1
|
Korzeniwsky KG, de Mello PL, Liang Y, Feltes M, Farber SA, Parichy DM. Dominant Negative Mitf Allele Impacts Melanophore and Xanthophore Development and Reveals Collaborative Interactions With Tfec in Zebrafish Chromatophore Lineages. Pigment Cell Melanoma Res 2025; 38:e70009. [PMID: 40123122 PMCID: PMC11931198 DOI: 10.1111/pcmr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Ectothermic vertebrates exhibit a diverse array of pigment cell types-chromatophores-that provide valuable opportunities to uncover mechanisms of fate specification and how they evolve. Like melanocytes of mammals, the melanophores of teleosts and other ectotherms depend on basic helix-loop-helix leucine zipper transcription factors encoded by orthologues of MITF. A different chromatophore, the iridescent iridophore, depends on the closely related transcription factor Tfec. Requirements for the specification of other chromatophore lineages remain largely uncertain. Here we identify a new allele of the zebrafish Mitf gene, mitfa, that results in a complete absence of not only melanophores but also yellow-orange xanthophores. Harboring a missense substitution in the DNA-binding domain identical to previously isolated alleles of mouse, we show that this new allele has defects in chromatophore precursor survival and xanthophore differentiation that extend beyond those of mitfa loss-of-function. Additional genetic analyses revealed interactions between Mitfa and Tfec as a likely basis for the observed phenotypes. Our findings point to collaborative roles for Mitfa and Tfec in promoting chromatophore development, particularly in xanthophore lineages, and provide new insights into evolutionary aspects of MITF functions across vertebrates.
Collapse
Affiliation(s)
| | | | - Yipeng Liang
- Department of BiologyUniversity of VirginiaVirginiaUSA
| | - McKenna Feltes
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven A. Farber
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David M. Parichy
- Department of BiologyUniversity of VirginiaVirginiaUSA
- Department of Cell BiologyUniversity of VirginiaVirginiaUSA
| |
Collapse
|
2
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
3
|
Masiero C, Aresi C, Forlino A, Tonelli F. Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery. Calcif Tissue Int 2024; 115:931-959. [PMID: 39320469 PMCID: PMC11607041 DOI: 10.1007/s00223-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.
Collapse
Affiliation(s)
- Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| |
Collapse
|
4
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Ben-Zvi I, Karasik D, Ackert-Bicknell CL. Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies. Curr Osteoporos Rep 2023; 21:650-659. [PMID: 37971665 DOI: 10.1007/s11914-023-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW GWAS, as a largely correlational analysis, requires in vitro or in vivo validation. Zebrafish (Danio rerio) have many advantages for studying the genetics of human diseases. Since gene editing in zebrafish has been highly valuable for studying embryonic skeletal developmental processes that are prenatally or perinatally lethal in mammalian models, we are reviewing pros and cons of this model. RECENT FINDINGS The true power for the use of zebrafish is the ease by which the genome can be edited, especially using the CRISPR/Cas9 system. Gene editing, followed by phenotyping, for complex traits such as BMD, is beneficial, but the major physiological differences between the fish and mammals must be considered. Like mammals, zebrafish do have main bone cells; thus, both in vivo stem cell analyses and in vivo imaging are doable. Yet, the "long" bones of fish are peculiar, and their bone cavities do not contain bone marrow. Partial duplication of the zebrafish genome should be taken into account. Overall, small fish toolkit can provide unmatched opportunities for genetic modifications and morphological investigation as a follow-up to human-first discovery.
Collapse
Affiliation(s)
- Inbar Ben-Zvi
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | | |
Collapse
|
6
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Podobnik M, Singh AP, Fu Z, Dooley CM, Frohnhöfer HG, Firlej M, Stednitz SJ, Elhabashy H, Weyand S, Weir JR, Lu J, Nüsslein-Volhard C, Irion U. kcnj13 regulates pigment cell shapes in zebrafish and has diverged by cis-regulatory evolution between Danio species. Development 2023; 150:dev201627. [PMID: 37530080 PMCID: PMC10482006 DOI: 10.1242/dev.201627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Teleost fish of the genus Danio are excellent models to study the genetic and cellular bases of pigment pattern variation in vertebrates. The two sister species Danio rerio and Danio aesculapii show divergent patterns of horizontal stripes and vertical bars that are partly caused by the divergence of the potassium channel gene kcnj13. Here, we show that kcnj13 is required only in melanophores for interactions with xanthophores and iridophores, which cause location-specific pigment cell shapes and thereby influence colour pattern and contrast in D. rerio. Cis-regulatory rather than protein coding changes underlie kcnj13 divergence between the two Danio species. Our results suggest that homotypic and heterotypic interactions between the pigment cells and their shapes diverged between species by quantitative changes in kcnj13 expression during pigment pattern diversification.
Collapse
Affiliation(s)
- Marco Podobnik
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Ajeet P. Singh
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Zhenqiang Fu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Christopher M. Dooley
- Department of Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Magdalena Firlej
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Sarah J. Stednitz
- Department of Anatomy & Physiology, University of Melbourne, Victoria, 3010, Melbourne, Australia
| | - Hadeer Elhabashy
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - John R. Weir
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | | | - Uwe Irion
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Héritier C, Biggiogera M, Willaert A, Rossi A, Coucke PJ, Ruggiero F, Forlino A. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol 2023; 121:105-126. [PMID: 37336269 DOI: 10.1016/j.matbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Delfien Syx
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
10
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
11
|
Xie H, Li M, Kang Y, Zhang J, Zhao C. Zebrafish: an important model for understanding scoliosis. Cell Mol Life Sci 2022; 79:506. [PMID: 36059018 PMCID: PMC9441191 DOI: 10.1007/s00018-022-04534-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
Scoliosis is a common spinal deformity that considerably affects the physical and psychological health of patients. Studies have shown that genetic factors play an important role in scoliosis. However, its etiopathogenesis remain unclear, partially because of the genetic heterogeneity of scoliosis and the lack of appropriate model systems. Recently, the development of efficient gene editing methods and high-throughput sequencing technology has made it possible to explore the underlying pathological mechanisms of scoliosis. Owing to their susceptibility for developing scoliosis and high genetic homology with human, zebrafish are increasingly being used as a model for scoliosis in developmental biology, genetics, and clinical medicine. Here, we summarize the recent advances in scoliosis research on zebrafish and discuss the prospects of using zebrafish as a scoliosis model.
