1
|
Erickson RP. A fascination with tailless mice: a scientific historical review of studies of the T/t complex. Mamm Genome 2025; 36:38-51. [PMID: 39400602 DOI: 10.1007/s00335-024-10076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
The T/t complex of the mouse attracted many of the major figures of mouse genetics to perform genetic, cytogenetic, physiological, biochemical and molecular biological studies of it. These studies started with the discovery of short tailed mutants (Ts) and recessive lethal developmental mutations (ts) which mapped to the same "locus" in the early 1920s in France. However, due to the non-receptivity of French scientists to genetics, they continued to be studied in mostly Anglophone countries to be joined by a wider international community in the 1970s. These discoveries led to developmental studies of the lethal mutants which provided the origin of mammalian developmental genetics. The fascinating property of transmission ratio distortion (non-50/50 segregation of alleles in offspring of males) elicited tremendous interest. There were false leads (that the region consisted of unusual DNA, that the alleles controlled cell surface antigens on embryonic cells and spermatozoa) and exciting discoveries. This historical review provides a review of this extensive area of research and some of the individuals involved in it.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Surgery and Pediatrics, University of Arizona School of Medicine, Tucson, AZ, USA.
| |
Collapse
|
2
|
Munasinghe M, Brandvain Y. Together inbreeding and reproductive compensation favor lethal t-haplotypes. J Hered 2024; 115:672-681. [PMID: 38842146 DOI: 10.1093/jhered/esae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Male mice who are heterozygous for distorting and non-distorting alleles at the t-haplotype transmit the driving t-haplotype around 90% of the time-a drastic departure from Mendelian expectations. This selfish act comes at a cost. The mechanism underlying transmission distortion in this system causes severe sterility in males homozygous for the drive alleles, ultimately preventing its fixation. Curiously, many driving t-haplotypes also induce embryonic lethality in both sexes when homozygous; however, this is neither universal nor a necessity for this distortion mechanism. Charlesworth provided an adaptive explanation for the evolution of lethal t-haplotypes in a population segregating for distorting and non-distorting t alleles-if mothers compensate by replacing dead embryos with new offspring (or by transferring energy to surviving offspring), a recessive lethal can be favored because it effectively allows mothers the opportunity to trade in infertile males for potentially fertile offspring. This model, however, requires near complete reproductive compensation for the invasion of the lethal t-haplotype and produces an equilibrium frequency of lethal drivers well below what is observed in nature. We show that low levels of systemic inbreeding, which we model as brother-sister mating, allow lethal t-haplotypes to invade with much lower levels of reproductive compensation. Furthermore, inbreeding allows these lethal haplotypes to largely displace the ancestral male-sterile haplotypes. Our results show that together inbreeding and reproductive compensation move expected equilibria closer to observed haplotype frequencies in natural populations and occur under lower, potentially more reasonable, parameters.
Collapse
Affiliation(s)
- Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States
| |
Collapse
|
3
|
AbuAlia KFN, Damm E, Ullrich KK, Mukaj A, Parvanov E, Forejt J, Odenthal-Hesse L. Natural variation in the zinc-finger-encoding exon of Prdm9 affects hybrid sterility phenotypes in mice. Genetics 2024; 226:iyae004. [PMID: 38217871 PMCID: PMC10917509 DOI: 10.1093/genetics/iyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.
