1
|
Lei S, Liu Y. Identifying blood mitochondrial DNA copy number as a biomarker for development of neurodegenerative diseases: Evidence from Mendelian randomization analysis. Neuroscience 2025; 573:421-429. [PMID: 40185386 DOI: 10.1016/j.neuroscience.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Mitochondrial dysfunction has been associated with neurodegenerative diseases (NDDs). This study aimed to explore the association between blood mitochondrial DNA copy number (mtDNA-CN) and development of NDDs. This study was based on two-sample Mendelian randomization (MR) analysis. The genome wide association study (GWAS) data of NDDs including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD), multiple sclerosis (MS), Parkinson's disease (PD), primary open-angle glaucoma (POAG), and vascular dementia (VD) was obtained from FinnGen consortium. Inverse-variance weighted (IVW) was applied as the primary approach for MR estimation. MR results revealed that blood mtDNA-CN exhibited a significant relationship with the incidence of AD (IVW-P = 0.011, odds ratio [OR] = 0.65) and AMD (IVW-P = 0.038, OR = 0.64). However, there was no significant association observed between blood mtDNA-CN and other NDDs (IVW-P > 0.05). Our findings supported the relationship between mitochondrial dysfunction and development of AD and AMD, and that blood mtDNA-CN may serve as a potential biomarker for the incidence of these two NDDs.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China.
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wang N, Li L, Ma Y, Shen C, Ao Z, Song C, Mehmood MA, Zhang P, Liu Y, Sun X, Zhu H. Combined transcriptomics and metabolomics analyses reveal the molecular mechanism of heat tolerance in Pichia kudriavzevii. Front Microbiol 2025; 16:1572004. [PMID: 40270822 PMCID: PMC12014439 DOI: 10.3389/fmicb.2025.1572004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Pichia kudriavzevii is a prevalent non-Saccharomyces cerevisiae yeast in baijiu brewing. The aim of this study was to isolate a high temperature resistant Pichia kudriavzevii strain from the daqu of strong flavor baijiu and to elucidate its molecular mechanism. Methods Growth activity was assessed at temperatures of 37°C, 40°C, 45°C, and 50°C. Morphological changes were observed by scanning electron microscopy at 37°C, 45°C, and 50°C. Subsequent analysis of the transcriptomics and metabolomics was undertaken to elucidate the molecular mechanism of heat tolerance. Results The strain was able to tolerate high temperature of 50°C, undergoing substantial morphological alterations. Gene ontology (GO) analysis of the transcriptomics revealed that differentially expressed genes (DEGs) were enriched in pathways such as ATP biosynthesis process and mitochondrion; Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that DEGs were up regulated in oxidative phosphorylation. Utilising liquid chromatograph-mass spectrometer, a total of 463 cationic differential metabolites and 352 anionic differential metabolites were detected and screened for differential substances that were closely related to heat tolerance (NAD+ and ADP); KEGG analysis showed that metabolites were up regulated in purine metabolism. Furthermore, correlation analyses of transcriptomics-metabolomics demonstrated a strong positive correlation between the metabolites NAD+ and ADP, and multiple DEGs of the oxidative phosphorylation pathway. Discussion These results suggest that the heat tolerant strain can be able to counteract high temperature environment by up regulating energy metabolism (especially oxidative phosphorylation) to increase ATP production.
Collapse
Affiliation(s)
- Ning Wang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Lu Li
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Zonghua Ao
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Chuan Song
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Muhammad Aamer Mehmood
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Puyu Zhang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Ying Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin, China
| | - Xiaoke Sun
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin, China
| | - Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
3
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2025; 480:2131-2142. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
4
|
Zhou L, Cai X, Dong Q, Yin J, Liu Y, Gao X, Jiang Q, Zhang Y, Zhang X. The immune response and autophagy of Macrobrachium rosenbergii against Aeromonas veronii infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101488. [PMID: 40112606 DOI: 10.1016/j.cbd.2025.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Aeromonas is a bacterial pathogen that causes significant economic losses in the Macrobrachium rosenbergii industry. This study evaluated the transcriptome analysis of M. rosenbergii infected with A. veronii and examined the gene expression patterns associated with immunity in the gills, muscles, intestines, and hepatopancreas. Specifically, 47,988 unigenes and 15,604 differentially expressed genes (DEGs) were identified. The immune-related DEGs were primarily enriched in 20 innate immune signaling pathways, including the NOD-like receptor, Toll-like receptor, and RIG-I-like receptor signaling pathways, etc., as determined by KEGG enrichment analysis. Notably, autophagy-related genes ATG5, ATG12, ATG16L1, and ATG8 were enriched in the NOD-like receptor signaling pathways. Moreover, ATG12, ATG16L1, and ATG8 exhibited significantly up-regulated expression to varying degrees in the hepatopancreas, gills, muscles, and intestines at 12, 24, 36, and 48 h post-infection (hpi). In addition, many autolysosomes were observed in hepatopancreas cells of infected prawns using transmission electron microscopy (TEM). Ultimately, we identified the autophagy-related genes implicated in the immune response of M. rosenbergii, offering a theoretical foundation for elucidating the role of autophagy in the prawn's innate immune mechanisms.
Collapse
Affiliation(s)
- Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jia Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
6
|
Li H, Cao Y, Yang F, Liu X, Tao R, Xia R, Zhu R, Jiang L, Liu S, Li C. Quantitation of human mitochondrial DNA and whole mtGenomes sequencing of fingernail/hair shaft samples. Forensic Sci Res 2025; 10:owae018. [PMID: 40007636 PMCID: PMC11850650 DOI: 10.1093/fsr/owae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2025] Open
Abstract
The analysis of mitochondrial DNA (mtDNA) is suitable for fingernail/hair shaft samples in forensic science. A successful mtDNA forensic analysis depends on the quantity and quality of the mtDNA. The application of massively parallel sequence techniques to the analysis of mtDNA has the potential to improve the recovery of genetic information from difficult forensic specimens and to increase the discrimination potential of mtDNA by capturing and comparing full mtGenomes. In this study, we constructed mtDNA-specific standard curves using real-time PCR. The 105-base pair target sequence facilitates the amplification of degraded DNA and is minimally homologous to non-human mtDNA. The results indicated that the assay enables the absolute quantification of down to 10 copies of mtDNA and provides a dynamic range of eight orders of magnitude. Whole mtGenome sequencing experiments demonstrated that as few as 2 000 mtDNA copies resulted in a successful full region amplification and sequencing. Moreover, the frequency of point heteroplasmy from one donor showed that hairs from the same donor have been found to differ within and among themselves and from other tissues, which could impact the interpretation of the results obtained in a forensic investigation.
Collapse
Affiliation(s)
- Hui Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Yu Cao
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai, China
| | - Fan Yang
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Ruxin Zhu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Lei Jiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Shiquan Liu
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| |
Collapse
|
7
|
Marx C, Qing X, Gong Y, Kirkpatrick J, Siniuk K, Beznoussenko GV, Kidiyoor GR, Kirtay M, Buder K, Koch P, Westermann M, Bruhn C, Brown EJ, Xu X, Foiani M, Wang ZQ. DNA damage response regulator ATR licenses PINK1-mediated mitophagy. Nucleic Acids Res 2025; 53:gkaf178. [PMID: 40105243 PMCID: PMC11920799 DOI: 10.1093/nar/gkaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Defective DNA damage response (DDR) and mitochondrial dysfunction are a major etiology of tissue impairment and aging. Mitochondrial autophagy (mitophagy) is a mitochondrial quality control (MQC) mechanism to selectively eliminate dysfunctional mitochondria. ATR (ataxia-telangiectasia and Rad3-related) is a key DDR regulator playing a pivotal role in DNA replication stress response and genomic stability. Paradoxically, the human Seckel syndrome caused by ATR mutations exhibits premature aging and neuropathies, suggesting a role of ATR in nonreplicating tissues. Here, we report a previously unknown yet direct role of ATR at mitochondria. We find that ATR and PINK1 (PTEN-induced kinase 1) dock at the mitochondrial translocase TOM/TIM complex, where ATR interacts directly with and thereby stabilizes PINK1. ATR deletion silences mitophagy initiation thereby altering oxidative phosphorylation functionality resulting in reactive oxygen species overproduction that attack cytosolic macromolecules, in both cells and brain tissues, prior to nuclear DNA. This study discloses ATR as an integrated component of the PINK1-mediated MQC program to ensure mitochondrial fitness. Together with its DDR function, ATR safeguards mitochondrial and genomic integrity under physiological and genotoxic conditions.