Collapse
Affiliation(s)
- Haibo Xie
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Li
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yunsi Kang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China. .,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
12
|
Di Biagio C, Dellacqua Z, Martini A, Huysseune A, Scardi M, Witten PE, Boglione C. A Baseline for Skeletal Investigations in Medaka ( Oryzias latipes): The Effects of Rearing Density on the Postcranial Phenotype. Front Endocrinol (Lausanne) 2022; 13:893699. [PMID: 35846331 PMCID: PMC9281570 DOI: 10.3389/fendo.2022.893699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oryzias latipes is increasingly used as a model in biomedical skeletal research. The standard approach is to generate genetic variants with particular skeletal phenotypes which resemble skeletal diseases in humans. The proper diagnosis of skeletal variation is key for this type of research. However, even laboratory rearing conditions can alter skeletal phenotypes. The subject of this study is the link between skeletal phenotypes and rearing conditions. Thus, wildtype medaka were reared from hatching to an early juvenile stage at low (LD: 5 individuals/L), medium (MD: 15 individuals/L), and high (HD: 45 individuals/L) densities. The objectives of the study are: (I) provide a comprehensive overview of the postcranial skeletal elements in medaka; (II) evaluate the effects of rearing density on specific meristic counts and on the variability in type and incidence of skeletal anomalies; (III) define the best laboratory settings to obtain a skeletal reference for a sound evaluation of future experimental conditions; (IV) contribute to elucidating the structural and cellular changes related to the onset of skeletal anomalies. The results from this study reveal that rearing densities greater than 5 medaka/L reduce the animals' growth. This reduction is related to decreased mineralization of dermal (fin rays) and perichondral (fin supporting elements) bone. Furthermore, high density increases anomalies affecting the caudal fin endoskeleton and dermal rays, and the preural vertebral centra. A series of static observations on Alizarin red S whole mount-stained preural fusions provide insights into the etiology of centra fusion. The fusion of preural centra involves the ectopic formation of bony bridges over the intact intervertebral ligament. An apparent consequence is the degradation of the intervertebral ligaments and the remodeling and reshaping of the fused vertebral centra into a biconoid-shaped centrum. From this study it can be concluded that it is paramount to take into account the rearing conditions, natural variability, skeletal phenotypic plasticity, and the genetic background along with species-specific peculiarities when screening for skeletal phenotypes of mutant or wildtype medaka.
Collapse
Affiliation(s)
- Claudia Di Biagio
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Zachary Dellacqua
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Aquaculture Research Group (GIA), Universidad de Las Palmas de Gran Canaria, Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Las Palmas, Spain
| | - Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Ann Huysseune
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Michele Scardi
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Paul Eckhard Witten
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| |
Collapse
|
13
|
Lukowicz-Bedford RM, Farnsworth DR, Miller AC. Connexinplexity: the spatial and temporal expression of connexin genes during vertebrate organogenesis. G3 (BETHESDA, MD.) 2022; 12:jkac062. [PMID: 35325106 PMCID: PMC9073686 DOI: 10.1093/g3journal/jkac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Animal development requires coordinated communication between cells. The Connexin family of proteins is a major contributor to intercellular communication in vertebrates by forming gap junction channels that facilitate the movement of ions, small molecules, and metabolites between cells. Additionally, individual hemichannels can provide a conduit to the extracellular space for paracrine and autocrine signaling. Connexin-mediated communication is widely used in epithelial, neural, and vascular development and homeostasis, and most tissues likely use this form of communication. In fact, Connexin disruptions are of major clinical significance contributing to disorders developing from all major germ layers. Despite the fact that Connexins serve as an essential mode of cellular communication, the temporal and cell-type-specific expression patterns of connexin genes remain unknown in vertebrates. A major challenge is the large and complex connexin gene family. To overcome this barrier, we determined the expression of all connexins in zebrafish using single-cell RNA-sequencing of entire animals across several stages of organogenesis. Our analysis of expression patterns has revealed that few connexins are broadly expressed, but rather, most are expressed in tissue- or cell-type-specific patterns. Additionally, most tissues possess a unique combinatorial signature of connexin expression with dynamic temporal changes across the organism, tissue, and cell. Our analysis has identified new patterns for well-known connexins and assigned spatial and temporal expression to genes with no-existing information. We provide a field guide relating zebrafish and human connexin genes as a critical step toward understanding how Connexins contribute to cellular communication and development throughout vertebrate organogenesis.
Collapse
Affiliation(s)
| | - Dylan R Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
14
|
Jiang Y, Zhong Z, Wang M, Zhang X. 5-Hydroxymethyl-2-furaldehyde induces developmental toxicology and decreases bone mineralization in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109254. [PMID: 34971842 DOI: 10.1016/j.cbpc.2021.109254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022]
Abstract
In this study, we aimed to assess the developmental toxicity and effects of 5-HMF in zebrafish as a model organism for toxicology studies. To this end, we treated zebrafish embryos with 1-100 μg/ml 5-HMF and observed bone staining, gene expression, and reactive oxygen species levels in order to investigate the toxicological effects of 5-HMF. The results showed that high concentrations of 5-HMF caused increased mortality and deformity rates in zebrafish larvae, inhibited cartilage development, reduced bone mineralization, increased reactive oxygen species levels, and disrupted the expression of genes related to bone development and reactive oxygen species enzyme activity. The antioxidant N-acetyl-l-cysteine partially rescued the toxicological effects caused by the high concentrations of 5-HMF. Overall, these findings showed that high concentrations of 5-HMF induce reactive oxygen species production, leading to developmental toxicity and decreased bone mineralization. Our results provide a reference for understanding the toxic effects of 5-HMF.
Collapse
Affiliation(s)
- Yu Jiang
- Wuxi Hospital of Traditional Chinese Medicine, China; Department of Orthopedics, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, No 11 Jinpu road, Suzhou, China
| | - Xian Zhang
- Wuxi Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
15
|
Kague E, Karasik D. Functional Validation of Osteoporosis Genetic Findings Using Small Fish Models. Genes (Basel) 2022; 13:279. [PMID: 35205324 PMCID: PMC8872034 DOI: 10.3390/genes13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
The advancement of human genomics has revolutionized our understanding of the genetic architecture of many skeletal diseases, including osteoporosis. However, interpreting results from human association studies remains a challenge, since index variants often reside in non-coding regions of the genome and do not possess an obvious regulatory function. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary, such as the one offered by animal models. These models enable us to identify causal mechanisms, clarify the underlying biology, and apply interventions. Over the past several decades, small teleost fishes, mostly zebrafish and medaka, have emerged as powerful systems for modeling the genetics of human diseases. Due to their amenability to genetic intervention and the highly conserved genetic and physiological features, fish have become indispensable for skeletal genomic studies. The goal of this review is to summarize the evidence supporting the utility of Zebrafish (Danio rerio) for accelerating our understanding of human skeletal genomics and outlining the remaining gaps in knowledge. We provide an overview of zebrafish skeletal morphophysiology and gene homology, shedding light on the advantages of human skeletal genomic exploration and validation. Knowledge of the biology underlying osteoporosis through animal models will lead to the translation into new, better and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK;
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
16
|
Muñoz-Montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-Cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022; 9:801652. [PMID: 35155449 PMCID: PMC8826430 DOI: 10.3389/fcell.2021.801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.