Collapse
Affiliation(s)
- Khawla F N AbuAlia
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Elena Damm
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Kristian K Ullrich
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Amisa Mukaj
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| |
Collapse
|
4
|
Courret C, Wei X, Larracuente AM. New perspectives on the causes and consequences of male meiotic drive. Curr Opin Genet Dev 2023; 83:102111. [PMID: 37704518 PMCID: PMC10842977 DOI: 10.1016/j.gde.2023.102111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Gametogenesis is vulnerable to selfish genetic elements that bias their transmission to the next generation by cheating meiosis. These so-called meiotic drivers are widespread in plants, animals, and fungi and can impact genome evolution. Here, we summarize recent progress on the causes and consequences of meiotic drive in males, where selfish elements attack vulnerabilities in spermatogenesis. Advances in genomics provide new insights into the organization and dynamics of driving chromosomes in natural populations. Common themes, including small RNAs, gene duplications, and heterochromatin, emerged from these studies. Interdisciplinary approaches combining evolutionary genomics with molecular and cell biology are beginning to unravel the mysteries of drive and suppression mechanisms. These approaches also provide insights into fundamental processes in spermatogenesis and chromatin regulation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@CecileCourret
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@xiaolu_wei
| | | |
Collapse
|
5
|
Unckless RL. Meiotic drive, postzygotic isolation, and the Snowball Effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567107. [PMID: 38014228 PMCID: PMC10680770 DOI: 10.1101/2023.11.14.567107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
As populations diverge, they accumulate incompatibilities which reduce gene flow and facilitate the formation of new species. Simple models suggest that the genes that cause Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions between taxa, the so-called snowball effect. We show, however, that in the special- but possibly common- case in which hybrid sterility is due primarily to cryptic meiotic (gametic) drive, the number of genes that cause postzygotic isolation may increase nearly linearly with the number of substitutions between species.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
6
|
Silva DM, Akera T. Meiotic drive of noncentromeric loci in mammalian meiosis II eggs. Curr Opin Genet Dev 2023; 81:102082. [PMID: 37406428 PMCID: PMC10527070 DOI: 10.1016/j.gde.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
Collapse
Affiliation(s)
- Duilio Mza Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Winkler L, Lindholm AK. A meiotic driver alters sperm form and function in house mice: a possible example of spite. Chromosome Res 2022; 30:151-164. [PMID: 35648282 PMCID: PMC9508062 DOI: 10.1007/s10577-022-09695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
The ability to subvert independent assortment of chromosomes is found in many meiotic drivers, such as the t haplotype in house mice Mus musculus, in which the t-bearing chromosomal homolog is preferentially transmitted to offspring. This is explained by a poison-antidote system, in which developing + and t sperm in testes of + /t males are exposed to 'poison' coded by t loci, from which t sperm are protected, allowing t sperm an overwhelming fertilisation advantage in monogamous matings. This system is thought to result in poorly and normally motile sperm subpopulations within + /t sperm, leaving t sperm unharmed. Conversely, we found that the fastest quartile of sperm from + /t males swam more slowly, both forwards and along their travel path, and had reduced straightness and linearity, compared to the fastest quartile of + / + sperm. Moreover, sperm from + /t males had shorter tails and narrower heads than + / + sperm, and these morphological differences covaried with motility differences. Finally, + /t traits did not show evidence of bimodal distributions. We conclude that the t haplotype drive results in lasting damage to the motility of both + and t developing sperm, although previous studies indicate that + must be more harmed than t sperm. This damage to all sperm may explain the low success of + /t males in sperm competition with + / + males, seen in earlier studies. We propose that the harm the t causes to itself could be termed 'spiteful', which may also be common to other gamete-harming meiotic drive systems.
