1
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
2
|
Li J, Lee CR. The role of gene presence-absence variations on genetic incompatibility in Asian rice. THE NEW PHYTOLOGIST 2023; 239:778-791. [PMID: 37194454 PMCID: PMC7615310 DOI: 10.1111/nph.18969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Genetic incompatibilities are widespread between species. However, it remains unclear whether they all originated after population divergence as suggested by the Bateson-Dobzhansky-Muller model, and if not, what is their prevalence and distribution within populations. The gene presence-absence variations (PAVs) provide an opportunity for investigating gene-gene incompatibility. Here, we searched for the repulsion of coexistence between gene PAVs to identify the negative interaction of gene functions separately in two Oryza sativa subspecies. Many PAVs are involved in subspecies-specific negative epistasis and segregate at low-to-intermediate frequencies in focal subspecies but at low or high frequencies in the other subspecies. Incompatible PAVs are enriched in two functional groups, defense response and protein phosphorylation, which are associated with plant immunity and consistent with autoimmunity being a known mechanism of hybrid incompatibility in plants. Genes in the two enriched functional groups are older and seldom directly interact with each other. Instead, they interact with other younger gene PAVs with diverse functions. Our results illustrate the landscape of genetic incompatibility at gene PAVs in rice, where many incompatible pairs have already segregated as polymorphisms within subspecies, and many are novel negative interactions between older defense-related genes and younger genes with diverse functions.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106319, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
3
|
Lollar MJ, Biewer-Heisler TJ, Danen CE, Pool JE. Hybrid breakdown in male reproduction between recently diverged Drosophila melanogaster populations has a complex and variable genetic architecture. Evolution 2023; 77:1550-1563. [PMID: 37071601 PMCID: PMC10309968 DOI: 10.1093/evolut/qpad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Secondary contact between formerly isolated populations may result in hybrid breakdown, in which untested allelic combinations in hybrids are maladaptive and limit genetic exchange. Studying early-stage reproductive isolation may yield key insights into the genetic architectures and evolutionary forces underlying the first steps toward speciation. Here, we leverage the recent worldwide expansion of Drosophila melanogaster to test for hybrid breakdown between populations that diverged within the last 13,000 years. We found clear evidence for hybrid breakdown in male reproduction, but not female reproduction or viability, supporting the prediction that hybrid breakdown affects the heterogametic sex first. The frequency of non-reproducing F2 males varied among different crosses involving the same southern African and European populations, as did the qualitative effect of cross direction, implying a genetically variable basis of hybrid breakdown and a role for uniparentally inherited factors. The levels of breakdown observed in F2 males were not recapitulated in backcrossed individuals, consistent with the existence of incompatibilities with at least three partners. Thus, some of the very first steps toward reproductive isolation could involve incompatibilities with complex and variable genetic architectures. Collectively, our findings emphasize this system's potential for future studies on the genetic and organismal basis of early-stage reproductive isolation.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | - Clarice E Danen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
4
|
Kopania EEK, Watson EM, Rathje CC, Skinner BM, Ellis PJI, Larson EL, Good JM. The contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house mice. Genetics 2022; 222:iyac151. [PMID: 36194004 PMCID: PMC9713461 DOI: 10.1093/genetics/iyac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome-autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Eleanor M Watson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
5
|
Xiong T, Mallet J. On the impermanence of species: The collapse of genetic incompatibilities in hybridizing populations. Evolution 2022; 76:2498-2512. [PMID: 36097352 PMCID: PMC9827863 DOI: 10.1111/evo.14626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Species pairs often become genetically incompatible during divergence, which is an important source of reproductive isolation. An idealized picture is often painted where incompatibility alleles accumulate and fix between diverging species. However, recent studies have shown both that incompatibilities can collapse with ongoing hybridization, and that incompatibility loci can be polymorphic within species. This paper suggests some general rules for the behavior of incompatibilities under hybridization. In particular, we argue that redundancy of genetic pathways can strongly affect the dynamics of intrinsic incompatibilities. Since fitness in genetically redundant systems is unaffected by introducing a few foreign alleles, higher redundancy decreases the stability of incompatibilities during hybridization, but also increases tolerance of incompatibility polymorphism within species. We use simulations and theories to show that this principle leads to two types of collapse: in redundant systems, exemplified by classical Dobzhansky-Muller incompatibilities, collapse is continuous and approaches a quasi-neutral polymorphism between broadly sympatric species, often as a result of isolation-by-distance. In nonredundant systems, exemplified by co-evolution among genetic elements, incompatibilities are often stable, but can collapse abruptly with spatial traveling waves. As both types are common, the proposed principle may be useful in understanding the abundance of genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| | - James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
6
|
Valiskova B, Gregorova S, Lustyk D, Šimeček P, Jansa P, Forejt J. Genic and Chromosomal Components of Prdm9-Driven Hybrid Male Sterility in Mice (Mus musculus). Genetics 2022; 222:6655690. [PMID: 35924978 PMCID: PMC9434306 DOI: 10.1093/genetics/iyac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility (HMS) gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus m. musculus x Mus m. domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break (DSB) hotspots results in difficult to repair DSBs, incomplete synapsis of homologous chromosomes and meiotic arrest at the first meiotic prophase. Here we show that Prdm9 behaves as a major HMS gene in mice outside the Mus m. musculus x Mus m. domesticus F1 hybrids, in the genomes composed of Mus m. castaneus and Mus m. musculus chromosomes segregating on the Mus m. domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of five quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, four control either meiotic synapsis or fertility phenotypes and one controls both, synapsis and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of HMS. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled HMS represents an example of genetic architecture of HMS consisting of genic and chromosomal components.