Collapse
Affiliation(s)
- Carlos Muñoz-Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Adrián Romero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Ángela Vira
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Concepción, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
17
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
18
|
Jang HS, Chen Y, Ge J, Wilkening AN, Hou Y, Lee HJ, Choi YR, Lowdon RF, Xing X, Li D, Kaufman CK, Johnson SL, Wang T. Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish. Genome Biol 2021; 22:282. [PMID: 34607603 PMCID: PMC8489059 DOI: 10.1186/s13059-021-02493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Zebrafish pigment cell differentiation provides an attractive model for studying cell fate progression as a neural crest progenitor engenders diverse cell types, including two morphologically distinct pigment cells: black melanophores and reflective iridophores. Nontrivial classical genetic and transcriptomic approaches have revealed essential molecular mechanisms and gene regulatory circuits that drive neural crest-derived cell fate decisions. However, how the epigenetic landscape contributes to pigment cell differentiation, especially in the context of iridophore cell fate, is poorly understood. RESULTS We chart the global changes in the epigenetic landscape, including DNA methylation and chromatin accessibility, during neural crest differentiation into melanophores and iridophores to identify epigenetic determinants shaping cell type-specific gene expression. Motif enrichment in the epigenetically dynamic regions reveals putative transcription factors that might be responsible for driving pigment cell identity. Through this effort, in the relatively uncharacterized iridophores, we validate alx4a as a necessary and sufficient transcription factor for iridophore differentiation and present evidence on alx4a's potential regulatory role in guanine synthesis pathway. CONCLUSIONS Pigment cell fate is marked by substantial DNA demethylation events coupled with dynamic chromatin accessibility to potentiate gene regulation through cis-regulatory control. Here, we provide a multi-omic resource for neural crest differentiation into melanophores and iridophores. This work led to the discovery and validation of iridophore-specific alx4a transcription factor.
Collapse
Affiliation(s)
- Hyo Sik Jang
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
- Present address: Department of Epigenetics, Van Andel Institute, Grand Rapids, MI USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Jiaxin Ge
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Alicia N. Wilkening
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - You Rim Choi
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Rebecca F. Lowdon
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
| | - Charles K. Kaufman
- Department of Medicine, Division of Medical Oncology, and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Stephen L. Johnson
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St Louis, MO USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
19
|
Formosa MM, Bergen DJM, Gregson CL, Maurizi A, Kämpe A, Garcia-Giralt N, Zhou W, Grinberg D, Ovejero Crespo D, Zillikens MC, Williams GR, Bassett JHD, Brandi ML, Sangiorgi L, Balcells S, Högler W, Van Hul W, Mäkitie O. A Roadmap to Gene Discoveries and Novel Therapies in Monogenic Low and High Bone Mass Disorders. Front Endocrinol (Lausanne) 2021; 12:709711. [PMID: 34539568 PMCID: PMC8444146 DOI: 10.3389/fendo.2021.709711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals. Massive parallel sequencing efforts have been instrumental in the discovery of novel causal genes that merit functional validation using in vitro and ex vivo cell-based techniques, and in vivo models, mainly mice and zebrafish. These translational models also serve as an excellent platform for therapeutic discovery, bridging the gap between basic science research and the clinic. Altogether, genetic studies of monogenic rare bone mass disorders have broadened our knowledge on molecular signaling pathways coordinating bone development and metabolism, disease inheritance patterns, development of new and improved bone biomarkers, and identification of novel drug targets. In this comprehensive review we describe approaches to further enhance the innovative processes taking discoveries from clinic to bench, and then back to clinic in rare bone mass disorders. We highlight the importance of cross laboratory collaboration to perform functional validation in multiple model systems after identification of a novel disease gene. We describe the monogenic forms of rare low and high rare bone mass disorders known to date, provide a roadmap to unravel the genetic determinants of monogenic rare bone mass disorders using proper phenotyping and genotyping methods, and describe different genetic validation approaches paving the way for future treatments.
Collapse
Affiliation(s)
- Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Dylan J. M. Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- The Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Celia L. Gregson
- The Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Antonio Maurizi
- Department of Applied Clinical Sciences and Biotechnological, University of L’Aquila, L’Aquila, Italy
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Garcia-Giralt
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - Wei Zhou
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Diana Ovejero Crespo
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine (M.L.B.), University of Florence, Florence, Italy
| | - Luca Sangiorgi
- Department of Medical Genetics and Skeletal Rare Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
20
|
Sabrautzki S, Miller M, Kague E, Brielmeier M. Welfare Assessment of Adult Laboratory Zebrafish: A Practical Guide. Zebrafish 2021; 18:282-292. [PMID: 34227898 DOI: 10.1089/zeb.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Teleost fish such as Danio rerio (zebrafish) have been successfully used in biomedical research since decades. Genetically altered fish lines obtained by state-of-the-art genetic technologies are serving as well-known model organisms. In Europe, following Directive 2010/63/EU, generation, breeding, and husbandry of new genetically altered lines of laboratory animals require governmental state approval in case pain, suffering, distress, or long-lasting harm to the offspring derived by breeding of these lines cannot be excluded. The identification and assessment of pain, distress, or harm, according to a severity classification of mild, moderate, severe, or humane endpoint, became a new challenging task for all scientists, animal technicians, and veterinarians for daily work with laboratory zebrafish. In this study, we describe the performance of the assessment of welfare parameters of selected pathologic phenotypes and abnormalities frequently found in laboratory fish facilities based on veterinary, biological, and physiological aspects by using a dedicated score sheet. In a colony of zebrafish, we evaluated the frequency of genotype-independent abnormalities observed within 3 years. We give examples for severity classification and measures once an abnormality has been identified according to the 3Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
- Sibylle Sabrautzki
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
21
|
Rios JJ, Denton K, Yu H, Manickam K, Garner S, Russell J, Ludwig S, Rosenfeld JA, Liu P, Munch J, Sucato DJ, Beutler B, Wise CA. Saturation mutagenesis defines novel mouse models of severe spine deformity. Dis Model Mech 2021; 14:269194. [PMID: 34142127 PMCID: PMC8246263 DOI: 10.1242/dmm.048901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease. Summary: We report selected mouse models of spine deformity following mutagenesis across 30% of autosomal genes, results of which are made publicly available to advance understanding of spine development and disease.