Collapse
Affiliation(s)
- Lennart Winkler
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
- Applied Zoology, TU Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Finseth F, Brown K, Demaree A, Fishman L. Supergene potential of a selfish centromere. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210208. [PMID: 35694746 PMCID: PMC9189507 DOI: 10.1098/rstb.2021.0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selfishly evolving centromeres bias their transmission by exploiting the asymmetry of female meiosis and preferentially segregating to the egg. Such female meiotic drive systems have the potential to be supergenes, with multiple linked loci contributing to drive costs or enhancement. Here, we explore the supergene potential of a selfish centromere (D) in Mimulus guttatus, which was discovered in the Iron Mountain (IM) Oregon population. In the nearby Cone Peak population, D is still a large, non-recombining and costly haplotype that recently swept, but shorter haplotypes and mutational variation suggest a distinct population history. We detected D in five additional populations spanning more than 200 km; together, these findings suggest that selfish centromere dynamics are widespread in M. guttatus. Transcriptome comparisons reveal elevated differences in expression between driving and non-driving haplotypes within, but not outside, the drive region, suggesting large-scale cis effects of D's spread on gene expression. We use the expression data to refine linked candidates that may interact with drive, including Nuclear Autoantigenic Sperm Protein (NASPSIM3), which chaperones the centromere-defining histone CenH3 known to modify Mimulus drive. Together, our results show that selfishly evolving centromeres may exhibit supergene behaviour and lay the foundation for future genetic dissection of drive and its costs. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| | - Keely Brown
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Andrew Demaree
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
Navarro-Dominguez B, Chang CH, Brand CL, Muirhead CA, Presgraves DC, Larracuente AM. Epistatic selection on a selfish Segregation Distorter supergene - drive, recombination, and genetic load. eLife 2022; 11:e78981. [PMID: 35486424 PMCID: PMC9122502 DOI: 10.7554/elife.78981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.
Collapse
Affiliation(s)
| | - Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Cara L Brand
- Department of Biology, University of RochesterRochesterUnited States
| | - Christina A Muirhead
- Department of Biology, University of RochesterRochesterUnited States
- Ronin InstituteMontclairUnited States
| | | | | |
Collapse
|
11
|
Runge JN, Kokko H, Lindholm AK. Selfish migrants: How a meiotic driver is selected to increase dispersal. J Evol Biol 2022; 35:621-632. [PMID: 35255164 PMCID: PMC9311743 DOI: 10.1111/jeb.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Meiotic drivers are selfish genetic elements that manipulate meiosis to increase their transmission to the next generation to the detriment of the rest of the genome. One example is the t haplotype in house mice, which is a naturally occurring meiotic driver with deleterious traits—poor fitness in polyandrous matings and homozygote inviability or infertility—that prevent its fixation. Recently, we discovered and validated a novel effect of t in a long‐term field study on free‐living wild house mice and with experiments: t‐carriers are more likely to disperse. Here, we ask what known traits of the t haplotype can select for a difference in dispersal between t‐carriers and wildtype mice. To that end, we built individual‐based models with dispersal loci on the t and the homologous wildtype chromosomes. We also allow for density‐dependent expression of these loci. The t haplotype consistently evolves to increase the dispersal propensity of its carriers, particularly at high densities. By examining variants of the model that modify different costs caused by t, we show that the increase in dispersal is driven by the deleterious traits of t, disadvantage in polyandrous matings and lethal homozygosity or male sterility. Finally, we show that an increase in driver‐carrier dispersal can evolve across a range of values in driver strength and disadvantages.
Collapse
Affiliation(s)
- Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Kelemen RK, Elkrewi M, Lindholm AK, Vicoso B. Novel patterns of expression and recruitment of new genes on the t-haplotype, a mouse selfish chromosome. Proc Biol Sci 2022; 289:20211985. [PMID: 35135349 PMCID: PMC8826135 DOI: 10.1098/rspb.2021.1985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The t-haplotype of mice is a classical model for autosomal transmission distortion. A largely non-recombining variant of the proximal region of chromosome 17, it is transmitted to more than 90% of the progeny of heterozygous males through the disabling of sperm carrying a standard chromosome. While extensive genetic and functional work has shed light on individual genes involved in drive, much less is known about the evolution and function of the rest of its hundreds of genes. Here, we characterize the sequence and expression of dozens of t-specific transcripts and of their chromosome 17 homologues. Many genes showed reduced expression of the t-allele, but an equal number of genes showed increased expression of their t-copy, consistent with increased activity or a newly evolved function. Genes on the t-haplotype had a significantly higher non-synonymous substitution rate than their homologues on the standard chromosome, with several genes harbouring dN/dS ratios above 1. Finally, the t-haplotype has acquired at least two genes from other chromosomes, which show high and tissue-specific expression. These results provide a first overview of the gene content of this selfish element, and support a more dynamic evolutionary scenario than expected of a large genomic region with almost no recombination.