Collapse
Affiliation(s)
- Christian Marx
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul Ehrlich Institute (PEI), Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Xiaobing Qing
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Yamin Gong
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Joanna Kirkpatrick
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kanstantsin Siniuk
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | | | | | - Murat Kirtay
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Katrin Buder
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Philipp Koch
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Christopher Bruhn
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Eric J Brown
- Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, United States
| | - Xingzhi Xu
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Zhao-Qi Wang
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstraße 18k, 07743 Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
8
|
Gui L, Zhang Z, Song L, Feng C, Yu H, Pan L, Fu J, Liang W, Huang Q, El-Sappah AH, Shi L, Wan L, Wei S. Mitogenome of Uncaria rhynchophylla: genome structure, characterization, and phylogenetic relationships. BMC Genomics 2025; 26:199. [PMID: 40012082 DOI: 10.1186/s12864-025-11372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Uncaria rhynchophylla is listed in the Chinese pharmacopoeia as one of the five botanical sources of the traditional medicine Gou-Teng, which has been utilized for the treatment of mental and cardiovascular disorders. This particular species is well-known in China for its hook-like structures originating from the leaf axils. Despite available reports on its chloroplast genome, there persists a notable lack of understanding concerning the structural variations and evolution of its mitochondrial genome. This knowledge gap hinders our ability to fully comprehend its genetic attributes. RESULTS We successfully assembled the mitochondrial genome of U. rhynchophylla by seamlessly integrating Illumina short reads with Nanopore long reads, resulting in a non-circular genome comprising 1 circular contig and 2 linear contigs. The total length of this genome is 421,660 bp, encompassing 36 PCGs. The identification of 4 distinct pairs of repeats has unveiled their pivotal role in repeat-mediated recombination. Of the 28 homologous fragments derived from chloroplasts, the majority were observed to have been transferred from the inverted repeat (IR) regions of the chloroplast genome to the mitochondrial genome. The mitochondrial DNA provides a distinctive resolution for the positioning of several species within the Gentianales phylogenetic framework, which remains unresolved by chloroplast DNA. CONCLUSION By utilizing a newly assembled, high-quality mitochondrial genome of U. rhynchophylla, we have elucidated its intricate genomic structure, distinctive sequence characteristics, and potential for phylogenetic analysis. These findings mark significant strides in advancing our comprehension of the genetics of Uncaria.
Collapse
Affiliation(s)
- Lingjian Gui
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | | | - Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Limei Pan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jine Fu
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Wenjing Liang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Lijun Shi
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
9
|
Mori S, Fujiwara-Tani R, Ogata R, Ohmori H, Fujii K, Luo Y, Sasaki T, Nishiguchi Y, Bhawal UK, Kishi S, Kuniyasu H. Anti-Cancer and Pro-Immune Effects of Lauric Acid on Colorectal Cancer Cells. Int J Mol Sci 2025; 26:1953. [PMID: 40076581 PMCID: PMC11901037 DOI: 10.3390/ijms26051953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Lauric acid (LAA) is a 12-carbon medium-chain fatty acid that reportedly has antitumor and muscle-protecting effects. However, the details of these antitumor effects remain unclear. Therefore, in this study, we investigated the mechanism underlying the antitumor effects of LAA in CT26 and HT29 colorectal cancer (CRC) cell lines. Our in vitro findings demonstrated that LAA suppressed CRC cell proliferation, induced mitochondrial oxidative stress (reactive oxygen species (ROS)), inhibited oxidative phosphorylation (OXPHOS), and induced apoptosis. Moreover, in vivo analysis of LAA showed a more pronounced antitumor effect in CT26 cells in a syngeneic mouse tumor model than in vitro; therefore, we further investigated its impact on host antitumor immunity. We observed that LAA increased the number of effector T cells in mouse tumors, while in vitro LAA activated mouse splenocytes (SplC) and promoted OXPHOS. In two-dimensional co-culture of SplC and CT26 cells, LAA induced cell death in cancer cells. In three-dimensional co-culture, LAA promoted SplC infiltration and suppressed the formation of tumor spheres. Thus, LAA may exert antitumor effects through increased ROS production in cancer cells and effector T cell activation via increased energy metabolism. These results suggest that LAA, when used in combination with existing anti-cancer drugs, is likely to exhibit sensitizing effects in terms of both antitumor and antitumor immune effects, and future clinical studies are anticipated.
Collapse
Grants
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shiori Mori
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Yi Luo
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, School of Dentistry at Matsudo, Nihon University, Matsudo 271-8587, Japan;
| | - Shingo Kishi
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
- Department of Pathological Diagnosis, Nozaki Tokushukai Hospital, Daito 574-0074, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, School of Medicine, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (R.O.); (H.O.); (K.F.); (Y.L.); (T.S.); (Y.N.); (S.K.)
| |
Collapse
|
10
|
Mantey I, Langerscheidt F, Çakmak Durmaz Ç, Baba N, Burghardt K, Karakaya M, Zempel H. The POLG Variant c.678G>C; p.(Gln226His) Is Associated with Mitochondrial Abnormalities in Fibroblasts Derived from a Patient Compared to a First-Degree Relative. Genes (Basel) 2025; 16:198. [PMID: 40004527 PMCID: PMC11855138 DOI: 10.3390/genes16020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the catalytic subunit of Pol-γ, can significantly impair Pol-γ enzyme function. Pol-γ-associated disorders are referred to as POLG-spectrum disorders (POLG-SDs) and are mainly autosomal-recessively inherited. Clinical manifestations include muscle weakness and fatigue, and severe forms of the disease can lead to premature death in infancy, childhood, and early adulthood, often associated with seizures, liver failure, or intractable epilepsy. Here, we analyzed fibroblasts from a compound heterozygous patient with the established pathogenic variant c.2419C>T; p.(Arg807Cys) and a previously undescribed variant c.678G>C; p.(Gln226His) with a clinical manifestation compatible with POLG-SDs, sensory ataxic neuropathy, and infantile muscular atrophy. We conducted a battery of functional studies for Pol-γ and mitochondrial dysfunction on the patient's fibroblasts, to test whether the novel variant c.678G>C; p.(Gln226His) may be causative in human disease. AIMS/METHODS We analyzed skin-derived fibroblasts in comparison to a first-degree relative (the mother of the patient), an asymptomatic carrier harboring only the established c.2419C>T; p.(Arg807Cys) mutation. Assessments of mitochondrial function included measurements of mtDNA content, mRNA levels of mitochondrial genes, mitochondrial mass, and mitochondrial morphology. CASE PRESENTATION AND RESULTS A 13-year-old male presented with symptoms starting at three years of age, including muscle weakness and atrophy in the lower extremities and facial muscles, which later extended to the upper limbs, voice, and back muscles, without further progression. The patient also reported fatigue and muscle pain after physical activity, with no sensory deficits. Extensive diagnostic tests such as electromyography, nerve conduction studies, muscle biopsy, and MRI were unremarkable. Exome sequencing revealed that he carried the compound heterozygous variants in POLG c.678G>C; p.(Gln226His) and c.2419C>T; p.(Arg807Cys), but no other potential genetic pathogenic causes. In comparison to a first-degree relative (his mother) who only carried the c.2419C>T; p.(Arg807Cys) pathogenic mutation, in vitro analyses revealed a significant reduction in mtDNA content (~50%) and mRNA levels of mtDNA-encoded proteins. Mitochondrial mass was reduced by approximately 20%, and mitochondrial interconnectivity within cells was impaired, as determined by fluorescence microscopy and mitochondrial staining. CONCLUSIONS Our findings suggest that the c.678G>C; p.(Gln226His) variant, in conjunction with the c.2419C>T; p.(Arg807Cys) mutation, may compromise mtDNA replication and mitochondrial function and could result in clinically significant mitochondriopathy. As this study is based on one patient compared to a first-degree relative (but with an identical mitochondrial genome), the pathogenicity of c.678G>C; p.(Gln226His) of POLG should be confirmed in future studies, in particular, in conjunction with other POLG-variants.