Collapse
Affiliation(s)
- Barbora Valiskova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Sona Gregorova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Petr Šimeček
- Central Laboratory of Bioinformatics, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Jiří Forejt
- Corresponding author: Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, Vestec 25250, Czech Republic.
| |
Collapse
|
7
|
Lewanski AL, Golcher-Benavides J, Rick JA, Wagner CE. Variable hybridization between two Lake Tanganyikan cichlid species in recent secondary contact. Mol Ecol 2022; 31:5041-5059. [PMID: 35913373 DOI: 10.1111/mec.16636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Closely related taxa frequently exist in sympatry before the evolution of robust reproductive barriers, which can lead to substantial gene flow. Post-divergence gene flow can promote several disparate trajectories of divergence ranging from the erosion of distinctiveness and eventual collapse of the taxa to the strengthening of reproductive isolation. Among many relevant factors, understanding the demographic history of divergence (e.g. divergence time, extent of historical gene flow) can be particularly informative when examining contemporary gene flow between closely related taxa because this history can influence gene flow's prevalence and consequences. Here, we used genotyping-by-sequencing data to investigate speciation and contemporary hybridization in two closely related and sympatrically distributed Lake Tanganyikan cichlid species in the genus Petrochromis. Demographic modeling supported a speciation scenario involving divergence in isolation followed by secondary contact with bidirectional gene flow. Further investigation of this recent gene flow found evidence of ongoing hybridization between the species that varied in extent between different co-occurring populations. Relationships between abundance and the degree of admixture across populations suggest that the availability of conspecific mates may influence patterns of hybridization. These results, together with the observation that sets of recently diverged cichlid taxa are generally geographically separated in the lake, suggest that ongoing speciation in Lake Tanganyikan cichlids relies on initial spatial isolation. Additionally, the spatially heterogeneous patterns of admixture between the Petrochromis species illustrates the complexities of hybridization when species are in recent secondary contact.