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shannon Garner
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Jake Munch
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Daniel J Sucato
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Klatt Shaw D, Mokalled MH. Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish. G3-GENES GENOMES GENETICS 2021; 11:6179145. [PMID: 33742663 PMCID: PMC8496216 DOI: 10.1093/g3journal/jkab089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022]
Abstract
Adult zebrafish are widely used to interrogate mechanisms of disease development and tissue regeneration. Yet, the prospect of large-scale genetics in adult zebrafish has traditionally faced a host of biological and technical challenges, including inaccessibility of adult tissues to high-throughput phenotyping and the spatial and technical demands of adult husbandry. Here, we describe an experimental pipeline that combines high-efficiency CRISPR/Cas9 mutagenesis with functional phenotypic screening to identify genes required for spinal cord repair in adult zebrafish. Using CRISPR/Cas9 dual-guide ribonucleic proteins, we show selective and combinatorial mutagenesis of 17 genes at 28 target sites with efficiencies exceeding 85% in adult F0 “crispants”. We find that capillary electrophoresis is a reliable method to measure indel frequencies. Using a quantifiable behavioral assay, we identify seven single- or duplicate-gene crispants with reduced functional recovery after spinal cord injury. To rule out off-target effects, we generate germline mutations that recapitulate the crispant regeneration phenotypes. This study provides a platform that combines high-efficiency somatic mutagenesis with a functional phenotypic readout to perform medium- to large-scale genetic studies in adult zebrafish.
Collapse
Affiliation(s)
- Dana Klatt Shaw
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
23
|
Gray RS, Gonzalez R, Ackerman SD, Minowa R, Griest JF, Bayrak MN, Troutwine B, Canter S, Monk KR, Sepich DS, Solnica-Krezel L. Postembryonic screen for mutations affecting spine development in zebrafish. Dev Biol 2021; 471:18-33. [PMID: 33290818 PMCID: PMC10785604 DOI: 10.1016/j.ydbio.2020.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The spine gives structural support for the adult body, protects the spinal cord, and provides muscle attachment for moving through the environment. The development and maturation of the spine and its physiology involve the integration of multiple musculoskeletal tissues including bone, cartilage, and fibrocartilaginous joints, as well as innervation and control by the nervous system. One of the most common disorders of the spine in human is adolescent idiopathic scoliosis (AIS), which is characterized by the onset of an abnormal lateral curvature of the spine of <10° around adolescence, in otherwise healthy children. The genetic basis of AIS is largely unknown. Systematic genome-wide mutagenesis screens for embryonic phenotypes in zebrafish have been instrumental in the understanding of early patterning of embryonic tissues necessary to build and pattern the embryonic spine. However, the mechanisms required for postembryonic maturation and homeostasis of the spine remain poorly understood. Here we report the results from a small-scale forward genetic screen for adult-viable recessive and dominant zebrafish mutations, leading to overt morphological abnormalities of the adult spine. Germline mutations induced with N-ethyl N-nitrosourea (ENU) were transmitted and screened for dominant phenotypes in 1229 F1 animals, and subsequently bred to homozygosity in F3 families; from these, 314 haploid genomes were screened for adult-viable recessive phenotypes affecting general body shape. We cumulatively found 40 adult-viable (3 dominant and 37 recessive) mutations each leading to a defect in the morphogenesis of the spine. The largest phenotypic group displayed larval onset axial curvatures, leading to whole-body scoliosis without vertebral dysplasia in adult fish. Pairwise complementation testing of 16 mutant lines within this phenotypic group revealed at least 9 independent mutant loci. Using massively-parallel whole genome or whole exome sequencing and meiotic mapping we defined the molecular identity of several loci for larval onset whole-body scoliosis in zebrafish. We identified a new mutation in the skolios/kinesin family member 6 (kif6) gene, causing neurodevelopmental and ependymal cilia defects in mouse and zebrafish. We also report multiple recessive alleles of the scospondin and a disintegrin and metalloproteinase with thrombospondin motifs 9 (adamts9) genes, which all display defects in spine morphogenesis. Our results provide evidence of monogenic traits that are essential for normal spine development in zebrafish, that may help to establish new candidate risk loci for spine disorders in humans.
Collapse
Affiliation(s)
- Ryan S Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Roberto Gonzalez
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryoko Minowa
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | - Johanna F Griest
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melisa N Bayrak
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | - Benjamin Troutwine
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | - Stephen Canter
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Diane S Sepich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Hawkins MB, Henke K, Harris MP. Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell 2021; 184:899-911.e13. [PMID: 33545089 DOI: 10.1016/j.cell.2021.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.
Collapse
Affiliation(s)
- M Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Podobnik M, Frohnhöfer HG, Dooley CM, Eskova A, Nüsslein-Volhard C, Irion U. Evolution of the potassium channel gene Kcnj13 underlies colour pattern diversification in Danio fish. Nat Commun 2020; 11:6230. [PMID: 33277491 PMCID: PMC7718271 DOI: 10.1038/s41467-020-20021-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
The genetic basis of morphological variation provides a major topic in evolutionary developmental biology. Fish of the genus Danio display colour patterns ranging from horizontal stripes, to vertical bars or spots. Stripe formation in zebrafish, Danio rerio, is a self-organizing process based on cell-contact mediated interactions between three types of chromatophores with a leading role of iridophores. Here we investigate genes known to regulate chromatophore interactions in zebrafish that might have evolved to produce a pattern of vertical bars in its sibling species, Danio aesculapii. Mutant D. aesculapii indicate a lower complexity in chromatophore interactions and a minor role of iridophores in patterning. Reciprocal hemizygosity tests identify the potassium channel gene obelix/Kcnj13 as evolved between the two species. Complementation tests suggest evolutionary change through divergence in Kcnj13 function in two additional Danio species. Thus, our results point towards repeated and independent evolution of this gene during colour pattern diversification.