Collapse
Affiliation(s)
- Imra Mantey
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Çağla Çakmak Durmaz
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Naomi Baba
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Katharina Burghardt
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Mert Karakaya
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
11
|
Deng X, He J, Deng W, Deng W, Zhu X, Luo H, Wang D. Celastrol ameliorates lipopolysaccharide (LPS)-induced acute lung injury by improving mitochondrial function through AMPK/PGC-1α/Nrf1-dependent mechanism. Free Radic Biol Med 2025; 227:210-220. [PMID: 39643138 DOI: 10.1016/j.freeradbiomed.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute lung injury (ALI) is a devastating clinical syndrome without effective therapy. Celastrol, as a natural anti-inflammatory compound, has showed therapeutic potential against inflammatory diseases. In this study, we have investigated the potential effect of Celastrol on lipopolysaccharide (LPS)-induced ALI. C57BL/6J mice, Nrf1-knockout mice and A549 (human alveolar epithelial cell line) cells were used to investigate the protective role of Celastrol in LPS-induced ALI. Our data showed that administration of Celastrol significantly alleviated lung pathologic injury and increased the survival rate, which was associated with the improvement of mitochondrial function in the injured lung. Moreover, Celastrol enhanced phosphorylation of AMP-activated protein kinase (AMPK) and expression of peroxisome proliferator-activated receptor coactivator protein-1α (PGC-1α), thereby increasing the nuclear translocation of nuclear respiratory factor 1 (Nrf1) and subsequent up-regulation of its downstream mitochondria electron transport chain complex I (NDUF) gene expression, which induced an increase in mitochondrial complex Ⅰ activity. The beneficial effects of Celastrol on regulation of Nrf1 were abolished by inhibition of AMPK and PGC-1α. Finally, in Nrf1 deficient mice, the protective effects of Celastrol on LPS-induced ALI were largely vanished. Our data indicated that Celastrol can prevent LPS-induced ALI by improving mitochondrial function through AMPK/PGC-1α/Nrf1-dependent mechanism, suggesting that Celastrol may represent a novel therapeutic potential for LPS-induced ALI.
Collapse
Affiliation(s)
- Xinyu Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenpeng Deng
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), Chongqing, China
| | - Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Zhu
- Faculty of Foresty, University of British Columbia, Vancouver, BC, Canada
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Bernard J, Tamouza R, Godin O, Berk M, Andreazza AC, Leboyer M. Mitochondria at the crossroad of dysregulated inflammatory and metabolic processes in bipolar disorders. Brain Behav Immun 2025; 123:456-465. [PMID: 39378969 DOI: 10.1016/j.bbi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
In last few decades, considerable evidence has emphasized the significant involvement of mitochondria, often referred to as the "powerhouse of the cell," in the pathophysiology of bipolar disorder (BD). Given crucial mitochondrial functions in cellular metabolism and inflammation, both of which are compromised in BD, this perspective review examines the central role of mitochondria in inflammation and metabolism within the context of this disorder. We first describe the significance of mitochondria in metabolism before presenting the dysregulated inflammatory and metabolic processes. Then, we present a synthetic and hypothetical model of the importance of mitochondria in those dysfunctional pathways. The article also reviews different techniques for assessing mitochondrial function and discuss diagnostic and therapeutic implications. This review aims to improve the understanding of the inflammatory and metabolic comorbidities associated with bipolar disorders along with mitochondrial alterations within this context.
Collapse
Affiliation(s)
- Jérémy Bernard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ryad Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ophélia Godin
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, Mitochondrial Innovation Initiative (MITO2i) University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marion Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France.
| |
Collapse
|
13
|
Feng R, Liu J, Yao T, Yang Z, Jiang H. Neurotoxicity of Realgar: Crosstalk Between UBXD8-DRP1-Regulated Mitochondrial Fission and PINK1-Parkin-Mediated Mitophagy. Mol Neurobiol 2024:10.1007/s12035-024-04635-1. [PMID: 39570499 DOI: 10.1007/s12035-024-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Realgar is a toxic mineral medicine containing arsenic that is present in many traditional Chinese medicines. It has been reported that the abuse of drugs containing realgar has potential neurotoxicity, but its mechanism of toxicity has not been fully clarified. In this study, we demonstrated that arsenic in realgar promoted mitochondrial fission via UBXD8-mediated DRP1 translocation to the mitochondria and activated mitophagy via PINK1-Parkin, resulting in mitochondrial dysfunction and nerve cell death in the rat cortex. We used PC12 cells and treated them with inorganic arsenic (iAs). Mdivi-1, a mitochondrial fission inhibitor, and the siRNA UBXD8 or PINK1 were used as interventions to verify the precise mechanism by which arsenic affects realgar-induced mitochondrial instability. The results revealed that the arsenic in realgar accumulated in the brain and led to neurobehavioral abnormalities in the rats. We demonstrated that arsenic in realgar-induced high expression of UBXD8 promoted the translocation of DRP1 to the mitochondria, where it underwent phosphorylation, which led to the over-fission of the mitochondria and mitochondria-mediated apoptosis. Moreover, the over-fission of the mitochondria activates mitophagy, which is self-protective but only partially alleviates apoptosis and mitochondria dysfunction. Our findings revealed the crosstalk between mitochondrial fission and mitophagy in realgar-induced neurotoxicity. These results highlight the role of the transposition of DRP1 by UBXD8 in realgar-induced mitochondrial dysfunction and provide new ideas and data for the study of the mechanism of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Rui Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
| |
Collapse
|
14
|
Yang L, Ren Q, Wang Y, Zheng Y, Du F, Wang F, Zhou J, Gui L, Chen S, Chen X, Zhang W, Sun Y, Zhong X, Liu H, Jiang X, Zhang Z. Research progress of mitochondrial dysfunction induced pyroptosis in acute lung injury. Respir Res 2024; 25:398. [PMID: 39511593 PMCID: PMC11545853 DOI: 10.1186/s12931-024-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) is a common critical respiratory disease in clinical practice, especially in the ICU, with a high mortality rate. The pathogenesis of ALI is relatively complex, mainly involving inflammatory response imbalance, oxidative stress, cell apoptosis, and other aspects. However, currently, the treatment measures taken based on the above mechanisms have not had significant effects. Recent research shows that mitochondrial dysfunction and pyroptosis play an important role in ALI, but there is not much analysis on the relationship between mitochondrial dysfunction and pyroptosis at present. This article reviews the situation of mitochondrial dysfunction in ALI, pyroptosis in ALI, whether mitochondrial dysfunction is related to pyroptosis in ALI, and how to do so, and further analyzes the relationship between them in ALI. This review describes how to alleviate mitochondrial dysfunction, and then suppress the associated immunological pyroptosis, providing new ideas for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qingyi Ren
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yaohui Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yucheng Zheng
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fang Wang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Linxi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shengdong Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanting Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yuhong Sun
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, 646000, China.