Collapse
Affiliation(s)
| | - Jimena Golcher-Benavides
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
8
|
Larson EL, Kopania EEK, Hunnicutt KE, Vanderpool D, Keeble S, Good JM. Stage-specific disruption of X chromosome expression during spermatogenesis in sterile house mouse hybrids. G3 (BETHESDA, MD.) 2022; 12:jkab407. [PMID: 34864964 PMCID: PMC9210296 DOI: 10.1093/g3journal/jkab407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Kopania EEK, Larson EL, Callahan C, Keeble S, Good JM. Molecular Evolution across Mouse Spermatogenesis. Mol Biol Evol 2022; 39:6517785. [PMID: 35099536 PMCID: PMC8844503 DOI: 10.1093/molbev/msac023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
10
|
Arends D, Kärst S, Heise S, Korkuc P, Hesse D, Brockmann GA. Transmission distortion and genetic incompatibilities between alleles in a multigenerational mouse advanced intercross line. Genetics 2022; 220:iyab192. [PMID: 34791189 PMCID: PMC8733443 DOI: 10.1093/genetics/iyab192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
While direct additive and dominance effects on complex traits have been mapped repeatedly, additional genetic factors contributing to the heterogeneity of complex traits have been scarcely investigated. To assess genetic background effects, we investigated transmission ratio distortions (TRDs) of alleles from parent to offspring using an advanced intercross line (AIL) of an initial cross between the mouse inbred strains C57BL/6NCrl (B6N) and BFMI860-12 [Berlin Fat Mouse Inbred (BFMI)]. A total of 341 males of generation 28 and their respective 61 parents and 66 grandparents were genotyped using Mega Mouse Universal Genotyping Arrays. TRDs were investigated using allele transmission asymmetry tests, and pathway overrepresentation analysis was performed. Sequencing data were used to test for overrepresentation of nonsynonymous SNPs (nsSNPs) in TRD regions. Genetic incompatibilities were tested using the Bateson-Dobzhansky-Muller two-locus model. A total of 62 TRD regions were detected, many in close proximity to the telocentric centromere. TRD regions contained 44.5% more nsSNPs than randomly selected regions (182 vs 125.9 ± 17.0, P < 1 × 10-4). Testing for genetic incompatibilities between TRD regions identified 29 genome-wide significant incompatibilities between TRD regions [P(BF) < 0.05]. Pathway overrepresentation analysis of genes in TRD regions showed that DNA methylation, epigenetic regulation of RNA, and meiotic/meiosis regulation pathways were affected independent of the parental origin of the TRD. Paternal BFMI TRD regions showed overrepresentation in the small interfering RNA biogenesis and in the metabolism of lipids and lipoproteins. Maternal B6N TRD regions harbored genes involved in meiotic recombination, cell death, and apoptosis pathways. The analysis of genes in TRD regions suggests the potential distortion of protein-protein interactions influencing obesity and diabetic retinopathy as a result of disadvantageous combinations of allelic variants in Aass, Pgx6, and Nme8. Using an AIL significantly improves the resolution at which we can investigate TRD. Our analysis implicates distortion of protein-protein interactions as well as meiotic drive as the underlying mechanisms leading to the observed TRD in our AIL. Furthermore, genes with large amounts of nsSNPs located in TRD regions are more likely to be involved in pathways that are related to the phenotypic differences between the parental strains. Genes in these TRD regions provide new targets for investigating genetic adaptation, protein-protein interactions, and determinants of complex traits such as obesity.
Collapse
Affiliation(s)
- Danny Arends
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Stefan Kärst
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Sebastian Heise
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Paula Korkuc
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Deike Hesse
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Gudrun A Brockmann
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| |
Collapse
|
11
|
Langdon QK, Powell DL, Kim B, Banerjee SM, Payne C, Dodge TO, Moran B, Fascinetto-Zago P, Schumer M. Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genet 2022; 18:e1009914. [PMID: 35085234 PMCID: PMC8794199 DOI: 10.1371/journal.pgen.1009914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shreya M. Banerjee
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Ben Moran
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institutes, Chevy Chase, Maryland, United States of America
| |
Collapse
|
12
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
13
|
Forejt J, Jansa P, Parvanov E. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet 2021; 37:1095-1108. [PMID: 34238593 DOI: 10.1016/j.tig.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Hybrid sterility is a critical step in the evolution of reproductive barriers between diverging taxa during the process of speciation. Recent studies of young subspecies of the house mouse revealed a multigenic nature and frequent polymorphism of hybrid sterility genes as well as the recurrent engagement of the meiosis-specific gene PR domain-containing 9 (Prdm9) and X-linked loci. Prdm9-controlled hybrid sterility is essentially chromosomal in nature, conditioned by the sequence divergence between subspecies. Depending on the Prdm9 interallelic interactions and the X-linked Hstx2 locus, the same homologs either regularly recombine and synapse, or show impaired DNA DSB repair, asynapsis, and early meiotic arrest. Thus, Prdm9-dependent hybrid sterility points to incompatibilities affecting meiotic recombination as a possible mechanism of reproductive isolation between (sub)species.
