also resulted in similar phenotypes. Hematoxylin & eosin staining of the adult wing showed that RNAi and PKA inhibitor treatment reduced the thickness of the wing cuticle, which wing cuticle thickness were ≈50% thinner than in the control. Furthermore, the expression of hedgehog (Bdhh) (one of 10 tested genes related to wing development) was significantly upregulated after RNAi and PKA inhibitor application. CONCLUSION The results indicate that bursicon plays a crucial role in the wing expansion of B. dorsalis, suggesting bursicon genes have potential to be the targets for B. dorsalis control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Mo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Spencer ZT, Ng VH, Benchabane H, Siddiqui GS, Duwadi D, Maines B, Bryant JM, Schwarzkopf A, Yuan K, Kassel SN, Mishra A, Pimentel A, Lebensohn AM, Rohatgi R, Gerber SA, Robbins DJ, Lee E, Ahmed Y. The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6. Nat Commun 2023; 14:6174. [PMID: 37798281 PMCID: PMC10556106 DOI: 10.1038/s41467-023-41843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The control of Wnt receptor abundance is critical for animal development and to prevent tumorigenesis, but the mechanisms that mediate receptor stabilization remain uncertain. We demonstrate that stabilization of the essential Wingless/Wnt receptor Arrow/LRP6 by the evolutionarily conserved Usp46-Uaf1-Wdr20 deubiquitylase complex controls signaling strength in Drosophila. By reducing Arrow ubiquitylation and turnover, the Usp46 complex increases cell surface levels of Arrow and enhances the sensitivity of target cells to stimulation by the Wingless morphogen, thereby increasing the amplitude and spatial range of signaling responses. Usp46 inactivation in Wingless-responding cells destabilizes Arrow, reduces cytoplasmic accumulation of the transcriptional coactivator Armadillo/β-catenin, and attenuates or abolishes Wingless target gene activation, which prevents the concentration-dependent regulation of signaling strength. Consequently, Wingless-dependent developmental patterning and tissue homeostasis are disrupted. These results reveal an evolutionarily conserved mechanism that mediates Wnt/Wingless receptor stabilization and underlies the precise activation of signaling throughout the spatial range of the morphogen gradient.
Collapse
Affiliation(s)
- Zachary T Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria H Ng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ghalia Saad Siddiqui
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ben Maines
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jamal M Bryant
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anna Schwarzkopf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kai Yuan
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Sara N Kassel
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anant Mishra
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ashley Pimentel
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Alula KM, Delgado-Deida Y, Jackson DN, Venuprasad K, Theiss AL. Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene 2020; 40:369-383. [PMID: 33144683 PMCID: PMC7856018 DOI: 10.1038/s41388-020-01538-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin signaling pathway is aberrantly activated in the majority of colorectal cancer cases due to somatic mutations in the adenomatous polyposis coli (APC) gene. Prohibitin 1 (PHB1) serves pleiotropic cellular functions with dynamic subcellular trafficking facilitating signaling crosstalk between organelles. Nuclear-localized PHB1 is an important regulator of gene transcription. Using mice with inducible intestinal epithelial cell (IEC)-specific deletion of Phb1 (Phb1iΔIEC) and mice with IEC-specific overexpression of Phb1 (Phb1Tg), we demonstrate that IEC-specific PHB1 combats intestinal tumorigenesis in the ApcMin/+ mouse model by inhibiting Wnt/β-catenin signaling. Forced nuclear accumulation of PHB1 in human RKO or SW48 CRC cell lines increased AXIN1 expression and decreased cell viability. PHB1 deficiency in CRC cells decreased AXIN1 expression and increased β-catenin activation that was abolished by XAV939, a pharmacological AXIN stabilizer. These results define a role of PHB1 in inhibiting the Wnt/β-catenin pathway to influence the development of intestinal tumorigenesis. Induction of nuclear PHB1 trafficking provides a novel therapeutic option to influence AXIN1 expression and the β-catenin destruction complex in Wnt-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Kibrom M Alula
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Dakota N Jackson
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - K Venuprasad
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, TX, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
5
|
Zhang T, Ahn K, Emerick B, Modarai SR, Opdenaker LM, Palazzo J, Schleiniger G, Fields JZ, Boman BM. APC mutations in human colon lead to decreased neuroendocrine maturation of ALDH+ stem cells that alters GLP-2 and SST feedback signaling: Clue to a link between WNT and retinoic acid signalling in colon cancer development. PLoS One 2020; 15:e0239601. [PMID: 33112876 PMCID: PMC7592776 DOI: 10.1371/journal.pone.0239601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