Collapse
Affiliation(s)
- Marco Podobnik
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Hans Georg Frohnhöfer
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Christopher M Dooley
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Anastasia Eskova
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
- IBM Research and Development, Schönaicher Straße 220, 71032, Böblingen, Germany
| | | | - Uwe Irion
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| |
Collapse
|
26
|
Samuels BD, Aho R, Brinkley JF, Bugacov A, Feingold E, Fisher S, Gonzalez-Reiche AS, Hacia JG, Hallgrimsson B, Hansen K, Harris MP, Ho TV, Holmes G, Hooper JE, Jabs EW, Jones KL, Kesselman C, Klein OD, Leslie EJ, Li H, Liao EC, Long H, Lu N, Maas RL, Marazita ML, Mohammed J, Prescott S, Schuler R, Selleri L, Spritz RA, Swigut T, van Bakel H, Visel A, Welsh I, Williams C, Williams TJ, Wysocka J, Yuan Y, Chai Y. FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development 2020; 147:dev191213. [PMID: 32958507 PMCID: PMC7522026 DOI: 10.1242/dev.191213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.
Collapse
Affiliation(s)
- Bridget D Samuels
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Aho
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - James F Brinkley
- Structural Informatics Group, Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Alejandro Bugacov
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Alberta, Canada
| | - Karissa Hansen
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan E Hooper
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Carl Kesselman
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Hong Li
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Eric C Liao
- Massachusetts General Hospital, Plastic and Reconstructive Surgery, Boston, MA 02114, USA
| | - Hannah Long
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jaaved Mohammed
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara Prescott
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert Schuler
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Tomek Swigut
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Ian Welsh
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cristina Williams
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Joanna Wysocka
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
27
|
Souder JP, Gorelick DA. ahr2, But Not ahr1a or ahr1b, Is Required for Craniofacial and Fin Development and TCDD-dependent Cardiotoxicity in Zebrafish. Toxicol Sci 2020; 170:25-44. [PMID: 30907958 DOI: 10.1093/toxsci/kfz075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds environmental toxicants and regulates gene expression. AHR also regulates developmental processes, like craniofacial development and hematopoiesis, in the absence of environmental exposures. Zebrafish have 3 paralogs of AHR: ahr1a, ahr1b, and ahr2. Adult zebrafish with mutations in ahr2 exhibited craniofacial and fin defects. However, the degree to which ahr1a and ahr1b influence ahr2 signaling and contribute to fin and craniofacial development are not known. We compared morphology of adult ahr2 mutants and ahr1a;ahr1b single and double mutant zebrafish. We found that ahr1a;ahr1b single and double mutants were morphologically normal whereas ahr2 mutant zebrafish demonstrated fin and craniofacial malformations. At 5 days post fertilization, both ahr1a;ahr1b and ahr2 mutant larvae were normal, suggesting that adult phenotypes are due to defects in maturation or maintenance. Next, we analyzed the function of zebrafish AHRs activated by environmental ligands. The prototypical AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces toxicity in humans and rodents via AHR and causes cardiotoxicity in zebrafish embryos. It has been shown that embryos with mutations in ahr2 are resistant to TCDD toxicity, yet it is unclear whether ahr1 receptors are required. Furthermore, though AHR was shown to interact with estrogen receptor alpha following TCDD treatment, it is not known whether this interaction is constitutive or context-dependent. To determine whether estrogen receptors are constitutive cofactors for AHR signaling, we used genetic and pharmacologic techniques to analyze TCDD-dependent toxicity in estrogen receptor and ahr mutant embryos. We found that embryos with mutations in ahr1a;ahr1b or estrogen receptor genes are susceptible to TCDD toxicity whereas ahr2 mutant embryos are TCDD-resistant. Moreover, pharmacologic blockade of nuclear estrogen receptors failed to prevent TCDD toxicity. These findings suggest that ahr1 genes do not have overlapping functions with ahr2 in fin and craniofacial development or TCDD-dependent toxicity, and that estrogen receptors are not constitutive partners of ahr2.
Collapse
Affiliation(s)
- Jaclyn P Souder
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| | - Daniel A Gorelick
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
28
|
Peskin B, Henke K, Cumplido N, Treaster S, Harris MP, Bagnat M, Arratia G. Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine. Curr Biol 2020; 30:2805-2814.e3. [PMID: 32559448 DOI: 10.1016/j.cub.2020.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
The spine is a defining feature of the vertebrate body plan. However, broad differences in vertebral structures and morphogenetic strategies occur across vertebrate groups, clouding the homology between their developmental programs. Analysis of a zebrafish mutant, spondo, whose spine is dysmorphic, prompted us to reconstruct paleontological evidence, highlighting specific transitions during teleost spine evolution. Interestingly, the spondo mutant recapitulates characteristics present in basal fishes, not found in extant teleosts. Further analysis of the mutation implicated the teleost-specific notochord protein, Calymmin, as a key regulator of spine patterning in zebrafish. The mutation in cmn results in loss of notochord sheath segmentation, altering osteoblast migration to the developing spine, and increasing sensitivity to somitogenesis defects associated with congenital scoliosis in amniotes. These data suggest that signals from the notochord define the evolutionary identity of the spine and demonstrate how simple shifts in development can revert traits canalized for about 250 million years.
Collapse
Affiliation(s)
- Brianna Peskin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA
| | - Nicolás Cumplido
- FONDAP Center for Genome Regulation, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Arratia
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
29
|
Rose CD, Pompili D, Henke K, Van Gennip JLM, Meyer-Miner A, Rana R, Gobron S, Harris MP, Nitz M, Ciruna B. SCO-Spondin Defects and Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across Genetic Models of Idiopathic Scoliosis. Curr Biol 2020; 30:2363-2373.e6. [PMID: 32386528 DOI: 10.1016/j.cub.2020.04.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.