Collapse
Affiliation(s)
- Reka K. Kelemen
- Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria
| | - Marwan Elkrewi
- Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, 190, 8057 Zurich, Switzerland
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
13
|
Bunting MD, Pfitzner C, Gierus L, White M, Piltz S, Thomas PQ. Generation of Gene Drive Mice for Invasive Pest Population Suppression. Methods Mol Biol 2022; 2495:203-230. [PMID: 35696035 DOI: 10.1007/978-1-0716-2301-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic "homing drive" and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional "floxed" alleles.
Collapse
Affiliation(s)
- Mark D Bunting
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Chandran Pfitzner
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Luke Gierus
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Melissa White
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia
| | - Paul Q Thomas
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia.
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| |
Collapse
|
14
|
Villoutreix R, Ayala D, Joron M, Gompert Z, Feder JL, Nosil P. Inversion breakpoints and the evolution of supergenes. Mol Ecol 2021; 30:2738-2755. [PMID: 33786937 PMCID: PMC7614923 DOI: 10.1111/mec.15907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The coexistence of discrete morphs that differ in multiple traits is common within natural populations of many taxa. Such morphs are often associated with chromosomal inversions, presumably because the recombination suppressing effects of inversions help maintain alternate adaptive combinations of alleles across the multiple loci affecting these traits. However, inversions can also harbour selected mutations at their breakpoints, leading to their rise in frequency in addition to (or independent from) their role in recombination suppression. In this review, we first describe the different ways that breakpoints can create mutations. We then critically examine the evidence for the breakpoint-mutation and recombination suppression hypotheses for explaining the existence of discrete morphs associated with chromosomal inversions. We find that the evidence that inversions are favoured due to recombination suppression is often indirect. The evidence that breakpoints harbour mutations that are adaptive is also largely indirect, with the characterization of inversion breakpoints at the sequence level being incomplete in most systems. Direct tests of the role of suppressed recombination and breakpoint mutations in inversion evolution are thus needed. Finally, we emphasize how the two hypotheses of recombination suppression and breakpoint mutation can act in conjunction, with implications for understanding the emergence of supergenes and their evolutionary dynamics. We conclude by discussing how breakpoint characterization could improve our understanding of complex, discrete phenotypic forms in nature.
Collapse
Affiliation(s)
- Romain Villoutreix
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier
3, Montpellier 34293, France
| | - Diego Ayala
- UMR MIVEGEC, Univ. Montpellier, CNRS, IRD, 34934 Montpellier, France
| | - Mathieu Joron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier
3, Montpellier 34293, France
| | | | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame,
Indiana 46556, USA
| | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier
3, Montpellier 34293, France
| |
Collapse
|
15
|
Runge JN, Lindholm AK. Experiments confirm a dispersive phenotype associated with a natural gene drive system. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202050. [PMID: 34040786 PMCID: PMC8113913 DOI: 10.1098/rsos.202050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Meiotic drivers are genetic entities that increase their own probability of being transmitted to offspring, usually to the detriment of the rest of the organism, thus 'selfishly' increasing their fitness. In many meiotic drive systems, driver-carrying males are less successful in sperm competition, which occurs when females mate with multiple males in one oestrus cycle (polyandry). How do drivers respond to this selection? An observational study found that house mice carrying the t haplotype, a meiotic driver, are more likely to disperse from dense populations. This could help the t avoid detrimental sperm competition, because density is associated with the frequency of polyandry. However, no controlled experiments have been conducted to test these findings. Here, we confirm that carriers of the t haplotype are more dispersive, but we do not find this to depend on the local density. t-carriers with above-average body weight were particularly more likely to disperse than wild-type mice. t-carrying mice were also more explorative but not more active than wild-type mice. These results add experimental support to the previous observational finding that the t haplotype affects the dispersal phenotype in house mice, which supports the hypothesis that dispersal reduces the fitness costs of the t.