APC mutations drive human colorectal cancer (CRC) development. A major contributing factor is colonic stem cell (SC) overpopulation. But, the mechanism has not been fully identified. A possible mechanism is the dysregulation of neuroendocrine cell (NEC) maturation by APC mutations because SCs and NECs both reside together in the colonic crypt SC niche where SCs mature into NECs. So, we hypothesized that sequential inactivation of APC alleles in human colonic crypts leads to progressively delayed maturation of SCs into NECs and overpopulation of SCs. Accordingly, we used quantitative immunohistochemical mapping to measure indices and proportions of SCs and NECs in human colon tissues (normal, adenomatous, malignant), which have different APC-zygosity states. In normal crypts, many cells staining for the colonic SC marker ALDH1 co-stained for chromogranin-A (CGA) and other NEC markers. In contrast, in APC-mutant tissues from familial adenomatous polyposis (FAP) patients, the proportion of ALDH+ SCs progressively increased while NECs markedly decreased. To explain how these cell populations change in FAP tissues, we used mathematical modelling to identify kinetic mechanisms. Computational analyses indicated that APC mutations lead to: 1) decreased maturation of ALDH+ SCs into progenitor NECs (not progenitor NECs into mature NECs); 2) diminished feedback signaling by mature NECs. Biological experiments using human CRC cell lines to test model predictions showed that mature GLP-2R+ and SSTR1+ NECs produce, via their signaling peptides, opposing effects on rates of NEC maturation via feedback regulation of progenitor NECs. However, decrease in this feedback signaling wouldn't explain the delayed maturation because both progenitor and mature NECs are depleted in CRCs. So the mechanism for delayed maturation must explain how APC mutation causes the ALDH+ SCs to remain immature. Given that ALDH is a key component of the retinoic acid (RA) signaling pathway, that other components of the RA pathway are selectively expressed in ALDH+ SCs, and that exogenous RA ligands can induce ALDH+ cancer SCs to mature into NECs, RA signaling must be attenuated in ALDH+ SCs in CRC. Thus, attenuation of RA signaling explains why ALDH+ SCs remain immature in APC mutant tissues. Since APC mutation causes increased WNT signaling in FAP and we found that sequential inactivation of APC in FAP patient tissues leads to progressively delayed maturation of colonic ALDH+ SCs, the hypothesis is developed that human CRC evolves due to an imbalance between WNT and RA signaling.
Collapse
Affiliation(s)
- Tao Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Koree Ahn
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Brooks Emerick
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | - Shirin R. Modarai
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
| | - Lynn M. Opdenaker
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
| | - Juan Palazzo
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Gilberto Schleiniger
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | | | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
6
|
Jackson DN, Alula KM, Delgado-Deida Y, Tabti R, Turner K, Wang X, Venuprasad K, Souza RF, Désaubry L, Theiss AL. The Synthetic Small Molecule FL3 Combats Intestinal Tumorigenesis via Axin1-Mediated Inhibition of Wnt/β-Catenin Signaling. Cancer Res 2020; 80:3519-3529. [PMID: 32665357 DOI: 10.1158/0008-5472.can-20-0216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer exhibits aberrant activation of Wnt/β-catenin signaling. Many inhibitors of the Wnt/β-catenin pathway have been tested for Wnt-dependent cancers including colorectal cancer, but are unsuccessful due to severe adverse reactions. FL3 is a synthetic derivative of natural products called flavaglines, which exhibit anti-inflammatory and cytoprotective properties in intestinal epithelial cells, but has not been previously tested in cell or preclinical models of intestinal tumorigenesis. In vitro studies suggest that flavaglines target prohibitin 1 (PHB1) as a ligand, but this has not been established in the intestine. PHB1 is a highly conserved protein with diverse functions that depend on its posttranslational modifications and subcellular localization. Here, we demonstrate that FL3 combats intestinal tumorigenesis in the azoxymethane-dextran sodium sulfate and ApcMin/+ mouse models and in human colorectal cancer tumor organoids (tumoroids) by inhibiting Wnt/β-catenin signaling via induction of Axin1 expression. FL3 exhibited no change in cell viability in normal intestinal epithelial cells or human matched-normal colonoids. FL3 response was diminished in colorectal cancer cell lines and human colorectal cancer tumoroids harboring a mutation at S45 of β-catenin. PHB1 deficiency in mice or in human colorectal cancer tumoroids abolished FL3-induced expression of Axin1 and drove tumoroid death. In colorectal cancer cells, FL3 treatment blocked phosphorylation of PHB1 at Thr258, resulting in its nuclear translocation and binding to the Axin1 promoter. These results suggest that FL3 inhibits Wnt/β-catenin signaling via PHB1-dependent activation of Axin1. FL3, therefore, represents a novel compound that combats Wnt pathway-dependent cancers, such as colorectal cancer. SIGNIFICANCE: Targeting of PHB1 by FL3 provides a novel mechanism to combat Wnt-driven cancers, with limited intestinal toxicity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3519/F1.large.jpg.