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
15
|
Xing Y, Ge J, Wang Y, Zhou X, Yuan Z, Lv M, Zhao M, Liu L, Gong D, Geng T, Xie K. Mitochondrial HKDC1 suppresses oxidative stress and apoptosis by regulating mitochondrial function in goose fatty liver. Int J Biol Macromol 2024; 282:137222. [PMID: 39491705 DOI: 10.1016/j.ijbiomac.2024.137222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Different from human non-alcoholic fatty liver disease (NAFLD), goose fatty liver is physiological with no inflammation. Consistently, mitochondrial dysfunction, oxidative stress and apoptosis are rarely seen in goose fatty liver. Hexokinase domain-containing protein 1 (HKDC1) is involved in maintaining systemic glucose homeostasis, and its absence causes mitochondrial dysfunction. Here, we demonstrated that mitochondrial outer membrane-bound HKDC1 (mHKDC1) had an expression pattern different from that of whole-cell HKDC1 (wHKDC1). Data indicated that the protein level of whole-cell HKDC1 (wHKDC1) was increased but mHKDC1 was decreased in mouse fatty liver. Interestingly, both the protein levels of wHKDC1 and mHKDC1 were significantly increased in goose fatty liver. Treatment of goose or mouse hepatocytes with fatty liver-related factors could influence the expression of wHKDC1 and mHKDC1, but the influence on wHKDC1 was not identical to mHKDC1. HKDC1 overexpression in goose hepatocytes increased wHKDC1 and mHKDC1 expression, mitochondrial membrane potential (MMP), mitochondrial respiratory chain activity, and suppressed reactive oxygen species (ROS) generation, apoptosis and cytokine-cytokine receptor signaling pathway. In addition, mutations in mitochondrial signal peptide or activation domain of HKDC1 altered MMP or ROS levels. In conclusion, HKDC1, particularly mHKDC1, may protect goose fatty liver by regulating mitochondrial function, ROS generation, apoptosis, and inflammation-related pathways.
Collapse
Affiliation(s)
- Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zijin Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengqing Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
17
|
Matsunaga Y, Qadota H, Ghazal N, Lesanpezeshki L, Dorendorf T, Moody JC, Ahier A, Matheny CJ, Vanapalli SA, Zuryn S, Mayans O, Kwong JQ, Benian GM. Protein kinase 2 of the giant sarcomeric protein UNC-89 regulates mitochondrial morphology and function. Commun Biol 2024; 7:1342. [PMID: 39420071 PMCID: PMC11487192 DOI: 10.1038/s42003-024-07042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
UNC-89 is a giant sarcomeric M-line protein required for sarcomere organization and optimal muscle function. UNC-89 contains two protein kinase domains, PK1 and PK2, separated by an elastic region. Here we show that PK2 is a canonical kinase expected to be catalytically active. C. elegans expressing UNC-89 with a lysine to alanine (KtoA) mutation to inactivate PK2 have normally organized sarcomeres and SR, and normal muscle function. PK2 KtoA mutants have fragmented mitochondria, correlated with more mitochondrially-associated DRP-1. PK2 KtoA mutants have increased ATP levels, increased glycolysis and altered levels of electron transport chain complexes. Muscle mitochondria show increased complex I and decreased complex II basal respiration, each of which cannot be uncoupled. This suggests that mutant mitochondria are already uncoupled, possibly resulting from an increased level of the uncoupling protein, UCP-4. Our results suggest signaling from sarcomeres to mitochondria, to help match energy requirements with energy production.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Nasab Ghazal
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | | | - Till Dorendorf
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
18
|
Cho Y, Kim YK. CARM1 phosphorylation at S595 by p38γ MAPK drives ROS-mediated cellular senescence. Redox Biol 2024; 76:103344. [PMID: 39265499 PMCID: PMC11415932 DOI: 10.1016/j.redox.2024.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
CARM1 is predominantly localized in the nucleus and plays a pivotal role in maintaining mitochondrial homeostasis by regulating gene expression. It suppresses mitochondrial biogenesis by downregulating PGC-1α and TFAM expression, while promoting mitochondrial fission through increased DNM1L expression. Under oxidative stress, CARM1 translocates to the cytoplasm, where it directly methylates DRP1 and accelerates mitochondrial fission, enhancing reactive oxygen species (ROS) production. Cytoplasmic localization of CARM1 is facilitated by its phosphorylation at S595 by ROS-activated p38γ MAPK, creating a positive feedback loop. Consequently, cytoplasmic CARM1 contributes to cellular senescence by altering mitochondrial dynamics and increasing ROS levels. This observation was supported by the increased cytoplasmic CARM1 levels and disrupted mitochondrial dynamics in the transformed 10T1/2 cells. Moreover, CARM1 inhibitors not only inhibit the proliferation of cancer cells but also induce apoptotic death in senescent cells. These findings highlight the potential of CARM1 inhibitors, particularly those targeting cytoplasmic functions, as novel strategies for eliminating cancer and senescent cells.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
19
|
Hu Y, Zhang Y, Guo J, Chen S, Jin J, Li P, Pan Y, Lei S, Li J, Wu S, Bu B, Fu L. Synthesis and anti-proliferative effect of novel 4-Aryl-1, 3-Thiazole-TPP conjugates via mitochondrial uncoupling process. Bioorg Chem 2024; 150:107588. [PMID: 38936051 DOI: 10.1016/j.bioorg.2024.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.
Collapse
Affiliation(s)
- Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Guo
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shihao Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jie Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyu Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuchen Pan
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Suheng Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Buzhou Bu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
20
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Lv W, Tu Y, Xu T, Zhang Y, Chen J, Yang N, Wang Y. The Mitochondrial Distribution and Morphology Family 33 Gene FgMDM33 Is Involved in Autophagy and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:579. [PMID: 39194905 DOI: 10.3390/jof10080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The mitochondrial distribution and morphology family 33 gene (MDM33) regulates mitochondrial homeostasis by mediating the mitochondrial fission process in yeast. The wheat head blight Fusarium graminearum contains an FgMdm33 protein that is orthologous to Saccharomyces cerevisiae Mdm33, albeit its function remains unknown. We have reported here the roles of FgMdm33 in regulating fungal morphogenesis, mitochondrial morphology, autophagy, apoptosis, and fungal pathogenicity. The ΔFgmdm33 mutants generated through a homologous recombination strategy in this study exhibited defects in terms of mycelial growth, conidia production, and virulence. Hyphal cells lacking FgMDM33 displayed elongated mitochondria and a dispensable respiratory-deficient growth phenotype, indicating the possible involvement of FgMDM33 in mitochondrial fission. The ΔFgmdm33 mutants displayed a remarkable reduction in the proteolysis of GFP-FgAtg8, whereas the formation of autophagic bodies in the hyphal cells of mutants was recorded under the induction of mitophagy. In addition, the transcriptional expression of the apoptosis-inducing factor 1 gene (FgAIF1) was significantly upregulated in the ΔFgmdm33 mutants. Cumulatively, these results indicate that FgMDM33 is involved in mitochondrial fission, non-selective macroautophagy, and apoptosis and that it regulates fungal growth, conidiation, and pathogenicity of the head blight pathogen.