Collapse
Affiliation(s)
- Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Pfitzner C, White MA, Piltz SG, Scherer M, Adikusuma F, Hughes JN, Thomas PQ. Progress Toward Zygotic and Germline Gene Drives in Mice. CRISPR J 2020; 3:388-397. [PMID: 33095043 DOI: 10.1089/crispr.2020.0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CRISPR-based synthetic gene drives have the potential to deliver a more effective and humane method of invasive vertebrate pest control than current strategies. Relatively efficient CRISPR gene drive systems have been developed in insects and yeast but not in mammals. Here, we investigated the efficiency of CRISPR-Cas9-based gene drives in Mus musculus by constructing "split drive" systems where gRNA expression occurs on a separate chromosome to Cas9, which is under the control of either a zygotic (CAG) or germline (Vasa) promoter. While both systems generated double-strand breaks at their intended target site in vivo, no homology-directed repair between chromosomes ("homing") was detectable. Our data indicate that robust and specific Cas9 expression during meiosis is a critical requirement for the generation of efficient CRISPR-based synthetic gene drives in rodents.
Collapse
Affiliation(s)
- Chandran Pfitzner
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A White
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Sandra G Piltz
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Michaela Scherer
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Fatwa Adikusuma
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - James N Hughes
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Paul Q Thomas
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Fuller ZL, Koury SA, Leonard CJ, Young RE, Ikegami K, Westlake J, Richards S, Schaeffer SW, Phadnis N. Extensive Recombination Suppression and Epistatic Selection Causes Chromosome-Wide Differentiation of a Selfish Sex Chromosome in Drosophila pseudoobscura. Genetics 2020; 216:205-226. [PMID: 32732371 PMCID: PMC7463281 DOI: 10.1534/genetics.120.303460] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Sex-Ratio (SR) chromosomes are selfish X-chromosomes that distort Mendelian segregation and are commonly associated with inversions. These chromosomal rearrangements suppress recombination with Standard (ST) X-chromosomes and are hypothesized to maintain multiple alleles important for distortion in a single large haplotype. Here, we conduct a multifaceted study of the multiply inverted Drosophila pseudoobscura SR chromosome to understand the evolutionary history, genetic architecture, and present-day dynamics that shape this enigmatic selfish chromosome. The D. pseudoobscura SR chromosome has three nonoverlapping inversions of the right arm of the metacentric X-chromosome: basal, medial, and terminal. We find that 23 of 29 Mb of the D. pseudoobscuraX-chromosome right arm is highly differentiated between the Standard and SR arrangements, including a 6.6 Mb collinear region between the medial and terminal inversions. Although crossing-over is heavily suppressed on this chromosome arm, we discover it is not completely eliminated, with measured rates indicating recombination suppression alone cannot explain patterns of differentiation or the near-perfect association of the three SR chromosome inversions in nature. We then demonstrate the ancient basal and medial inversions of the SR chromosome contain genes sufficient to cause weak distortion. In contrast, the younger terminal inversion cannot distort by itself, but contains at least one modifier gene necessary for full manifestation of strong sex chromosome distortion. By parameterizing population genetic models for chromosome-wide linkage disequilibrium with our experimental results, we infer that strong selection acts to maintain the near-perfect association of SR chromosome inversions in present-day populations. Based on comparative genomic analyses, direct recombination experiments, segregation distortion assays, and population genetic modeling, we conclude the combined action of suppressed recombination and strong, ongoing, epistatic selection shape the D. pseudoobscura SR arrangement into a highly differentiated chromosome.