Collapse
Affiliation(s)
- Dakota N Jackson
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Kibrom M Alula
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Redouane Tabti
- Laboratory of Regenerative Nanomedicine (UMR 1260), INSERM-University of Strasbourg, Strasbourg, France
| | - Kevin Turner
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, Texas
| | - Xuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - K Venuprasad
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, Texas
| | - Rhonda F Souza
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine (UMR 1260), INSERM-University of Strasbourg, Strasbourg, France
| | - Arianne L Theiss
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas. .,Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
7
|
Schaefer KN, Pronobis MI, Williams CE, Zhang S, Bauer L, Goldfarb D, Yan F, Major MB, Peifer M. Wnt regulation: exploring Axin-Disheveled interactions and defining mechanisms by which the SCF E3 ubiquitin ligase is recruited to the destruction complex. Mol Biol Cell 2020; 31:992-1014. [PMID: 32129710 PMCID: PMC7346726 DOI: 10.1091/mbc.e19-11-0647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling plays key roles in embryonic development and adult stem cell homeostasis and is altered in human cancer. Signaling is turned on and off by regulating stability of the effector β-catenin (β-cat). The multiprotein destruction complex binds and phosphorylates β-cat and transfers it to the SCF-TrCP E3-ubiquitin ligase for ubiquitination and destruction. Wnt signals act though Dishevelled to turn down the destruction complex, stabilizing β-cat. Recent work clarified underlying mechanisms, but important questions remain. We explore β-cat transfer from the destruction complex to the E3 ligase, and test models suggesting Dishevelled and APC2 compete for association with Axin. We find that Slimb/TrCP is a dynamic component of the destruction complex biomolecular condensate, while other E3 proteins are not. Recruitment requires Axin and not APC, and Axin’s RGS domain plays an important role. We find that elevating Dishevelled levels in Drosophila embryos has paradoxical effects, promoting the ability of limiting levels of Axin to turn off Wnt signaling. When we elevate Dishevelled levels, it forms its own cytoplasmic puncta, but these do not recruit Axin. Superresolution imaging in mammalian cells raises the possibility that this may result by promoting Dishevelled:Dishevelled interactions at the expense of Dishevelled: Axin interactions when Dishevelled levels are high.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mira I Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Clara E Williams
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shiping Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lauren Bauer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110.,Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci Rep 2019; 9:19130. [PMID: 31836723 PMCID: PMC6911004 DOI: 10.1038/s41598-019-55240-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/β-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.