Collapse
Affiliation(s)
- Chloe D Rose
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Pompili
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katrin Henke
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenica L M Van Gennip
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne Meyer-Miner
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rahul Rana
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Nitz
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
30
|
Busse B, Galloway JL, Gray RS, Harris MP, Kwon RY. Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 2020; 38:925-936. [PMID: 31773769 PMCID: PMC7162720 DOI: 10.1002/jor.24539] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/16/2019] [Indexed: 02/04/2023]
Abstract
Advances in next-generation sequencing have transformed our ability to identify genetic variants associated with clinical disorders of the musculoskeletal system. However, the means to functionally validate and analyze the physiological repercussions of genetic variation have lagged behind the rate of genetic discovery. The zebrafish provides an efficient model to leverage genetic analysis in an in vivo context. Its utility for orthopedic research is becoming evident in regard to both candidate gene validation as well as therapeutic discovery in tissues such as bone, tendon, muscle, and cartilage. With the development of new genetic and analytical tools to better assay aspects of skeletal tissue morphology, mineralization, composition, and biomechanics, researchers are emboldened to systematically approach how the skeleton develops and to identify the root causes, and potential treatments, of skeletal disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:925-936, 2020.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
- all authors contributed equally to this work and are listed in alphabetical order
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street Boston, MA 02114, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School; Department of Orthopedic Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine; Department of Mechanical Engineering; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| |
Collapse
|
31
|
Abstract
Sarcopenia - the accelerated age-related loss of muscle mass and function - is an under-diagnosed condition, and is central to deteriorating mobility, disability and frailty in older age. There is a lack of treatment options for older adults at risk of sarcopenia. Although sarcopenia's pathogenesis is multifactorial, its major phenotypes - muscle mass and muscle strength - are highly heritable. Several genome-wide association studies of muscle-related traits were published recently, providing dozens of candidate genes, many with unknown function. Therefore, animal models are required not only to identify causal mechanisms, but also to clarify the underlying biology and translate this knowledge into new interventions. Over the past several decades, small teleost fishes had emerged as powerful systems for modeling the genetics of human diseases. Owing to their amenability to rapid genetic intervention and the large number of conserved genetic and physiological features, small teleosts - such as zebrafish, medaka and killifish - have become indispensable for skeletal muscle genomic studies. The goal of this Review is to summarize evidence supporting the utility of small fish models for accelerating our understanding of human skeletal muscle in health and disease. We do this by providing a basic foundation of the (zebra)fish skeletal muscle morphology and physiology, and evidence of muscle-related gene homology. We also outline challenges in interpreting zebrafish mutant phenotypes and in translating them to human disease. Finally, we conclude with recommendations on future directions to leverage the large body of tools developed in small fish for the needs of genomic exploration in sarcopenia.
Collapse
Affiliation(s)
- Alon Daya
- The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
| |
Collapse
|
32
|
Hau HTA, Ogundele O, Hibbert AH, Monfries CAL, Exelby K, Wood NJ, Nevarez-Mejia J, Carbajal MA, Fleck RA, Dermit M, Mardakheh FK, Williams-Ward VC, Pipalia TG, Conte MR, Hughes SM. Maternal Larp6 controls oocyte development, chorion formation and elevation. Development 2020; 147:dev187385. [PMID: 32054660 PMCID: PMC7055395 DOI: 10.1242/dev.187385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
La-related protein 6 (Larp6) is a conserved RNA-binding protein found across eukaryotes that has been suggested to regulate collagen biogenesis, muscle development, ciliogenesis, and various aspects of cell proliferation and migration. Zebrafish have two Larp6 family genes: larp6a and larp6b Viable and fertile single and double homozygous larp6a and larp6b zygotic mutants revealed no defects in muscle structure, and were indistinguishable from heterozygous or wild-type siblings. However, larp6a mutant females produced eggs with chorions that failed to elevate fully and were fragile. Eggs from larp6b single mutant females showed minor chorion defects, but chorions from eggs laid by larp6a;larp6b double mutant females were more defective than those from larp6a single mutants. Electron microscopy revealed defective chorionogenesis during oocyte development. Despite this, maternal zygotic single and double mutants were viable and fertile. Mass spectrometry analysis provided a description of chorion protein composition and revealed significant reductions in a subset of zona pellucida and lectin-type proteins between wild-type and mutant chorions that paralleled the severity of the phenotype. We conclude that Larp6 proteins are required for normal oocyte development, chorion formation and egg activation.
Collapse
Affiliation(s)
- Hoi Ting A Hau
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Oluwaseun Ogundele
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Andrew H Hibbert
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Clinton A L Monfries
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Katherine Exelby
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Natalie J Wood
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jessica Nevarez-Mejia
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Maria Dermit
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Victoria C Williams-Ward
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Tapan G Pipalia
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
33
|
Caetano-Lopes J, Henke K, Urso K, Duryea J, Charles JF, Warman ML, Harris MP. Unique and non-redundant function of csf1r paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development 2020; 147:dev.181834. [PMID: 31932352 DOI: 10.1242/dev.181834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023]
Abstract
Evolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor (csf1r) function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts. We demonstrate the retention of two functional paralogues of csf1r in zebrafish. Mutant analysis indicates that the paralogues have shared, non-redundant roles in regulating osteoclast activity during the formation of the adult skeleton. csf1ra, however, has adopted unique roles in pigment cell patterning not seen in the second paralogue. We identify a unique noncoding element within csf1ra of fishes that is sufficient for controlling gene expression in pigment cells during development. As a role for Csf1r signaling in pigmentation is not observed in mammals or birds, it is likely that the overlapping roles of the two paralogues released functional constraints on csf1ra, allowing the signaling capacity of Csf1r to serve a novel function in the evolution of pigment pattern in fishes.
Collapse
Affiliation(s)
- Joana Caetano-Lopes
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katrin Henke
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katia Urso
- Departments of Orthopaedics and Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Julia F Charles
- Departments of Orthopaedics and Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew P Harris
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
35
|
FUNATO H. Forward genetic approach for behavioral neuroscience using animal models. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:10-31. [PMID: 31932526 PMCID: PMC6974404 DOI: 10.2183/pjab.96.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Forward genetics is a powerful approach to understand the molecular basis of animal behaviors. Fruit flies were the first animal to which this genetic approach was applied systematically and have provided major discoveries on behaviors including sexual, learning, circadian, and sleep-like behaviors. The development of different classes of model organism such as nematodes, zebrafish, and mice has enabled genetic research to be conducted using more-suitable organisms. The unprecedented success of forward genetic approaches was the identification of the transcription-translation negative feedback loop composed of clock genes as a fundamental and conserved mechanism of circadian rhythm. This approach has now expanded to sleep/wakefulness in mice. A conventional strategy such as dominant and recessive screenings can be modified with advances in DNA sequencing and genome editing technologies.
Collapse
Affiliation(s)
- Hiromasa FUNATO
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
36
|
Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1253710. [PMID: 31828085 PMCID: PMC6886339 DOI: 10.1155/2019/1253710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Danio rerio (zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.