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Xu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - You Zhang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junjie Chen
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Nan Yang
- The People's Government Office of Bengbu City, Bengbu 233000, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
23
|
Umar SM, Dev AJR, Kashyap A, Rathee M, Chauhan SS, Sharma A, Prasad CP. 7-amino carboxycoumarin 2 inhibits lactate induced epithelial-to-mesenchymal transition via MPC1 in oral and breast cancer cells. Cell Biol Int 2024; 48:1185-1197. [PMID: 38773713 DOI: 10.1002/cbin.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.
Collapse
Affiliation(s)
- Sheikh Mohammad Umar
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Arundhathi J R Dev
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Akanksha Kashyap
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Meetu Rathee
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Sharma
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Zhong FF, Wei B, Bao GX, Lou YP, Wei ME, Wang XY, Xiao X, Tian JJ. FABP3 Induces Mitochondrial Autophagy to Promote Neuronal Cell Apoptosis in Brain Ischemia-Reperfusion Injury. Neurotox Res 2024; 42:35. [PMID: 39008165 DOI: 10.1007/s12640-024-00712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fang-Fang Zhong
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China.
| | - Bo Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Guo-Xiang Bao
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, China
| | - Yi-Ping Lou
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Ming-Er Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xin-Yue Wang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiao Xiao
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Jin-Jin Tian
- School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
25
|
Hua X, Liang G, Chao J, Wang D. Exposure to 6-PPD quinone causes damage on mitochondrial complex I/II associated with lifespan reduction in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134598. [PMID: 38743975 DOI: 10.1016/j.jhazmat.2024.134598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) is an emerging pollutant transformed from 6-PPD. However, the effect of 6-PPDQ exposure on mitochondrion and underlying mechanism remains largely unclear. Using Caenorhabditis elegans as animal model, exposed to 6-PPDQ at 0.1-10 μg/L was performed form L1 larvae to adult day-1. Exposure to 6-PPDQ (1 and 10 μg/L) could increase oxygen consumption rate and decease adenosine 5'-triphosphate (ATP) content, suggesting induction of mitochondrial dysfunction. Activities of NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) were inhibited, accompanied by a decrease in expressions of gas-1, nuo-1, and mev-1. RNAi of gas-1 and mev-1 enhanced mitochondrial dysfunction and reduced lifespan of 6-PPDQ exposed nematodes. GAS-1 and MEV-1 functioned in parallel to regulate 6-PPDQ toxicity to reduce the lifespan. Insulin peptides and the insulin signaling pathway acted downstream of GAS-1 and MEV-1 to control the 6-PPDQ toxicity on longevity. Moreover, RNAi of sod-2 and sod-3, targeted genes of daf-16, caused susceptibility to 6-PPDQ toxicity in reducing lifespan and in causing reactive oxygen species (ROS) production. Therefore, 6-PPDQ at environmentally relevant concentrations (ERCs) potentially caused mitochondrial dysfunction by affecting mitochondrial complexes I and II, which was associated with lifespan reduction by affecting insulin signaling in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
26
|
Zhang J, Huang J, Lan J, Li Q, Ke L, Jiang Q, Li Y, Zhang H, Zhong H, Yang P, Chen T, Song Y. Astragaloside IV protects against autoimmune myasthenia gravis in rats via regulation of mitophagy and apoptosis. Mol Med Rep 2024; 30:129. [PMID: 38785143 PMCID: PMC11140232 DOI: 10.3892/mmr.2024.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Astragaloside IV (AS‑IV) has various pharmacological effects, including antioxidant and immunoregulatory properties, which can improve myasthenia gravis (MG) symptoms. However, the potential mechanism underlying the effects of AS‑IV on MG remains to be elucidated. The present study aimed to investigate whether AS‑IV has a therapeutic effect on MG and its potential mechanism of action. By subcutaneously immunizing rats with R97‑116 peptide, an experimental autoimmune (EA) MG rat model was established. AS‑IV (40 or 80 mg/kg/day) treatment was then applied for 28 days after modeling. The results demonstrated that AS‑IV significantly ameliorated the weight loss, Lennon score and pathological changes in the gastrocnemius muscle of EAMG rats compared with the model group. Additionally, the levels of acetylcholine receptor antibody (AChR‑Ab) were significantly decreased, whereas mitochondrial function [ATPase and cytochrome c (Cyt‑C) oxidase activities] and ultrastructure were improved in the AS‑IV treated rats. Moreover, the mRNA and protein expression levels of phosphatase and tensin homolog‑induced putative kinase 1, Parkin, LC3II and Bcl‑2, key signaling molecules for mitophagy and apoptosis, were upregulated, whereas the mRNA and protein expression levels of p62, Cyt‑C, Bax, caspase 3 and caspase 9 were downregulated following AS‑IV intervention. In conclusion, AS‑IV may protect against EAMG in a rat model by modulating mitophagy and apoptosis. These findings indicated the potential mechanism underlying the effects of AS‑IV on MG and provided novel insights into treatment strategies for MG.
Collapse
Affiliation(s)
- Jingjing Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiayan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jinlian Lan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qilong Jiang
- Department of Gastrosplenic Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Han Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huiya Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Peidan Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
27
|
Zhou Y, Wang C, Nie Y, Wu L, Xu A. 2,4,6-trinitrotoluene causes mitochondrial toxicity in Caenorhabditis elegans by affecting electron transport. ENVIRONMENTAL RESEARCH 2024; 252:118820. [PMID: 38555093 DOI: 10.1016/j.envres.2024.118820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
As a typical energetic compound widely used in military activities, 2,4,6-trinitrotoluene (TNT) has attracted great attention in recent years due to its heavy pollution and wide distribution in and around the training facilities, firing ranges, and demolition sites. However, the subcellular targets and the underlying toxic mechanism of TNT remain largely unknown. In this study, we explored the toxic effects of TNT biological reduction on the mitochondrial function and homeostasis in Caenorhabditis elegans (C. elegans). With short-term exposure of L4 larvae, 10-1000 ng/mL TNT reduced mitochondrial membrane potential and adenosine triphosphate (ATP) content, which was associated with decreased expression of specific mitochondrial complex involving gas-1 and mev-1 genes. Using fluorescence-labeled transgenic nematodes, we found that fluorescence expression of sod-3 (muls84) and gst-4 (dvls19) was increased, suggesting that TNT disrupted the mitochondrial antioxidant defense system. Furthermore, 10 ng/mL TNT exposure increased the expression of the autophagy-related gene pink-1 and activated mitochondrial unfolded protein response (mt UPR), which was indicated by the increased expression of mitochondrial stress activated transcription factor atfs-1, ubiquitin-like protein ubl-5, and homeobox protein dve-1. Our findings demonstrated that TNT biological reduction caused mitochondrial dysfunction and the development of mt UPR protective stress responses, and provided a basis for determining the potential risks of energetic compounds to living organisms.