Collapse
Affiliation(s)
- Katie Pollock
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Cancer Research UK Beatson Institute, Drug Discovery Programme, Glasgow, G61 1BD, United Kingdom
| | - Manjuan Liu
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mariola Zaleska
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mirco Meniconi
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mark Pfuhl
- School of Cardiovascular Medicine and Sciences and Randall Centre, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| | - Sebastian Guettler
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| |
Collapse
|
9
|
Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, Yang J, Yao Y, Yan J, Zhao L, Li H, Yang L. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am J Transl Res 2019; 11:4126-4138. [PMID: 31396323 PMCID: PMC6684910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
We aimed to investigate the biological functions of circLRP6 in the progression of osteosarcoma. CircLRP6 level in OS was detected by quantitative real-time polymerase chain reaction. Correlation between circLRP6 level with survival of OS patients was evaluated. Cell counting kit-8 and Transwell assay were conducted to detect proliferative, migratory and invasive capacities of OS cells. Cell cycle and apoptosis in OS cells influenced by circLRP6 were evaluated by flow cytometry. RNA immunoprecipitation was conducted to verify the binding relationship between circLRP6 with LSD1 and EZH2. Finally, the interaction between LSD1, EZH2 and promoter regions of KLF2, APC was clarified by chromatin immunoprecipitation. CircLRP6 level markedly increased in OS tissues. Besides, OS patients with high expression of circLRP6 showed shorter disease-free survival and over-all survival than those with low expression. CircLRP6 knockdown suppressed proliferative, migratory and invasive rates of OS cells. Moreover, circLRP6 knockdown induced apoptosis and arrested cell cycle in G0/G1 phase. The interaction between circLRP6 with LSD1 and EZH2 mediates their binding to the promoter regions of KLF2 and APC. Knockdown of circLRP6 weakened the binding abilities of LSD1, EZH2 to KLF2, APC. APC overexpression inhibited proliferation, induced apoptosis and arrested cell cycle. Moreover, the tumor-suppressor effect of downregulated circLRP6 on OS could be reversed by APC knockdown. Collectively, circLRP6 was highly expressed in OS and served as an oncogene by binding to LSD1 and EZH2 to inhibit expressions of KLF2 and APC.
Collapse
Affiliation(s)
- Shengnai Zheng
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Zhanyang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Fan Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Dawei Ge
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Jian Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Hongtao Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Jin Yang
- Department of Pathology, Wuxi Third People’s HospitalWuxi 214000, Jiangsu, PR China
| | - Yilun Yao
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Junwei Yan
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Lei Zhao
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Haijun Li
- Department of Orthopaedics, Taizhou People’s Hospital Affiliated to Nantong UniversityTaizhou 225300, Jiangsu, PR China
| | - Lei Yang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| |
Collapse
|
10
|
Gultekin Y, Steller H. Axin proteolysis by Iduna is required for the regulation of stem cell proliferation and intestinal homeostasis in Drosophila. Development 2019; 146:dev.169284. [PMID: 30796047 DOI: 10.1242/dev.169284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
Self-renewal of intestinal stem cells is controlled by Wingless/Wnt-β catenin signaling in both Drosophila and mammals. As Axin is a rate-limiting factor in Wingless signaling, its regulation is essential. Iduna is an evolutionarily conserved ubiquitin E3 ligase that has been identified as a crucial regulator for degradation of ADP-ribosylated Axin and, thus, of Wnt/β-catenin signaling. However, its physiological significance remains to be demonstrated. Here, we generated loss-of-function mutants of Iduna to investigate its physiological role in Drosophila Genetic depletion of Iduna causes the accumulation of both Tankyrase and Axin. Increase of Axin protein in enterocytes non-autonomously enhanced stem cell divisions in the Drosophila midgut. Enterocytes secreted Unpaired proteins and thereby stimulated the activity of the JAK-STAT pathway in intestinal stem cells. A decrease in Axin gene expression suppressed the over-proliferation of stem cells and restored their numbers to normal levels in Iduna mutants. These findings suggest that Iduna-mediated regulation of Axin proteolysis is essential for tissue homeostasis in the Drosophila midgut.