Collapse
Affiliation(s)
- Zachary L Fuller
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Spencer A Koury
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | | | - Randee E Young
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Kobe Ikegami
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Jonathan Westlake
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
18
|
Yan Z, Martin SH, Gotzek D, Arsenault SV, Duchen P, Helleu Q, Riba-Grognuz O, Hunt BG, Salamin N, Shoemaker D, Ross KG, Keller L. Evolution of a supergene that regulates a trans-species social polymorphism. Nat Ecol Evol 2020; 4:240-249. [PMID: 31959939 DOI: 10.1038/s41559-019-1081-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022]
Abstract
Supergenes are clusters of linked genetic loci that jointly affect the expression of complex phenotypes, such as social organization. Little is known about the origin and evolution of these intriguing genomic elements. Here we analyse whole-genome sequences of males from native populations of six fire ant species and show that variation in social organization is under the control of a novel supergene haplotype (termed Sb), which evolved by sequential incorporation of three inversions spanning half of a 'social chromosome'. Two of the inversions interrupt protein-coding genes, resulting in the increased expression of one gene and modest truncation in the primary protein structure of another. All six socially polymorphic species studied harbour the same three inversions, with the single origin of the supergene in their common ancestor inferred by phylogenomic analyses to have occurred half a million years ago. The persistence of Sb along with the ancestral SB haplotype through multiple speciation events provides a striking example of a functionally important trans-species social polymorphism presumably maintained by balancing selection. We found that while recombination between the Sb and SB haplotypes is severely restricted in all species, a low level of gene flux between the haplotypes has occurred following the appearance of the inversions, potentially mitigating the evolutionary degeneration expected at genomic regions that cannot freely recombine. These results provide a detailed picture of the structural genomic innovations involved in the formation of a supergene controlling a complex social phenotype.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Simon H Martin
- Institute of Evolutionary Biology, the University of Edinburgh, Edinburgh, UK
| | - Dietrich Gotzek
- Department of Entomology and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Pablo Duchen
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Oksana Riba-Grognuz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Abstract
Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.
Collapse
Affiliation(s)
- Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
20
|
Lindholm A, Sutter A, Künzel S, Tautz D, Rehrauer H. Effects of a male meiotic driver on male and female transcriptomes in the house mouse. Proc Biol Sci 2019; 286:20191927. [PMID: 31718496 PMCID: PMC6892043 DOI: 10.1098/rspb.2019.1927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Not all genetic loci follow Mendel's rules, and the evolutionary consequences of this are not yet fully known. Genomic conflict involving multiple loci is a likely outcome, as restoration of Mendelian inheritance patterns will be selected for, and sexual conflict may also arise when sexes are differentially affected. Here, we investigate effects of the t haplotype, an autosomal male meiotic driver in house mice, on genome-wide gene expression patterns in males and females. We analysed gonads, liver and brain in adult same-sex sibling pairs differing in genotype, allowing us to identify t-associated differences in gene regulation. In testes, only 40% of differentially expressed genes mapped to the approximately 708 annotated genes comprising the t haplotype. Thus, much of the activity of the t haplotype occurs in trans, and as upregulation. Sperm maturation functions were enriched among both cis and trans acting t haplotype genes. Within the t haplotype, we observed more downregulation and differential exon usage. In ovaries, liver and brain, the majority of expression differences mapped to the t haplotype, and were largely independent of the differences seen in the testis. Overall, we found widespread transcriptional effects of this male meiotic driver in the house mouse genome.
Collapse
Affiliation(s)
- Anna Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andreas Sutter
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Lopes PC, Lindholm AK. A selfish genetic element linked to increased lifespan impacts metabolism in female house mice. J Exp Biol 2019; 223:jeb.212704. [DOI: 10.1242/jeb.212704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/28/2019] [Indexed: 01/30/2023]
Abstract
Gene drive systems can lead to the evolution of traits that further enhance the transmission of the driving element. In gene drive, one allele is transmitted to offspring at a higher frequency than the homologous allele. This has a range of consequences, which generally include a reduction in fitness of the carrier of the driving allele, making such systems “selfish”. The t haplotype is one such driver, found in house mice. It is linked to a reduction in litter size in matings among heterozygous animals, but also to increased lifespan in wild females that carry it. Here, we tested whether carrying the t haplotype was associated with altered resting metabolic rate (RMR). We show that females carrying the t haplotype decrease RMR as they increase in size, compared to wildtype females or males of either genotype. Our study elucidates a plausible mechanism by which a selfish genetic element increases lifespan.