Collapse
Affiliation(s)
- Yanping Zhou
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China
| | - Chunyan Wang
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Anhui, Hefei, 230031, PR China.
| |
Collapse
|
28
|
Kurien BT, Ice JA, Wood R, Pharaoh G, Cavett J, Lewis V, Bhaskaran S, Rasmussen A, Lessard CJ, Farris AD, Sivils KL, Koelsch KA, Van Remmen H, Scofield RH. Mitochondrial Dysfunction and Fatigue in Sjögren's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598269. [PMID: 38948768 PMCID: PMC11212898 DOI: 10.1101/2024.06.17.598269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives Sjögren's disease (SjD) is a common exocrine disorder typified by chronic inflammation and dryness, but also profound fatigue, suggesting a pathological basis in cellular bioenergetics. In healthy states, damaged or dysfunctional mitochondrial components are broken down and recycled by mitophagy, a specialized form of autophagy. In many autoimmune disorders, however, evidence suggests that dysfunctional mitophagy allows poorly functioning mitochondria to persist and contribute to a cellular milieu with elevated reactive oxygen species. We hypothesized that mitophagic processes are dysregulated in SjD and that dysfunctional mitochondria contribute to overall fatigue. We sought to link fatigue with mitochondrial dysfunction directly in SjD, heretofore unexamined, and further sought to assess the pathogenic extent and implications of dysregulated mitophagy in SjD. Methods We isolated pan T cells via negative selection from the peripheral blood mononuclear cells of 17 SjD and 8 age-matched healthy subjects, all of whom completed fatigue questionnaires prior to phlebotomy. Isolated T cells were analyzed for mitochondrial oxygen consumption rate (OCR) and glycolysis using Seahorse, and linear correlations with fatigue measures were assessed. A mitophagy transcriptional signature in SjD was identified by reanalysis of whole-blood microarray data from 190 SjD and 32 healthy subjects. Differential expression analyses were performed by case/control and subgroup analyses comparing SjD patients by mitophagy transcriptional cluster against healthy subjects followed by bioinformatic interpretation using gene set enrichment analysis. Results Basal OCR, ATP-linked respiration, maximal respiration, and reserve capacity were significantly lower in SjD compared to healthy subjects with no observed differences in non-mitochondrial respiration, basal glycolysis, or glycolytic stress. SjD lymphocytic mitochondria show structural alterations compared to healthy subjects. Fatigue scores related to pain/discomfort in SjD correlated with the altered OCR. Results from subgroup analyses by mitophagic SjD clusters revealed highly variable inter-cluster differentially expressed genes (DEGs) and expanded the number of SjD-associated gene targets by tenfold within the same dataset. Conclusion Mitochondrial dysfunction, associated with fatigue, is a significant problem in SjD and warrants further investigation.
Collapse
|
29
|
Fang C, Di S, Yu Y, Qi P, Wang X, Jin Y. 6PPD induced cardiac dysfunction in zebrafish associated with mitochondrial damage and inhibition of autophagy processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134357. [PMID: 38643584 DOI: 10.1016/j.jhazmat.2024.134357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
The compound 6PPD is widely acknowledged for its antioxidative properties; however, concerns regarding its impact on aquatic organisms have spurred comprehensive investigations. In our study, we advanced our comprehension by revealing that exposure to 6PPD could induce cardiac dysfunction, myocardial injury and DNA damage in adult zebrafish. Furthermore, our exploration unveiled that the exposure of cardiomyocytes to 6PPD resulted in apoptosis and mitochondrial injury, as corroborated by analyses using transmission electron microscopy and flow cytometry. Significantly, our study demonstrated the activation of the autophagy pathway in both the heart of zebrafish and cardiomyocytes, as substantiated by transmission electron microscopy and immunofluorescent techniques. Importantly, the increased the expression of P62 in the heart and cardiomyocytes suggested an inhibition of the autophagic process. The reduction in autophagy flux was also verified through in vivo experiments involving the infection of mCherry-GFP-LC3. We further identified that the fusion of autophagosomes and lysosomes was impaired in the 6PPD treatment group. In summary, our findings indicated that the impaired fusion of autophagosomes and lysosomes hampered the autophagic degradation process, leading to apoptosis and ultimately resulting in cardiac dysfunction and myocardial injury. This study discovered the crucial role of the autophagy pathway in regulating 6PPD-induced cardiotoxicity. SYNOPSIS: 6PPD exposure inhibited the autophagic degradation process and induced mitochondrial injury and apoptosis in the heart of adult zebrafish.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
30
|
von Känel C, Oeljeklaus S, Wenger C, Stettler P, Harsman A, Warscheid B, Schneider A. Intermembrane space-localized TbTim15 is an essential subunit of the single mitochondrial inner membrane protein translocase of trypanosomes. Mol Microbiol 2024; 121:1112-1126. [PMID: 38622999 DOI: 10.1111/mmi.15262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
All mitochondria import >95% of their proteins from the cytosol. This process is mediated by protein translocases in the mitochondrial membranes, whose subunits are generally highly conserved. Most eukaryotes have two inner membrane protein translocases (TIMs) that are specialized to import either presequence-containing or mitochondrial carrier proteins. In contrast, the parasitic protozoan Trypanosoma brucei has a single TIM complex consisting of one conserved and five unique subunits. Here, we identify candidates for new subunits of the TIM or the presequence translocase-associated motor (PAM) using a protein-protein interaction network of previously characterized TIM and PAM subunits. This analysis reveals that the trypanosomal TIM complex contains an additional trypanosomatid-specific subunit, designated TbTim15. TbTim15 is associated with the TIM complex, lacks transmembrane domains, and localizes to the intermembrane space. TbTim15 is essential for procyclic and bloodstream forms of trypanosomes. It contains two twin CX9C motifs and mediates import of both presequence-containing and mitochondrial carrier proteins. While the precise function of TbTim15 in mitochondrial protein import is unknown, our results are consistent with the notion that it may function as an import receptor for the non-canonical trypanosomal TIM complex.
Collapse
Affiliation(s)
- Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anke Harsman
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Méndez D, Tellería F, Monroy-Cárdenas M, Montecino-Garrido H, Mansilla S, Castro L, Trostchansky A, Muñoz-Córdova F, Zickermann V, Schiller J, Alfaro S, Caballero J, Araya-Maturana R, Fuentes E. Linking triphenylphosphonium cation to a bicyclic hydroquinone improves their antiplatelet effect via the regulation of mitochondrial function. Redox Biol 2024; 72:103142. [PMID: 38581860 PMCID: PMC11002875 DOI: 10.1016/j.redox.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, 3460000, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | | | - Volker Zickermann
- Institute of Biochemistry II, Goethe University Medical School, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, Goethe University Medical School, Germany
| | - Sergio Alfaro
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
32
|
Peng H, Wu L, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Lymphocyte antigen 96: A new potential biomarker and immune target in Parkinson's disease. Exp Gerontol 2024; 190:112415. [PMID: 38614225 DOI: 10.1016/j.exger.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Lymphocyte antigen 96 (LY96) plays an important role in innate immunity and has been reported to be associated with various neurological diseases. However, its role in Parkinson's disease (PD) remains unclear. METHODS Transcriptome data from a total of 49 patients with PD and 34 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database to analyse the expression pattern of LY96 and its relationship with gene function and immune-related markers. In addition, peripheral blood samples were collected from clinical patients to validate LY96 mRNA expression levels. Finally, an in vitro cell model of PD based on highly differentiated SH-SY5Y cells was constructed, with small interfering RNA-silenced LY96 expression, and LY96 mRNA level, cell viability, flow cytometry, and mitochondrial membrane potential assays were performed. RESULTS The results of the analyses of the GEO database and clinical samples revealed significantly abnormally high LY96 expression in patients with PD compared with healthy controls. The results of cell experiments showed that inhibiting LY96 expression alleviated adverse cellular effects by increasing cell viability, reducing apoptosis, and reducing oxidative stress. Gene set enrichment analysis showed that LY96 was positively correlated with T1 helper cells, T2 helper cells, neutrophils, natural killer T cells, myeloid-derived suppressor cells, macrophages, and activated CD4 cells, and may participate in PD through natural killer cell-mediated cytotoxicity pathways and extracellular matrix receptor interaction pathways. CONCLUSION These findings suggested that LY96 might be a novel potential biomarker for PD, and offer insights into its immunoregulatory role.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Longyu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
33
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
34
|
Yang X, Feng H, Kim J, Ti G, Wang L, Wang K, Song D. PRR34-AS1 promotes mitochondrial division and glycolytic reprogramming in hepatocellular carcinoma cells through upregulation of MIEF2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1604-1617. [PMID: 38779765 PMCID: PMC11659787 DOI: 10.3724/abbs.2024083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
LncRNA PRR34-AS1 overexpression promotes the proliferation and invasion of hepatocellular carcinoma (HCC) cells, but whether it affects HCC energy metabolism remains unclear. Mitochondrial division and glycolytic reprogramming play important roles in tumor development. In this study, the differential expression of PRR34-AS1 is explored via TCGA analysis, and higher levels of PRR34-AS1 are detected in patients with liver cancer than in healthy individuals. A series of experiments, such as CCK-8, PCR, and immunofluorescence staining, reveal that the proliferation, invasion, glycolysis, and mitochondrial division of PRR34-AS1-overexpressing hepatoma cells are significantly promoted. TCGA analysis and immunohistochemistry reveal high expression of the mitochondrial dynamin MIEF2 in liver cancer tissues. Dual-luciferase reporter assays confirm that miR-498 targets and binds to mitochondrial elongation factor 2 (MIEF2). In addition, we show that PRR34-AS1 can sponge miR-498. Therefore, we further investigate the effects of the lncRNA PRR34-AS1/miR-498/MIEF2 axis on the growth, glucose metabolism, and mitochondrial division in hepatocellular carcinoma cells. A series of experiments are performed on hepatocellular carcinoma cells after different treatments. The results show that the proliferative activity, invasive ability, and glycolytic level of hepatocellular carcinoma cells are decreased in HCC cells with low PRR34-AS1 expression, and the miR-498 expression level is increased in these cells. Inhibition of miR-498 or overexpression of MIEF2 restored the proliferative activity, invasive ability, glycolysis, and mitochondrial division in hepatocellular carcinoma cells. Thus, PRR34-AS1 regulates MIEF2 by sponging miR-498, thereby promoting mitochondrial division, mediating glycolytic reprogramming and ultimately driving the growth and invasion of HCC cells. Furthermore, in vivo mouse experiments yield results similar to those of the in vitro experiments, verifying the above results.