Collapse
Affiliation(s)
- Yetis Gultekin
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
11
|
Wang Z, Tacchelly-Benites O, Noble GP, Johnson MK, Gagné JP, Poirier GG, Ahmed Y. A Context-Dependent Role for the RNF146 Ubiquitin Ligase in Wingless/Wnt Signaling in Drosophila. Genetics 2019; 211:913-923. [PMID: 30593492 PMCID: PMC6404254 DOI: 10.1534/genetics.118.301393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant activation of the Wnt signal transduction pathway triggers the development of colorectal cancer. The ADP-ribose polymerase Tankyrase (TNKS) mediates proteolysis of Axin-a negative regulator of Wnt signaling-and provides a promising therapeutic target for Wnt-driven diseases. Proteolysis of TNKS substrates is mediated through their ubiquitination by the poly-ADP-ribose (pADPr)-dependent RING-domain E3 ubiquitin ligase RNF146/Iduna. Like TNKS, RNF146 promotes Axin proteolysis and Wnt pathway activation in some cultured cell lines, but in contrast with TNKS, RNF146 is dispensable for Axin degradation in colorectal carcinoma cells. Thus, the contexts in which RNF146 is essential for TNKS-mediated Axin destabilization and Wnt signaling remain uncertain. Herein, we tested the requirement for RNF146 in TNKS-mediated Axin proteolysis and Wnt pathway activation in a range of in vivo settings. Using null mutants in Drosophila, we provide genetic and biochemical evidence that Rnf146 and Tnks function in the same proteolysis pathway in vivo Furthermore, like Tnks, Drosophila Rnf146 promotes Wingless signaling in multiple developmental contexts by buffering Axin levels to ensure they remain below the threshold at which Wingless signaling is inhibited. However, in contrast with Tnks, Rnf146 is dispensable for Wingless target gene activation and the Wingless-dependent control of intestinal stem cell proliferation in the adult midgut during homeostasis. Together, these findings demonstrate that the requirement for Rnf146 in Tnks-mediated Axin proteolysis and Wingless pathway activation is dependent on physiological context, and suggest that, in some cell types, functionally redundant pADPr-dependent E3 ligases or other compensatory mechanisms promote the Tnks-dependent proteolysis of Axin in both mammalian and Drosophila cells.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Geoffrey P Noble
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Megan K Johnson
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| | - Jean-Philippe Gagné
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Axe Oncologie, Québec G1V 4G2, Canada
| | - Guy G Poirier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Axe Oncologie, Québec G1V 4G2, Canada
| | - Yashi Ahmed
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College HB7400, Hanover, New Hampshire 03755
| |
Collapse
|
12
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
14
|
Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, Peifer M. Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 2018; 14:e1007339. [PMID: 29641560 PMCID: PMC5912785 DOI: 10.1371/journal.pgen.1007339] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/23/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.
Collapse
Affiliation(s)
- Kristina N. Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Teresa T. Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shiping Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Clara E. Williams
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David M. Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA, United States of America
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet 2018; 14:e1007178. [PMID: 29408853 PMCID: PMC5800574 DOI: 10.1371/journal.pgen.1007178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant activation of Wnt signal transduction initiates the development of 90% of colorectal cancers, the majority of which arise from inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model for Wnt signaling, the primary role of APC is to act, together with the concentration-limiting scaffold protein Axin, in a “destruction complex” that directs the phosphorylation and consequent proteasomal degradation of the transcriptional activator β-catenin, thereby preventing signaling in the Wnt-off state. Following Wnt stimulation, Axin is recruited to a multiprotein “signalosome” required for pathway activation. Whereas it is well-documented that APC is essential in the destruction complex, APC’s role in this complex remains elusive. Here, we demonstrate in Drosophila that Axin exists in two distinct phosphorylation states in Wnt-off and Wnt-on conditions, respectively, that underlie its roles in the destruction complex and signalosome. These two Axin phosphorylation states are catalyzed by glycogen synthase kinase 3 (GSK3), and unexpectedly, completely dependent on APC in both unstimulated and Wnt-stimulated conditions. In a major revision of the classical model, we show that APC is essential not only in the destruction complex, but also for the rapid transition in Axin that occurs after Wnt stimulation and Axin’s subsequent association with the Wnt co-receptor LRP6/Arrow, one of the earliest steps in pathway activation. We propose that this novel requirement for APC in Axin regulation through phosphorylation both prevents signaling in the Wnt-off state and promotes signaling immediately following Wnt stimulation. The Wnt signal transduction pathway directs fundamental cellular processes during development and in homeostasis. Wnt signaling is deregulated in 90% of colorectal cancers, most of which are triggered by inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model, APC’s sole role in Wnt signaling is to target the transcriptional coactivator β-catenin for phosphorylation and subsequent degradation, and thereby to inhibit signaling in the unstimulated state. However, the mechanisms by which APC functions remain unknown. Herein, we provide evidence in Drosophila that supports a major role for APC in the direct regulation of the scaffold protein Axin in both Wnt-on and Wnt-off conditions. Our results indicate that APC promotes Axin phosphorylation, which is required not only to inhibit signaling in the unstimulated state, but also to activate signaling following Wnt stimulation. These unanticipated findings support a more active and multifaceted role for APC in Wnt signaling than previously known, and force revision of the current model for APC function.