Collapse
Affiliation(s)
- Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic.
| | - Petr Jansa
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Emil Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| |
Collapse
|
14
|
Zhang L, Hood GR, Carroo I, Ott JR, Egan SP. Context-Dependent Reproductive Isolation: Host Plant Variability Drives Fitness of Hybrid Herbivores. Am Nat 2021; 197:732-739. [PMID: 33989147 DOI: 10.1086/714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe role of divergent selection between alternative environments in promoting reproductive isolation (RI) between lineages is well recognized. However, most studies view each divergent environment as homogenous, thereby overlooking the potential role within-environment variation plays in RI between differentiating lineages. Here, we test the importance of microenvironmental variation in RI by using individual trees of two host plants, each harboring locally adapted populations of the cynipid wasp Belonocnema treatae. We compared the fitness surrogate (survival) of offspring from hybrid crosses with resident crosses across individual trees on each of two primary host plants, Quercus virginiana and Q. geminata. We found evidence of weak hybrid inviability between host-associated lineages of B. treatae despite strong genomic differentiation. However, averaging across environments masked great variation in hybrid fitness on individual trees, where hybrids performed worse than, equal to, or better than residents. Thus, considering the environmental context of hybridization is critical to improving the predictability of divergence under variable selection.
Collapse
|
15
|
Morgan K, Harr B, White MA, Payseur BA, Turner LM. Disrupted Gene Networks in Subfertile Hybrid House Mice. Mol Biol Evol 2021; 37:1547-1562. [PMID: 32076722 PMCID: PMC7253214 DOI: 10.1093/molbev/msaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Dobzhansky–Muller (DM) model provides a widely accepted mechanism for the evolution of reproductive isolation: incompatible substitutions disrupt interactions between genes. To date, few candidate incompatibility genes have been identified, leaving the genes driving speciation mostly uncharacterized. The importance of interactions in the DM model suggests that gene coexpression networks provide a powerful framework to understand disrupted pathways associated with postzygotic isolation. Here, we perform weighted gene coexpression network analysis to infer gene interactions in hybrids of two recently diverged European house mouse subspecies, Mus mus domesticus and M. m. musculus, which commonly show hybrid male sterility or subfertility. We use genome-wide testis expression data from 467 hybrid mice from two mapping populations: F2s from a laboratory cross between wild-derived pure subspecies strains and offspring of natural hybrids captured in the Central Europe hybrid zone. This large data set enabled us to build a robust consensus network using hybrid males with fertile phenotypes. We identify several expression modules, or groups of coexpressed genes, that are disrupted in subfertile hybrids, including modules functionally enriched for spermatogenesis, cilium and sperm flagellum organization, chromosome organization, and DNA repair, and including genes expressed in spermatogonia, spermatocytes, and spermatids. Our network-based approach enabled us to hone in on specific hub genes likely to be influencing module-wide gene expression and hence potentially driving large-effect DM incompatibilities. A disproportionate number of hub genes lie within sterility loci identified previously in the hybrid zone mapping population and represent promising candidate barrier genes and targets for future functional analysis.
Collapse
Affiliation(s)
- Katy Morgan
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Bettina Harr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
16
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
17
|
Pfennig KS. Biased Hybridization and Its Impact on Adaptive Introgression. Trends Ecol Evol 2021; 36:488-497. [PMID: 33752896 DOI: 10.1016/j.tree.2021.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Gene exchange between species can influence ecological and evolutionary processes ranging from population rescue to adaptive radiation. Genomic tools have provided new insights into the prevalence and nature of gene exchange between species. However, much remains unknown of how ecological, behavioral, and evolutionary factors determine what genetic variation moves between species in the first place. In particular, more research is needed that evaluates whether such factors bias gene flow from one species to another, and whether any such biases affect how genetic variation from another species is ultimately retained in the genome of a given species. Addressing this issue is crucial in a changing world where hybridization and introgression might determine which species succeed and which become extinct.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
18
|
Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 Intersubspecific Interactions in Hybrid Male Sterility of House Mouse. Mol Biol Evol 2020; 37:3423-3438. [PMID: 32642764 PMCID: PMC7743643 DOI: 10.1093/molbev/msaa167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Amisa Mukaj
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladana Fotopulosova
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | | | - Linda Odenthal-Hesse
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Emil D Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| |
Collapse
|
19
|
Widmayer SJ, Handel MA, Aylor DL. Age and Genetic Background Modify Hybrid Male Sterility in House Mice. Genetics 2020; 216:585-597. [PMID: 32817010 PMCID: PMC7536842 DOI: 10.1534/genetics.120.303474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 12 weeks and after 35 weeks. However, some PWKB6 and PWKAJ males were transiently fertile between 12 and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Graduate Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | | | - David L Aylor
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
20
|
Phifer-Rixey M, Harr B, Hey J. Further resolution of the house mouse (Mus musculus) phylogeny by integration over isolation-with-migration histories. BMC Evol Biol 2020; 20:120. [PMID: 32933487 PMCID: PMC7493149 DOI: 10.1186/s12862-020-01666-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The three main subspecies of house mice, Mus musculus castaneus, Mus musculus domesticus, and Mus musculus musculus, are estimated to have diverged ~ 350-500KYA. Resolution of the details of their evolutionary history is complicated by their relatively recent divergence, ongoing gene flow among the subspecies, and complex demographic histories. Previous studies have been limited to some extent by the number of loci surveyed and/or by the scope of the method used. Here, we apply a method (IMa3) that provides an estimate of a population phylogeny while allowing for complex histories of gene exchange. RESULTS Results strongly support a topology with M. m. domesticus as sister to M. m. castaneus and M. m. musculus. In addition, we find evidence of gene flow between all pairs of subspecies, but that gene flow is most restricted from M. m. musculus into M. m. domesticus. Estimates of other key parameters are dependent on assumptions regarding generation time and mutation rate in house mice. Nevertheless, our results support previous findings that the effective population size, Ne, of M. m. castaneus is larger than that of the other two subspecies, that the three subspecies began diverging ~ 130 - 420KYA, and that the time between divergence events was short. CONCLUSIONS Joint demographic and phylogenetic analyses of genomic data provide a clearer picture of the history of divergence in house mice.