Collapse
Affiliation(s)
- Xuejing Yang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huijing Feng
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jonghwa Kim
- Department of Pharmaceutical EngineeringWoosuk UniversityWanjuJeonbukSouthKorea
| | - Gang Ti
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lin Wang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kun Wang
- Department of Pharmaceutical EngineeringWoosuk UniversityWanjuJeonbukSouthKorea
| | - Dong Song
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
35
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Mei X, Wang X, Wu X, Liu G, Chen Y, Zhou S, Shang Y, Liu Z, Yang X, Sha W, Zhang H. Mitochondrial Genomic Evidence of Selective Constraints in Small-Bodied Terrestrial Cetartiodactyla. Animals (Basel) 2024; 14:1434. [PMID: 38791652 PMCID: PMC11117313 DOI: 10.3390/ani14101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Body size may drive the molecular evolution of mitochondrial genes in response to changes in energy requirements across species of different sizes. In this study, we perform selection pressure analysis and phylogenetic independent contrasts (PIC) to investigate the association between molecular evolution of mitochondrial genome protein-coding genes (mtDNA PCGs) and body size in terrestrial Cetartiodactyla. Employing selection pressure analysis, we observe that the average non-synonymous/synonymous substitution rate ratio (ω) of mtDNA PCGs is significantly reduced in small-bodied species relative to their medium and large counterparts. PIC analysis further confirms that ω values are positively correlated with body size (R2 = 0.162, p = 0.0016). Our results suggest that mtDNA PCGs of small-bodied species experience much stronger purifying selection as they need to maintain a heightened metabolic rate. On the other hand, larger-bodied species may face less stringent selective pressures on their mtDNA PCGs, potentially due to reduced relative energy expenditure per unit mass. Furthermore, we identify several genes that undergo positive selection, possibly linked to species adaptation to specific environments. Therefore, despite purifying selection being the predominant force in the evolution of mtDNA PCGs, positive selection can also occur during the process of adaptive evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honghai Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China; (X.M.)
| |
Collapse
|
37
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Zhao W, Liu J, Wang S, Tao Q, Lei Q, Huang C. Varespladib mitigates acute liver injury via suppression of excessive mitophagy on Naja atra envenomed mice by inhibiting PLA 2. Toxicon 2024; 242:107694. [PMID: 38556061 DOI: 10.1016/j.toxicon.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.
Collapse
Affiliation(s)
- Wenjie Zhao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Sidan Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qinqin Tao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qiongqiong Lei
- School of Nursing, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
39
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
40
|
Winiarska E, Chaszczewska-Markowska M, Ghete D, Jutel M, Zemelka-Wiacek M. Nanoplastics Penetrate Human Bronchial Smooth Muscle and Small Airway Epithelial Cells and Affect Mitochondrial Metabolism. Int J Mol Sci 2024; 25:4724. [PMID: 38731941 PMCID: PMC11083782 DOI: 10.3390/ijms25094724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.
Collapse
Affiliation(s)
- Ewa Winiarska
- Department of Clinical Immunology, Wroclaw Medical University, 51-616 Wroclaw, Poland; (E.W.)
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Daniel Ghete
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 51-616 Wroclaw, Poland; (E.W.)
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| | | |
Collapse
|
41
|
Meng Z, Cheng S, Wang W, Wei Z, Guo Z, Zhao X, Wu B, Chang H, Wang N. Up-regulation of MIC19 promotes growth and metastasis of hepatocellular carcinoma by activating ROS/NF-κB signaling. Transl Oncol 2024; 42:101906. [PMID: 38350286 PMCID: PMC10876907 DOI: 10.1016/j.tranon.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Mitochondrial malfunction has been well-recognized as a critical step in the pathogenesis of many types of diseases, including cancer. MIC19 is a core a subunit of the MICOS complex that plays a critical role in maintaining the normal function of mitochondria. However, the biological functions of MIC19 in human hepatocellular carcinoma (HCC) remain unclear. METHODS The expression level of MIC19 in HCC was evaluated by bioinformatics analysis, quantitative real-time PCR and immunohistochemistry staining assays. Cell growth and metastasis experiments were used to assess the biological functions of MIC19 in HCC cells. FINDINGS MIC19 expression was frequently upregulated in both human HCC specimens and cell lines, and its upregulation is closely associated with patients' survival. Results from loss-of-function and gain-of-function experiments demonstrated that knockdown of MIC19 significantly attenuated, while overexpression of MIC19 enhanced, the proliferation, colony formation, migration and invasion abilities of HCC cells. Mechanistically, we found that MIC19 has no effect on mitochondrial energy production, while activated ROS/NF-κB signaling, which was required for MIC19-promoted HCC growth and metastasis. INTERPRETATION Our findings suggest that MIC19 play a critical oncogenic role in HCC, implying that MIC19 may serve as a potential therapeutic target in the treatment of HCC.
Collapse
Affiliation(s)
- Zhanbing Meng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Shixia Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weifang Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhouxia Wei
- Department of General Surgery (part II), LanZhou Second People's Hospital, Lanzhou 730000, China
| | - Zheng Guo
- Department of Burns and Plastic Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an 710038, China
| | - Xuying Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bing Wu
- Department of Geriatrics, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710061, Shaanxi, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
42
|
Wang Y, Zhu Y, Cui H, Deng H, Zuo Z, Fang J, Guo H. Effects of CuSO 4 on hepatic mitochondrial function, biogenesis and dynamics in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:2208-2217. [PMID: 38124272 DOI: 10.1002/tox.24085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.