Collapse
|
37
|
Ding Y, Dvornikov AV, Ma X, Zhang H, Wang Y, Lowerison M, Packard RR, Wang L, Chen J, Zhang Y, Hsiai T, Lin X, Xu X. Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Dis Model Mech 2019; 12:dmm040154. [PMID: 31492659 PMCID: PMC6826022 DOI: 10.1242/dmm.040154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
The adult zebrafish is an emerging vertebrate model for studying human cardiomyopathies; however, whether the simple zebrafish heart can model different subtypes of cardiomyopathies, such as dilated cardiomyopathy (DCM), remains elusive. Here, we generated and characterized an inherited DCM model in adult zebrafish and used this model to search for therapeutic strategies. We employed transcription activator-like effector nuclease (TALEN) genome editing technology to generate frame-shift mutants for the zebrafish ortholog of human BCL2-associated athanogene 3 (BAG3), an established DCM-causative gene. As in mammals, the zebrafish bag3 homozygous mutant (bag3e2/e2 ) exhibited aberrant proteostasis, as indicated by impaired autophagy flux and elevated ubiquitinated protein aggregation. Through comprehensive phenotyping analysis of the mutant, we identified phenotypic traits that resembled DCM phenotypes in mammals, including cardiac chamber enlargement, reduced ejection fraction characterized by increased end-systolic volume/body weight (ESV/BW), and reduced contractile myofibril activation kinetics. Nonbiased transcriptome analysis identified the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling in bag3e2/e2 mutant hearts. Further genetic studies showed that mtorxu015/+ , an mTOR haploinsufficiency mutant, repaired abnormal proteostasis, improved cardiac function and rescued the survival of the bag3e2/e2 mutant. This study established the bag3e2/e2 mutant as a DCM model in adult zebrafish and suggested mtor as a candidate therapeutic target gene for BAG3 cardiomyopathy.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, China 410011
| | - Yong Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Institute of Life Science, Beijing University of Chinese Medicine, Beijing, China 100029
| | | | - Rene R Packard
- School of Medicine, University of California Los Angeles, Los Angeles, CA 90073, USA
| | - Lei Wang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tzung Hsiai
- School of Medicine, University of California Los Angeles, Los Angeles, CA 90073, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Tomecka MJ, Ethiraj LP, Sánchez LM, Roehl HH, Carney TJ. Clinical pathologies of bone fracture modelled in zebrafish. Dis Model Mech 2019; 12:dmm.037630. [PMID: 31383797 PMCID: PMC6765199 DOI: 10.1242/dmm.037630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/24/2019] [Indexed: 01/24/2023] Open
Abstract
Reduced bone quality or mineral density predict susceptibility to fracture and also attenuate subsequent repair. Bone regrowth is also compromised by bacterial infection, which exacerbates fracture site inflammation. Because of the cellular complexity of fracture repair, as well as genetic and environmental influences, there is a need for models that permit visualisation of the fracture repair process under clinically relevant conditions. To characterise the process of fracture repair in zebrafish, we employed a crush fracture of fin rays, coupled with histological and transgenic labelling of cellular responses; the results demonstrate a strong similarity to the phased response in humans. We applied our analysis to a zebrafish model of osteogenesis imperfecta (OI), which shows reduced bone quality, spontaneous fractures and propensity for non-unions. We found deficiencies in the formation of a bone callus during fracture repair in our OI model and showed that clinically employed antiresorptive bisphosphonates can reduce spontaneous fractures in OI fish and also measurably reduce fracture callus remodelling in wild-type fish. The csf1ra mutant, which has reduced osteoclast numbers, also showed reduced callus remodelling. Exposure to excessive bisphosphonate, however, disrupted callus repair. Intriguingly, neutrophils initially colonised the fracture site, but were later completely excluded. However, when fractures were infected with Staphylococcus aureus, neutrophils were retained and compromised repair. This work elevates the zebrafish bone fracture model and indicates its utility in assessing conditions of relevance to an orthopaedic setting with medium throughput. This article has an associated First Person interview with the first author of the paper. Summary: The effect of osteogenesis imperfecta, bisphosphonate treatment and bacterial infection on phases of bone fracture repair are determined using a zebrafish fracture model.
Collapse
Affiliation(s)
- Monika J Tomecka
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore.,Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Lalith P Ethiraj
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore
| | - Luis M Sánchez
- Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Henry H Roehl
- Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Tom J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore .,Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore
| |
Collapse
|
39
|
Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 2019; 457:191-205. [PMID: 31325453 DOI: 10.1016/j.ydbio.2019.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
Abstract
The identification of disease-causing mutations has in recent years progressed immensely due to whole genome sequencing approaches using patient material. The task accordingly is shifting from gene identification to functional analysis of putative disease-causing genes, preferably in an in vivo setting which also allows testing of drug candidates or biotherapeutics in whole animal disease models. In this review, we highlight the advances made in the field of bone diseases using small laboratory fish, focusing on zebrafish and medaka. We particularly highlight those human conditions where teleost models are available.
Collapse
Affiliation(s)
- L Lleras-Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| | - C Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 04, 117558 Singapore
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| |
Collapse
|
40
|
Daane JM, Dornburg A, Smits P, MacGuigan DJ, Brent Hawkins M, Near TJ, William Detrich Iii H, Harris MP. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat Ecol Evol 2019; 3:1102-1109. [PMID: 31182814 PMCID: PMC7147983 DOI: 10.1038/s41559-019-0914-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/02/2019] [Indexed: 12/02/2022]
Abstract
Adaptive radiation illustrates links between ecological opportunity, natural selection and the generation of biodiversity. Central to adaptive radiation is the association between a diversifying lineage and the evolution of phenotypic variation that facilitates the use of new environments or resources. However, is not clear whether adaptive evolution or historical contingency is more important for the origin of key phenotypic traits in adaptive radiation. Here we use targeted sequencing of >250,000 loci across 46 species to examine hypotheses concerning the origin and diversification of key traits in the adaptive radiation of Antarctic notothenioid fishes. Contrary to expectations of adaptive evolution, we show that notothenioids experienced a punctuated burst of genomic diversification and evolved key skeletal modifications before the onset of polar conditions in the Southern Ocean. We show that diversifying selection in pathways associated with human skeletal dysplasias facilitates ecologically important variation in buoyancy among Antarctic notothenioid species, and demonstrate the sufficiency of altered trip11, col1a2 and col1a1a function in zebrafish (Danio rerio) to phenocopy skeletal reduction in Antarctic notothenioids. Rather than adaptation being driven by the cooling of the Antarctic, our results highlight the role of historical contingency in shaping the adaptive radiation of notothenioids. Understanding the historical and environmental context for the origin of key traits in adaptive radiations extends beyond reconstructing events that result in evolutionary innovation, as it also provides a context in forecasting the effects of climate change on the stability and evolvability of natural populations.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, USA.