Collapse
Affiliation(s)
| | - Bettina Harr
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Jody Hey
- Department of Biology, Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Walter GM, Richards TJ, Wilkinson MJ, Blows MW, Aguirre JD, Ortiz‐Barrientos D. Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. Evol Lett 2020; 4:302-316. [PMID: 32774880 PMCID: PMC7403682 DOI: 10.1002/evl3.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions. We created a hybrid population with equal contributions from four contrasting ecotypes of Senecio lautus (Asteraceae), which produced hybrid genomes both before (F1 hybrid generation) and after (F4 hybrid generation) recombination among the parental ecotypes. In the glasshouse, plants in the second generation (F2 hybrid generation) showed reduced fitness as a loss of fertility. However, fertility was recovered in subsequent generations, suggesting that genetic variation underlying the fitness reduction was lost in subsequent generations. To quantify the effects of losing genetic variation at the F2 generation on the fitness of later generation hybrids, we used a reciprocal transplant to test for fitness differences between parental ecotypes, and F1 and F4 hybrids in all four parental habitats. Compared to the parental ecotypes and F1 hybrids, variance in F4 hybrid fitness was lower, and lowest in habitats that showed stronger native-ecotype advantage, suggesting that stronger natural selection for the native ecotype reduced fitness variation in the F4 hybrids. Fitness trade-offs that were present in the parental ecotypes and F1 hybrids were absent in the F4 hybrid. Together, these results suggest that the genetic variation lost after the F2 generation was likely associated with both adaptation and intrinsic reproductive isolation among ecotypes from contrasting habitats.
Collapse
Affiliation(s)
- Greg M. Walter
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
- Current address: School of Biological SciencesMonash UniversityMelbourne3800Australia
| | - Thomas J. Richards
- Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐752 36Sweden
| | | | - Mark W. Blows
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
| | - J. David Aguirre
- School of Natural and Computational SciencesMassey UniversityAuckland0745New Zealand
| | | |
Collapse
|
22
|
Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190533. [PMID: 32654642 DOI: 10.1098/rstb.2019.0533] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
McGirr JA, Martin CH. Ecological divergence in sympatry causes gene misexpression in hybrids. Mol Ecol 2020; 29:2707-2721. [PMID: 32557903 PMCID: PMC8209238 DOI: 10.1111/mec.15512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Ecological speciation occurs when reproductive isolation evolves as a byproduct of adaptive divergence between populations. Selection favouring gene regulatory divergence between species could result in transgressive levels of gene expression in F1 hybrids that may lower hybrid fitness. We combined 58 resequenced genomes with 124 transcriptomes to identify patterns of hybrid gene misexpression that may be driven by adaptive regulatory divergence within a young radiation of Cyprinodon pupfishes, which consists of a dietary generalist and two trophic specialists-a molluscivore and a scale-eater. We found more differential gene expression between closely related sympatric specialists than between allopatric generalist populations separated by 1,000 km. Intriguingly, 9.6% of genes that were differentially expressed between sympatric species were also misexpressed in F1 hybrids. A subset of these genes were in highly differentiated genomic regions and enriched for functions important for trophic specialization, including head, muscle and brain development. These regions also included genes that showed evidence of hard selective sweeps and were significantly associated with oral jaw length-the most rapidly diversifying skeletal trait in this radiation. Our results indicate that divergent ecological selection in sympatry can contribute to hybrid gene misexpression which may act as a reproductive barrier between nascent species.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina, Chapel
Hill, NC 27514
| | - Christopher H. Martin
- Department of Biology, University of North Carolina, Chapel
Hill, NC 27514
- Department of Integrative Biology and Museum of Vertebrate
Zoology, University of California, Berkeley, CA 94720
| |
Collapse
|
24
|