Collapse
Affiliation(s)
- Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
43
|
Xiao L, Chen B, Chen C, Xiao F, Li M, Zhuang M, Dai Y, Wu K. Characterization and function of PTEN-induced putative kinase 1 (PINK1) in process of Zinc alleviates hepatic lipid deposition of yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2024; 265:131156. [PMID: 38537862 DOI: 10.1016/j.ijbiomac.2024.131156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
PTEN-induced putative kinase 1 (PINK1) is a key regulator of mitophagy, however, the relevant information remains poorly understood on aquatic animals. Here, a PINK1 gene was cloned, characterized and functionally studied in yellow catfish. PINK1 encoded a protein containing 570 amino acids, 2 functional domains. High fat (15.66%) fed fish showed a downregulation trend of liver PINK1 expression than that of normal fat (10.14%) group, and was reversed by the addition of Zn. In the in vitro study, high fat (HF) can increase lipid deposition and decrease by addition Zn (HFZ) in hepatocytes, whereas above phenomena reversed by overexpression/interference of PINK1, respectively. In addition, the addition of Zn can significantly affect mitochondrial activity, increase mitophagy, and improve the antioxidant activity of hepatocytes. Together, these findings illustrated that yellow catfish PINK1 is conserve, and it participated in mitochondria control of fish. These findings indicate Zn could alleviate high fat-induced hepatic lipid deposition of fish by activating PINK1-mediated mitophagy and provide basis for further exploring new approach for decreasing lipid deposition in fish products during aquaculture.
Collapse
Affiliation(s)
- Lanfei Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Baojia Chen
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingzi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minjia Zhuang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yishuang Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
44
|
Ansari MM, Ghosh M, Lee DS, Son YO. Senolytic therapeutics: An emerging treatment modality for osteoarthritis. Ageing Res Rev 2024; 96:102275. [PMID: 38494091 DOI: 10.1016/j.arr.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated β-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
45
|
Shirkoohi FJ, Ghollasi M, Halabian R, Eftekhari E, Ghiasi M. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2024; 51:451. [PMID: 38536507 DOI: 10.1007/s11033-024-09389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mitochondrial organelles play a crucial role in cellular metabolism so different cell types exhibit diverse metabolic and energy demands. Therefore, alternations in the intracellular distribution, quantity, function, and structure of mitochondria are required for stem cell differentiation. Finding an effective inducer capable of modulating mitochondrial activity is critical for the differentiation of specific stem cells into osteo-like cells for addressing issues related to osteogenic disorders. This study aimed to investigate the effect of oxaloacetate (OAA) on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro. METHODS AND RESULTS First, the most favorable OAA concentration was measured through MTT assay and subsequently confirmed using acridine orange staining. Human ADSCs were cultured in osteogenic medium supplemented with OAA and analyzed on days 7 and 14 of differentiation. Various assays including alkaline phosphatase assay (ALP), cellular calcium content assay, mineralized matrix staining with alizarin red, catalase (CAT) and superoxide dismutase (SOD) activity, and real-time RT-PCR analysis of three bone-specific markers (ALP, osteocalcin, and collagen type I) were conducted to characterize the differentiated cells. Following viability assessment, OAA at a concentration of 1 µM was considered the optimal dosage for further studies. The results of osteogenic differentiation assays showed that OAA at a concentration of 1 × 10- 6 M significantly increased ALP enzyme activity, mineralization, CAT and SOD activity and the expression of bone-specific genes in differentiated cells compared to control groups in vitro. CONCLUSIONS In conclusion, the fundings from this study suggest that OAA possesses favorable properties that make it a potential candidate for application in medical bone regeneration.
Collapse
Affiliation(s)
- Fatemeh Jamali Shirkoohi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran.
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Sun Z, Jiao A, Zhao Y, Han T, Zhang H, Gao Q. Isoliquiritin can cause mitochondrial dysfunction and regulate Nrf2 to affect the development of mouse oocytes. Food Chem Toxicol 2024; 185:114445. [PMID: 38311047 DOI: 10.1016/j.fct.2024.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
IsoliQuirtigenin (ILG) has been widely studied in somatic cells and tissues, but less in reproductive development. It is a kind of widely used food additive. In this study, it was found that ILG could significantly increase the levels of ROS,GSH and MMP in mouse oocytes (P < 0.01). In order to explore the cause of this phenomenon, it was found that the abnormal distribution of mitochondria and ATP synthesis levels were significantly increased (P < 0.05). At this time, we made a reasonable hypothesis that ILG affected mitochondrial function. In subsequent studies, it was found that the endogenous ROS accumulation level in mitochondria was significantly increased. After continuous RT-PCR screening, it was found that the expression of Nrf2 was significantly inhibited (P < 0.01). Its upstream and downstream FOXO3 GPX1, CAT, SOD2, SIRT1 gene also appear different degree of significant change (P < 0.05), in which the lower expression of NADP + (P < 0.05) illustrates the mitochondrial ATP synthesis electronic chain were suppressed, it also has the reason, By inhibiting electron chain and ATP synthesis, ILG leads to oocyte apoptosis and initiation of autophagy, reducing oocyte and its subsequent developmental potential.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Anhui Jiao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Tiancang Han
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Hongbo Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China.
| |
Collapse
|
47
|
Yang EJN, Liao PC, Pon L. Mitochondrial protein and organelle quality control-Lessons from budding yeast. IUBMB Life 2024; 76:72-87. [PMID: 37731280 PMCID: PMC10842221 DOI: 10.1002/iub.2783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Mitochondria are essential for normal cellular function and have emerged as key aging determinants. Indeed, defects in mitochondrial function have been linked to cardiovascular, skeletal muscle and neurodegenerative diseases, premature aging, and age-linked diseases. Here, we describe mechanisms for mitochondrial protein and organelle quality control. These surveillance mechanisms mediate repair or degradation of damaged or mistargeted mitochondrial proteins, segregate mitochondria based on their functional state during asymmetric cell division, and modulate cellular fitness, the response to stress, and lifespan control in yeast and other eukaryotes.
Collapse
Affiliation(s)
- Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Pin-Chao Liao
- Institute of Molecular Medicine & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Liza Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
48
|
Miao H, Cui W, Zhang T, Zhang Y, Zhang J, Lou H, Fan P. Mitochondrial targeting derivatives of honokiol enhanced selective antitumor activity in NCI-H446 cells and decreased in vivo toxicity in Caenorhabditis elegans. Eur J Med Chem 2024; 264:115996. [PMID: 38086195 DOI: 10.1016/j.ejmech.2023.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Mitochondria, responsible for ATP production and apoptosis regulation, play a key role in cancer cells. Honokiol regulates apoptosis through the endogenous mitochondrial pathway but does not specifically target tumor cells. We designed 28 novel derivatives of honokiol using triple-function delocalized lipophilic cations such as berberine and F16 as mitochondrion-targeting carriers. While all derivatives exhibited enhanced cytotoxicity toward tumor cells compared to honokiol, the derivative 2E-3-F16 exhibited a substantial tumor cell selectivity between NCI-H446 cancer cells and HBE cells by one order of magnitude and enhanced the sensitivity of A549 cells to cisplatin. Mechanistically, it targeted mitochondria and induced apoptosis by preventing tumor cells from entering the G0/G1 phases as well as inducing an abnormal elevation of reactive oxygen species, thereby decreasing the mitochondrial membrane potential level. It also showed lower toxicity toward Caenorhabditis elegans than honokiol. This study provides a possible method for developing mitochondrion-targeting antitumor drugs with high efficiency and low toxicity based on natural products.
Collapse
Affiliation(s)
- Huicong Miao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenbo Cui
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Tao Zhang
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Research Institute, Zibo 255400, PR China
| | - Yue Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
49
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|