Collapse
Affiliation(s)
- Patricia C. Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Svedberg J, Hosseini S, Chen J, Vogan AA, Mozgova I, Hennig L, Manitchotpisit P, Abusharekh A, Hammond TM, Lascoux M, Johannesson H. Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nat Commun 2018; 9:4242. [PMID: 30315196 PMCID: PMC6185902 DOI: 10.1038/s41467-018-06562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long evolutionary separation. We conclude that they have in a convergent manner accumulated similar patterns of tandem inversions and dense repeat clusters, presumably in response to similar needs to create linkage between genes causing drive and resistance.
Collapse
Affiliation(s)
- Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Sara Hosseini
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jun Chen
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Aaron A Vogan
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Iva Mozgova
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Lars Hennig
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | | | - Anna Abusharekh
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Martin Lascoux
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
23
|
Runge JN, Lindholm AK. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc Biol Sci 2018; 285:20181333. [PMID: 30282651 PMCID: PMC6191700 DOI: 10.1098/rspb.2018.1333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Life is built on cooperation between genes, which makes it vulnerable to parasitism. Selfish genetic elements that exploit this cooperation can achieve large fitness gains by increasing their transmission relative to the rest of the genome. This leads to counter-adaptations that generate unique selection pressures on the selfish genetic element. This arms race is similar to host-parasite coevolution, as some multi-host parasites alter the host's behaviour to increase the chance of transmission to the next host. Here, we ask if, similarly to these parasites, a selfish genetic element in house mice, the t haplotype, also manipulates host behaviour, specifically the host's migration propensity. Variants of the t that manipulate migration propensity could increase in fitness in a meta-population. We show that juvenile mice carrying the t haplotype were more likely to emigrate from and were more often found as migrants within a long-term free-living house mouse population. This result may have applied relevance as the t has been proposed as a basis for artificial gene drive systems for use in population control.
Collapse
Affiliation(s)
- Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
24
|
Fuller ZL, Leonard CJ, Young RE, Schaeffer SW, Phadnis N. Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genet 2018; 14:e1007526. [PMID: 30059505 PMCID: PMC6085072 DOI: 10.1371/journal.pgen.1007526] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/09/2018] [Accepted: 06/29/2018] [Indexed: 01/28/2023] Open
Abstract
Understanding the role of chromosomal inversions in speciation is a fundamental problem in evolutionary genetics. Here, we perform a comprehensive reconstruction of the evolutionary histories of the chromosomal inversions in Drosophila persimilis and D. pseudoobscura. We provide a solution to the puzzling origins of the selfish Sex-Ratio arrangement in D. persimilis and uncover surprising patterns of phylogenetic discordance on this chromosome. These patterns show that, contrary to widely held views, all fixed chromosomal inversions between D. persimilis and D. pseudoobscura were already present in their ancestral population long before the species split. Our results suggest that patterns of higher genomic divergence and an association of reproductive isolation genes with chromosomal inversions may be a direct consequence of incomplete lineage sorting of ancestral polymorphisms. These findings force a reconsideration of the role of chromosomal inversions in speciation, not as protectors of existing hybrid incompatibilities, but as fertile grounds for their formation.
Collapse
Affiliation(s)
- Zachary L. Fuller
- Department of Biology, Erwin W. Mueller Laboratories, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Randee E. Young
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| | - Stephen W. Schaeffer
- Department of Biology, Erwin W. Mueller Laboratories, The Pennsylvania State University, University Park, PA, United States of America
| | - Nitin Phadnis
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|