Skinner BM, Rathje CC, Bacon J, Johnson EEP, Larson EL, Kopania EEK, Good JM, Yousafzai G, Affara NA, Ellis PJI. A high-throughput method for unbiased quantitation and categorization of nuclear morphology†. Biol Reprod 2020; 100:1250-1260. [PMID: 30753283 PMCID: PMC6497523 DOI: 10.1093/biolre/ioz013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/18/2018] [Accepted: 02/07/2019] [Indexed: 01/31/2023] Open
Abstract
The physical arrangement of chromatin in the nucleus is cell type and species-specific, a fact particularly evident in sperm, in which most of the cytoplasm has been lost. Analysis of the characteristic falciform (“hook shaped”) sperm in mice is important in studies of sperm development, hybrid sterility, infertility, and toxicology. However, quantification of sperm shape differences typically relies on subjective manual assessment, rendering comparisons within and between samples difficult. We have developed an analysis program for morphometric analysis of asymmetric nuclei and characterized the sperm of mice from a range of inbred, outbred, and wild-derived mouse strains. We find that laboratory strains have elevated sperm shape variability both within and between samples in comparison to wild-derived inbred strains, and that sperm shape in F1 offspring from a cross between CBA and C57Bl6J strains is subtly affected by the direction of the cross. We further show that hierarchical clustering can discriminate distinct sperm shapes with greater efficiency and reproducibility than even experienced manual assessors, and is useful both to distinguish between samples and also to identify different morphological classes within a single sample. Our approach allows for the analysis of nuclear shape with unprecedented precision and scale and will be widely applicable to different species and different areas of biology.
Collapse
Affiliation(s)
| | | | - Joanne Bacon
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Erica Lee Larson
- Department of Biological Sciences, University of Denver, Denver, CO, USA.,Division of Biological Sciences, University of Montana, MT, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wagner DN, Curry RL, Chen N, Lovette IJ, Taylor SA. Genomic regions underlying metabolic and neuronal signaling pathways are temporally consistent in a moving avian hybrid zone. Evolution 2020; 74:1498-1513. [PMID: 32243568 DOI: 10.1111/evo.13970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent-including glutamate signaling, synaptic transmission, and catabolic processes-but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.
Collapse
Affiliation(s)
- Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Robert L Curry
- Department of Biology, Villanova University, Villanova, Pennsylvania, 19085
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Irby J Lovette
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
26
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
27
|
Seidl F, Levis NA, Jones CD, Monroy-Eklund A, Ehrenreich IM, Pfennig KS. Variation in hybrid gene expression: Implications for the evolution of genetic incompatibilities in interbreeding species. Mol Ecol 2019; 28:4667-4679. [PMID: 31541560 DOI: 10.1111/mec.15246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Interbreeding species often produce low-fitness hybrids due to genetic incompatibilities between parental genomes. Whether these incompatibilities reflect fixed allelic differences between hybridizing species, or, alternatively, standing variants that segregate within them, remains unknown for many natural systems. Yet, evaluating these alternatives is important for understanding the origins and nature of species boundaries. We examined these alternatives using spadefoot toads (genus Spea), which naturally hybridize. Specifically, we contrasted patterns of gene expression in hybrids relative to pure-species types in experimentally produced tadpoles from allopatric parents versus those from sympatric parents. We evaluated the prediction that segregating variation should result in gene expression differences between hybrids derived from sympatric parents versus hybrids derived from allopatric parents, and found that 24% of the transcriptome showed such differences. Our results further suggest that gene expression in hybrids has evolved in sympatry owing to evolutionary pressures associated with ongoing hybridization. Although we did not measure hybrid incompatibilities directly, we discuss the implications of our findings for understanding the nature of hybrid incompatibilities, how they might vary across populations over time, and the resulting effects on the evolutionary maintenance - or breakdown - of reproductive barriers between species.