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Patrick Smits
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Daniel J MacGuigan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - M Brent Hawkins
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - H William Detrich Iii
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, USA.
| | - Matthew P Harris
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Liu Z, Chen B, Li X, Wang LA, Xiao H, Liu D. Toxicity assessment of artificially added zinc, selenium, and strontium in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:433-438. [PMID: 30904655 DOI: 10.1016/j.scitotenv.2019.03.259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 05/24/2023]
Abstract
The present research was to study the toxicology of artificially added Zn, Se and Sr in water. Specifically, we investigated the mortality and liver toxicity in zebrafish (Danio rerio), caused by different water concentrations of zinc sulfate (ZnSO4), sodium selenite (Na2SeO3), and strontium chloride hexahydrate (6H2O·SrCl2). Adult and embryo-larval zebrafish were used in the experiment. Analysis was performed of mortality, liver area and impermeability, delayed absorption area of the yolk sac, and liver tissue structure. The concentration change of sodium selenite exerted the most significant effect on the mortality of adult zebrafish, followed by that of strontium chloride hexahydrate, and zinc sulfate. Elevated strontium chloride hexahydrate concentration was associated with liver toxicity in zebrafish in the preliminary experiment. However, embryo-larval zebrafish were observed to die when the concentration of Zn2+ or Se4+ increased to a certain extent, without obvious liver toxicity. Our results indicated strontium chloride hexahydrate was hepatotoxic to embryo-larval zebrafish, which was manifested mainly as hepatomegaly and delayed absorption of the yolk sac. In addition, the artificially added strontium chloride hexahydrate destroyed liver tissue structure, resulting in hepatocyte enlargement, cell nucleus enlargement, blurred cytoplasmic boundaries, and formation of a vacuolar liver. These findings suggest the amount of strontium chloride hexahydrate added in soft drinks should be limited to certain levels.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Boning Chen
- Fuling Environmental Monitoring Center, 3 Taibai Rd. Fuling New District of Chongqing, China
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Hongyan Xiao
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Dongsheng Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| |
Collapse
|
42
|
Parsons KJ, Son YH, Crespel A, Thambithurai D, Killen S, Harris MP, Albertson RC. Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability. Proc Biol Sci 2019; 285:rspb.2017.2671. [PMID: 29669899 DOI: 10.1098/rspb.2017.2671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/27/2018] [Indexed: 01/06/2023] Open
Abstract
Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity. While modularity is essential to an understanding of evolutionary potential, biologists currently have little understanding of its genetic basis and its temporal dynamics over generations. To address these open questions, we compared patterns of craniofacial modularity among laboratory strains, defined mutant lines and a wild population of zebrafish (Danio rerio). Our findings suggest that relatively simple genetic changes can have profound effects on covariance, without greatly affecting craniofacial shape. Moreover, we show that instead of completely deconstructing the covariance structure among sets of traits, mutations cause shifts among seemingly latent patterns of modularity suggesting that the skull may be predisposed towards a limited number of phenotypes. This new insight may serve to greatly increase the evolvability of a population by providing a range of 'preset' patterns of modularity that can appear readily and allow for rapid evolution.
Collapse
Affiliation(s)
- Kevin J Parsons
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Young H Son
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Amelie Crespel
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Davide Thambithurai
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Orthopaedic Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
43
|
Giardoglou P, Beis D. On Zebrafish Disease Models and Matters of the Heart. Biomedicines 2019; 7:E15. [PMID: 30823496 PMCID: PMC6466020 DOI: 10.3390/biomedicines7010015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is the leading form of cardiovascular disease (CVD), which is the primary cause of mortality worldwide. It is a complex disease with genetic and environmental risk factor contributions. Reports in human and mammalian models elucidate age-associated changes in cardiac function. The diverse mechanisms involved in cardiac diseases remain at the center of the research interest to identify novel strategies for prevention and therapy. Zebrafish (Danio rerio) have emerged as a valuable vertebrate model to study cardiovascular development over the last few decades. The facile genetic manipulation via forward and reverse genetic approaches combined with noninvasive, high-resolution imaging and phenotype-based screening has provided new insights to molecular pathways that orchestrate cardiac development. Zebrafish can recapitulate human cardiac pathophysiology due to gene and regulatory pathways conservation, similar heart rate and cardiac morphology and function. Thus, generations of zebrafish models utilize the functional analysis of genes involved in CAD, which are derived from large-scale human population analysis. Here, we highlight recent studies conducted on cardiovascular research focusing on the benefits of the combination of genome-wide association studies (GWAS) with functional genomic analysis in zebrafish. We further summarize the knowledge obtained from zebrafish studies that have demonstrated the architecture of the fundamental mechanisms underlying heart development, homeostasis and regeneration at the cellular and molecular levels.
Collapse
Affiliation(s)
- Panagiota Giardoglou
- Zebrafish Disease Models Lab, Center for Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
- School of Health Science and Education, Harokopio University, 17676 Athens, Greece.
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
44
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Gistelinck C, Kwon RY, Malfait F, Symoens S, Harris MP, Henke K, Hawkins MB, Fisher S, Sips P, Guillemyn B, Bek JW, Vermassen P, De Saffel H, Witten PE, Weis M, De Paepe A, Eyre DR, Willaert A, Coucke PJ. Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc Natl Acad Sci U S A 2018; 115:E8037-E8046. [PMID: 30082390 PMCID: PMC6112716 DOI: 10.1073/pnas.1722200115] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The type I collagenopathies are a group of heterogeneous connective tissue disorders, that are caused by mutations in the genes encoding type I collagen and include specific forms of osteogenesis imperfecta (OI) and the Ehlers-Danlos syndrome (EDS). These disorders present with a broad disease spectrum and large clinical variability of which the underlying genetic basis is still poorly understood. In this study, we systematically analyzed skeletal phenotypes in a large set of zebrafish, with diverse mutations in the genes encoding type I collagen, representing different genetic forms of human OI, and a zebrafish model resembling human EDS, which harbors a number of soft connective tissues defects, typical of EDS. Furthermore, we provide insight into how zebrafish and human type I collagen are compositionally and functionally related, which is relevant in the interpretation of human type I collagen-related disease models. Our studies reveal a high degree of intergenotype variability in phenotypic expressivity that closely correlates with associated OI severity. Furthermore, we demonstrate the potential for select mutations to give rise to phenotypic variability, mirroring the clinical variability associated with human disease pathology. Therefore, our work suggests the future potential for zebrafish to aid in identifying unknown genetic modifiers and mechanisms underlying the phenotypic variability in OI and related disorders. This will improve diagnostic strategies and enable the discovery of new targetable pathways for pharmacological intervention.
Collapse
Affiliation(s)
- Charlotte Gistelinck
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Fransiska Malfait
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02115
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02115
| | - Michael B Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA 02115
| | - Shannon Fisher
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02115
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Brecht Guillemyn
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Jan Willem Bek
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Petra Vermassen
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - Paul Eckhard Witten
- Biology Department, Research Group Evolutionary Developmental Biology, Ghent University, 9000 Ghent, Belgium
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Anne De Paepe
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|