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Michael P. Randall
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
16
|
Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br J Pharmacol 2017; 174:4611-4636. [PMID: 28910490 PMCID: PMC5727255 DOI: 10.1111/bph.14038] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Wnt/β-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/β-catenin signalling by PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in the β-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more complex roles of tankyrase in Wnt/β-catenin signalling as well as challenges and opportunities in the development of tankyrase inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to modulate tankyrase activity to re-tune Wnt/β-catenin signalling in colorectal cancer cells. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Katie Pollock
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Sebastian Guettler
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
17
|
Wang Z, Tian A, Benchabane H, Tacchelly-Benites O, Yang E, Nojima H, Ahmed Y. The ADP-ribose polymerase Tankyrase regulates adult intestinal stem cell proliferation during homeostasis in Drosophila. Development 2017; 143:1710-20. [PMID: 27190037 DOI: 10.1242/dev.127647] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/08/2016] [Indexed: 12/15/2022]
Abstract
Wnt/β-catenin signaling controls intestinal stem cell (ISC) proliferation, and is aberrantly activated in colorectal cancer. Inhibitors of the ADP-ribose polymerase Tankyrase (Tnks) have become lead therapeutic candidates for Wnt-driven cancers, following the recent discovery that Tnks targets Axin, a negative regulator of Wnt signaling, for proteolysis. Initial reports indicated that Tnks is important for Wnt pathway activation in cultured human cell lines. However, the requirement for Tnks in physiological settings has been less clear, as subsequent studies in mice, fish and flies suggested that Tnks was either entirely dispensable for Wnt-dependent processes in vivo, or alternatively, had tissue-specific roles. Here, using null alleles, we demonstrate that the regulation of Axin by the highly conserved Drosophila Tnks homolog is essential for the control of ISC proliferation. Furthermore, in the adult intestine, where activity of the Wingless pathway is graded and peaks at each compartmental boundary, Tnks is dispensable for signaling in regions where pathway activity is high, but essential where pathway activity is relatively low. Finally, as observed previously for Wingless pathway components, Tnks activity in absorptive enterocytes controls the proliferation of neighboring ISCs non-autonomously by regulating JAK/STAT signaling. These findings reveal the requirement for Tnks in the control of ISC proliferation and suggest an essential role in the amplification of Wnt signaling, with relevance for development, homeostasis and cancer.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ai Tian
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ofelia Tacchelly-Benites
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Eungi Yang
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Hisashi Nojima
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Yashi Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
18
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Thorvaldsen TE. Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol 2017; 121:81-88. [PMID: 28371398 DOI: 10.1111/bcpt.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Aberrant WNT signalling activity is linked to various diseases due to the WNT dependency of fundamental processes during development and in adult tissue homeostasis. Mutations in components of the multi-protein β-catenin destruction complex promote excessive amounts of the main transcriptional activator β-catenin and are particularly common in colorectal cancer (CRC). The tankyrase enzymes were recently implicated as negative regulators of destruction complex activity by mediating degradation of the scaffolding protein AXIN. Indeed, tankyrase inhibitors (TNKSi) have emerged as promising therapeutics by restoring functional signal-limiting destruction complexes in CRCs. Furthermore, as TNKSi-induced destruction complexes (so-called degradasomes) can be visualized by microscopy, they have served as a valuable experimental model system to address unresolved aspects regarding the structure, function and composition of the β-catenin destruction complex. This MiniReview provides an overview of the current knowledge on the regulatory mechanisms and interactions that govern the β-catenin destruction complex activity. It further highlights the potential of TNKSi as anticancer drugs and as a novel research tool to dissect the WNT signalling pathway.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
20
|