Collapse
Affiliation(s)
- Fabian Seidl
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.,Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | | | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Mandeville EG, Walters AW, Nordberg BJ, Higgins KH, Burckhardt JC, Wagner CE. Variable hybridization outcomes in trout are predicted by historical fish stocking and environmental context. Mol Ecol 2019; 28:3738-3755. [PMID: 31294488 DOI: 10.1111/mec.15175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co-occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first-generation hybrids. Later-generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual-based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.
Collapse
Affiliation(s)
- Elizabeth G Mandeville
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annika W Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Brittany J Nordberg
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Karly H Higgins
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Quantitative and Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
29
|
Martincová I, Ďureje Ľ, Kreisinger J, Macholán M, Piálek J. Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecol Evol 2019; 9:6124-6137. [PMID: 31161024 PMCID: PMC6540687 DOI: 10.1002/ece3.5196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022] Open
Abstract
Hybrid zones between divergent populations sieve genomes into blocks that introgress across the zone, and blocks that do not, depending on selection between interacting genes. Consistent with Haldane's rule, the Y chromosome has been considered counterselected and hence not to introgress across the European house mouse hybrid zone. However, recent studies detected massive invasion of M. m. musculus Y chromosomes into M. m. domesticus territory. To understand mechanisms facilitating Y spread, we created 31 recombinant lines from eight wild-derived strains representing four localities within the two mouse subspecies. These lines were reciprocally crossed and resulting F1 hybrid males scored for five phenotypic traits associated with male fitness. Molecular analyses of 51 Y-linked SNPs attributed ~50% of genetic variation to differences between the subspecies and 8% to differentiation within both taxa. A striking proportion, 21% (frequencies of sperm head abnormalities) and 42% (frequencies of sperm tail dissociations), of phenotypic variation was explained by geographic Y chromosome variants. Our crossing design allowed this explanatory power to be examined across a hierarchical scale from subspecific to local intrastrain effects. We found that divergence and variation were expressed diversely in different phenotypic traits and varied across the whole hierarchical scale. This finding adds another dimension of complexity to studies of Y introgression not only across the house mouse hybrid zone but potentially also in other contact zones.
Collapse
Affiliation(s)
- Iva Martincová
- Research Facility Studenec, Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of ScienceCharles University in PraguePragueCzech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
30
|
Corbett-Detig R, Medina P, Frérot H, Blassiau C, Castric V. Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. Evol Lett 2019; 3:93-103. [PMID: 30788145 PMCID: PMC6369960 DOI: 10.1002/evl3.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Genes that do not segregate in heterozygotes at Mendelian ratios are a potentially important evolutionary force in natural populations. Although the impacts of segregation distortion are widely appreciated, we have little quantitative understanding about how often these loci arise and fix within lineages. Here, we develop a statistical approach for detecting segregation distorting genes from the comprehensive comparison of whole genome sequence data obtained from bulk gamete versus somatic tissues. Our approach enables estimation of map positions and confidence intervals, and quantification of effect sizes of segregation distorters. We apply our method to the pollen of two interspecific F1 hybrids of Arabidopsis lyrata and A. halleri and we identify three loci across eight chromosomes showing significant evidence of segregation distortion in both pollen samples. Based on this, we estimate that novel segregation distortion elements evolve and achieve high frequencies within lineages at a rate of approximately one per 244,000 years. Furthermore, we estimate that haploid‐acting segregation distortion may contribute between 10% and 30% of reduced pollen viability in F1 individuals. Our results indicate haploid acting factors evolve rapidly and dramatically influence segregation in F1 hybrid individuals.
Collapse
Affiliation(s)
- Russell Corbett-Detig
- Genomics Institute and Department of Biomolecular Engineering UC Santa Cruz Santa Cruz California 95064
| | - Paloma Medina
- Genomics Institute and Department of Biomolecular Engineering UC Santa Cruz Santa Cruz California 95064
| | - Hélène Frérot
- Université de Lille CNRS UMR 8198-Evo-Eco-Paleo F-59000 Lille France
| | | | - Vincent Castric
- Université de Lille CNRS UMR 8198-Evo-Eco-Paleo F-59000 Lille France
| |
Collapse
|
31
|
Karrenberg S, Liu X, Hallander E, Favre A, Herforth-Rahmé J, Widmer A. Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution 2018; 73:245-261. [PMID: 30499144 DOI: 10.1111/evo.13652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/13/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near-complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.
Collapse
Affiliation(s)
- Sophie Karrenberg
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Xiaodong Liu
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Emelie Hallander
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden.,Current Address: Swedish Board of Agriculture, Vallgatan 8, 551 82, Jönköping, Sweden
| | - Adrien Favre
- Department of Diversity and Evolution of Higher Plants, Institute of Ecology, Evolution and Diversity, Goethe-University, 60439, Frankfurt am Main, Germany.,Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Joelle Herforth-Rahmé
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland.,Current Address: Research Institute of Organic Agriculture FiBL, Department of Soil Sciences, Ackerstrasse 113, Box 219, 5070, Frick, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
32
|
Schwahn DJ, Wang RJ, White MA, Payseur BA. Genetic Dissection of Hybrid Male Sterility Across Stages of Spermatogenesis. Genetics 2018; 210:1453-1465. [PMID: 30333190 PMCID: PMC6283182 DOI: 10.1534/genetics.118.301658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Hybrid sterility is a common form of reproductive isolation between nascent species. Although hybrid sterility is routinely documented and genetically dissected in speciation studies, its developmental basis is rarely examined, especially in generations beyond the F1 generation. To identify phenotypic and genetic determinants of hybrid male sterility from a developmental perspective, we characterized testis histology in 312 F2 hybrids generated by intercrossing inbred strains of Mus musculus domesticus and M. m. musculus, two subspecies of house mice. Hybrids display a range of histologic abnormalities that indicate defective spermatogenesis. Among these abnormalities, we quantified decreased testis size, reductions in spermatocyte and spermatid number, increased apoptosis of meiosis I spermatocytes, and more multinucleated syncytia. Collectively, our phenotypic data point to defects in meiosis I as a primary barrier to reproduction. We identified seven quantitative trait loci (QTL) controlling five histologic traits. A region of chromosome 17 that contains Prdm9, a gene known to confer F1 hybrid male sterility, affects multinucleated syncytia and round spermatids, potentially extending the phenotypic outcomes of this incompatibility. The X chromosome also plays a key role, with loci affecting multinucleated syncytia, apoptosis of round spermatids, and round spermatid numbers. We detected an epistatic interaction between QTL on chromosomes 17 and X for multinucleated syncytia. Our results refine the developmental basis of a key reproductive barrier in a classic model system for speciation genetics.
Collapse
Affiliation(s)
- Denise J Schwahn
- Research Animal Resources Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Richard J Wang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A White
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
33
|
Janoušek V, Fischerová J, Mořkovský L, Reif J, Antczak M, Albrecht T, Reifová R. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity (Edinb) 2018; 122:622-635. [PMID: 30374041 DOI: 10.1038/s41437-018-0161-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Jitka Fischerová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Libor Mořkovský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, 128 01, Czech Republic
| | - Marcin Antczak
- Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.,Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
34
|
Zuellig MP, Sweigart AL. A two-locus hybrid incompatibility is widespread, polymorphic, and active in natural populations of Mimulus. Evolution 2018; 72:2394-2405. [PMID: 30194757 DOI: 10.1111/evo.13596] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Reproductive isolation, which is essential for the maintenance of species in sympatry, is often incomplete between closely related species. In these taxa, reproductive barriers must evolve within species, without being degraded by ongoing gene flow. To better understand this dynamic, we investigated the frequency and geographic distribution of alleles underlying a two-locus, hybrid lethality system between naturally hybridizing species of monkeyflower (Mimulus guttatus and M. nasutus). We found that M. guttatus typically carries hybrid lethality alleles at one locus (hl13) and M. nasutus typically carries hybrid lethality alleles at the other locus (hl14). As a result, natural hybrids carry incompatible alleles at both loci, and express hybrid lethality in later generations. We also discovered considerable polymorphism at both hl13 and hl14 within both species. For M. guttatus, polymorphism at both loci occurs within populations, meaning that incompatible allele pairings likely arise through intraspecific gene flow. Genetic variation at markers linked to hl13 and hl14 suggest that introgression from M. nasutus is the primary driver of this polymorphism within M. guttatus. Additionally, patterns of introgression at the two hybrid lethality loci suggest that natural selection eliminates incompatible allele pairings, suggesting that even weak reproductive barriers might promote genomic divergence between species.
Collapse
Affiliation(s)
- Matthew P Zuellig
- Department of Genetics, University of Georgia, Athens, Georgia.,Current Address: Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|