Thorvaldsen TE, Pedersen NM, Wenzel EM, Stenmark H. Differential Roles of AXIN1 and AXIN2 in Tankyrase Inhibitor-Induced Formation of Degradasomes and β-Catenin Degradation. PLoS One 2017; 12:e0170508. [PMID: 28107521 PMCID: PMC5249069 DOI: 10.1371/journal.pone.0170508] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 01/10/2023] Open
Abstract
Inhibition of the tankyrase enzymes (TNKS1 and TNKS2) has recently been shown to induce highly dynamic assemblies of β-catenin destruction complex components known as degradasomes, which promote degradation of β-catenin and reduced Wnt signaling activity in colorectal cancer cells. AXIN1 and AXIN2/Conductin, the rate-limiting factors for the stability and function of endogenous destruction complexes, are stabilized upon TNKS inhibition due to abrogated degradation of AXIN by the proteasome. Since the role of AXIN1 versus AXIN2 as scaffolding proteins in the Wnt signaling pathway still remains incompletely understood, we sought to elucidate their relative contribution in the formation of degradasomes, as these protein assemblies most likely represent the morphological and functional correlates of endogenous β-catenin destruction complexes. In SW480 colorectal cancer cells treated with the tankyrase inhibitor (TNKSi) G007-LK we found that AXIN1 was not required for degradasome formation. In contrast, the formation of degradasomes as well as their capacity to degrade β-catenin were considerably impaired in G007-LK-treated cells depleted of AXIN2. These findings give novel insights into differential functional roles of AXIN1 versus AXIN2 in the β-catenin destruction complex.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| |
Collapse
|
21
|
Lebensohn AM, Dubey R, Neitzel LR, Tacchelly-Benites O, Yang E, Marceau CD, Davis EM, Patel BB, Bahrami-Nejad Z, Travaglini KJ, Ahmed Y, Lee E, Carette JE, Rohatgi R. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling. eLife 2016; 5. [PMID: 27996937 PMCID: PMC5257257 DOI: 10.7554/elife.21459] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI:http://dx.doi.org/10.7554/eLife.21459.001 When an embryo is developing, its cells must communicate with one another to coordinate the processes that shape the body’s tissues and organs. Cells often communicate by releasing signaling molecules that engage with proteins called receptors on the surface of other cells. This triggers a series of events that sends the signal along a “pathway” of biochemical reactions inside the receiving cell and leads to the activation of genes. One such signaling pathway is triggered by the WNT proteins and is used extensively in all animals. The WNT pathway instructs cells to grow and divide, establishes the identity of specific cell types and maintains populations of stem cells that can regenerate tissues in adulthood as well. The WNT pathway must be carefully regulated because various types of cancer can develop if the pathway becomes too active. Some signaling pathways are well conserved between different animals. Many genetic studies into the WNT pathway have focused on animals that are easier to work with in the laboratory, like worms or flies. However, there may be differences in the way these pathways are regulated between these model animals and humans. Therefore, to understand how the WNT pathway operates in humans, it was important to study it in human cells too. Lebensohn et al. have now carried out a series of genetic screens in human cells that contain only one copy of each gene instead of the usual two. These cells – referred to as haploid cells – are ideal for genetic studies because only a single copy of a gene has to be disrupted in order to analyze the consequences of that gene’s loss. The screens searched for genes that regulate WNT signaling: those that keep the pathway “off” in the absence of WNT and those that turn the pathway “on” in response to WNT. By comparing the outcomes of these screens, Lebensohn et al. identified previously unknown regulators and uncovered new roles for known regulators of the WNT pathway. For instance, a regulator called TFAP4, which had not previously been linked to the pathway, was shown to activate WNT signaling. In another case, enzymes that make molecules called glycophosphatidylinositol anchors, and cell-surface proteins that are modified with those anchors, were found to amplify WNT signaling. Lebensohn et al. also identified genes that were needed to sustain the uncontrolled WNT signaling in cells that carried cancer-causing mutations in this pathway. Further studies could now explore if drugs can target these genes, or the molecules encoded by them, to treat cancers in which the WNT pathway is excessively activated. Other studies could also use the same methods to explore more signaling pathways and gain new insights into important biological processes in human cells. DOI:http://dx.doi.org/10.7554/eLife.21459.002
Collapse
Affiliation(s)
- Andres M Lebensohn
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Ramin Dubey
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, United States
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, United States
| | - Caleb D Marceau
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Eric M Davis
- Department of Molecular Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Bhaven B Patel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Zahra Bahrami-Nejad
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Kyle J Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, United States
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
22
|
Wang Z, Tacchelly-Benites O, Yang E, Ahmed Y. Dual Roles for Membrane Association of Drosophila Axin in Wnt Signaling. PLoS Genet 2016; 12:e1006494. [PMID: 27959917 PMCID: PMC5154497 DOI: 10.1371/journal.pgen.1006494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Deregulation of the Wnt signal transduction pathway underlies numerous congenital disorders and cancers. Axin, a concentration-limiting scaffold protein, facilitates assembly of a “destruction complex” that prevents signaling in the unstimulated state and a plasma membrane-associated “signalosome” that activates signaling following Wnt stimulation. In the classical model, Axin is cytoplasmic under basal conditions, but relocates to the cell membrane after Wnt exposure; however, due to the very low levels of endogenous Axin, this model is based largely on examination of Axin at supraphysiological levels. Here, we analyze the subcellular distribution of endogenous Drosophila Axin in vivo and find that a pool of Axin localizes to cell membrane proximal puncta even in the absence of Wnt stimulation. Axin localization in these puncta is dependent on the destruction complex component Adenomatous polyposis coli (Apc). In the unstimulated state, the membrane association of Axin increases its Tankyrase-dependent ADP-ribosylation and consequent proteasomal degradation to control its basal levels. Furthermore, Wnt stimulation does not result in a bulk redistribution of Axin from cytoplasmic to membrane pools, but causes an initial increase of Axin in both of these pools, with concomitant changes in two post-translational modifications, followed by Axin proteolysis hours later. Finally, the ADP-ribosylated Axin that increases rapidly following Wnt stimulation is membrane associated. We conclude that even in the unstimulated state, a pool of Axin forms membrane-proximal puncta that are dependent on Apc, and that membrane association regulates both Axin levels and Axin’s role in the rapid activation of signaling that follows Wnt exposure. Axin is a scaffold protein with essential roles in Wnt signal transduction. In the classical model, the transition from the unstimulated to stimulated state is thought to be achieved by recruitment of Axin from cytosol to plasma membrane. We find that a pool of endogenous Drosophila Axin is localized in puncta juxtaposed with the cell membrane even under basal conditions and is targeted for degradation by the ADP-ribose polymerase Tankyrase. Wnt stimulation initially results in increased Axin levels in both the cytosolic and membrane pools, which may enhance the robust activation of signaling.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mariotti L, Templeton CM, Ranes M, Paracuellos P, Cronin N, Beuron F, Morris E, Guettler S. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling. Mol Cell 2016; 63:498-513. [PMID: 27494558 PMCID: PMC4980433 DOI: 10.1016/j.molcel.2016.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 01/14/2023]
Abstract
The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Catherine M Templeton
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Michael Ranes
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Patricia Paracuellos
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Nora Cronin
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Edward Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK.
| |
Collapse
|
24
|
Pedersen NM, Thorvaldsen TE, Schultz SW, Wenzel EM, Stenmark H. Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity. PLoS One 2016; 11:e0160507. [PMID: 27482906 PMCID: PMC4970726 DOI: 10.1371/journal.pone.0160507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022] Open
Abstract
In canonical Wnt signaling, the protein levels of the key signaling mediator β-catenin are under tight regulation by the multimeric destruction complex that mediates proteasomal degradation of β-catenin. In colorectal cancer, destruction complex activity is often compromised due to mutations in the multifunctional scaffolding protein Adenomatous Polyposis Coli (APC), leading to a stabilization of β-catenin. Recently, tankyrase inhibitors (TNKSi), a novel class of small molecule inhibitors, were shown to re-establish a functional destruction complex in APC-mutant cancer cell lines by stabilizing AXIN1/2, whose protein levels are usually kept low via poly(ADP-ribosyl)ation by the tankyrase enzymes (TNKS1/2). Surprisingly, we found that for the formation of the morphological correlates of destruction complexes, called degradasomes, functional proteasomes are required. In addition we found that AXIN2 is strongly upregulated after 6 h of TNKS inhibition. The proteasome inhibitor MG132 counteracted TNKSi-induced degradasome formation and AXIN2 stabilization, and this was accompanied by reduced transcription of AXIN2. Mechanistically we could implicate the transcription factor FoxM1 in this process, which was recently shown to be a transcriptional activator of AXIN2. We observed a substantial reduction in TNKSi-induced stabilization of AXIN2 after siRNA-mediated depletion of FoxM1 and found that proteasome inhibition reduced the active (phosphorylated) fraction of FoxM1. This can explain the decreased protein levels of AXIN2 after MG132 treatment. Our findings have implications for the design of in vitro studies on the destruction complex and for clinical applications of TNKSi.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sebastian Wolfgang Schultz
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail: (EMW); (HS)
| |
Collapse
|
25
|
Wnt pathway activation by ADP-ribosylation. Nat Commun 2016; 7:11430. [PMID: 27138857 PMCID: PMC4857404 DOI: 10.1038/ncomms11430] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly.
Collapse
|