1
|
Akagi K, Jin YJ, Koizumi K, Oku M, Ito K, Shen X, Imura JI, Aihara K, Saito S. Integration of Dynamical Network Biomarkers, Control Theory and Drosophila Model Identifies Vasa/DDX4 as the Potential Therapeutic Targets for Metabolic Syndrome. Cells 2025; 14:415. [PMID: 40136664 PMCID: PMC11941168 DOI: 10.3390/cells14060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic syndrome (MetS) is a subclinical disease, resulting in increased risk of type 2 diabetes (T2D), cardiovascular diseases, cancer, and mortality. Dynamical network biomarkers (DNB) theory has been developed to provide early-warning signals of the disease state during a preclinical stage. To improve the efficiency of DNB analysis for the target genes discovery, the DNB intervention analysis based on the control theory has been proposed. However, its biological validation in a specific disease such as MetS remains unexplored. Herein, we identified eight candidate genes from adipose tissue of MetS model mice at the preclinical stage by the DNB intervention analysis. Using Drosophila, we conducted RNAi-mediated knockdown screening of these candidate genes and identified vasa (also known as DDX4), encoding a DEAD-box RNA helicase, as a fat metabolism-associated gene. Fat body-specific knockdown of vasa abrogated high-fat diet (HFD)-induced enhancement of starvation resistance through up-regulation of triglyceride lipase. We also confirmed that DDX4 expressing adipocytes are increased in HFD-fed mice and high BMI patients using the public datasets. These results prove the potential of the DNB intervention analysis to search the therapeutic targets for diseases at the preclinical stage.
Collapse
Affiliation(s)
- Kazutaka Akagi
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan; (M.O.); (S.S.)
| | - Ying-Jie Jin
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-0194, Japan;
| | - Keiichi Koizumi
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan; (M.O.); (S.S.)
| | - Makito Oku
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan; (M.O.); (S.S.)
| | - Kaisei Ito
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan;
| | - Xun Shen
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Jun-ichi Imura
- Department of Systems and Control Engineering, School of Engineering, Institute of Science Tokyo, Tokyo 152-8552, Japan;
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan; (M.O.); (S.S.)
| |
Collapse
|
2
|
Chen Y, Lin X, Dai J, Bai Y, Liu F, Luo D. Deletion of ddx4 Ovary-Specific Transcript Causes Dysfunction of Meiosis and Derepress of DNA Transposons in Zebrafish Ovaries. BIOLOGY 2024; 13:1055. [PMID: 39765722 PMCID: PMC11673608 DOI: 10.3390/biology13121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Alternative splicing of ddx4 (DEAD-box helicase 4), a key germline marker gene, has been reported to generate sex-specific transcripts in zebrafish gonads. The biological functions and regulatory mechanisms of the ddx4 ovary-specific transcript (ddx4-L) during oogenesis remain unclear. In this study, we found that ddx4-L mutants, in which ddx4-L was specifically deleted, had enlarged ovaries but laid fewer eggs, along with having a lower fertilization rate compared to WT controls. RNA-seq analysis was performed to detect the changes in gene expression between WT and ddx4-L mutant ovaries. A total of 524 upregulated and 610 downregulated DEGs were identified. GO and GSEA enrichment analyses showed that genes involved in fertilization and reproduction biological processes were significantly downregulated. More specifically, we observed a remarkable reduction in Sycp1, a core component of synaptonemal complex, in ddx4-L mutant ovaries at both the mRNA and protein levels. In addition, the expressions of transposon elements, as well as the events of alternative splicing, alternative polyadenylation, and RNA editing, were analyzed based on the RNA-seq data. We found that the deletion of ddx4-L resulted in derepression of DNA transposons in zebrafish ovaries, possibly causing genome instability. In conclusion, our work demonstrates that the ovary-specific ddx4 transcript plays important roles in oocyte meiosis and DNA transposon repression, which extends our understanding of the biological functions and regulatory mechanisms of sex-specific alternative splicing in zebrafish oogenesis and reproduction.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (X.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (X.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (X.L.)
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China
| | - Yifan Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (X.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (X.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (X.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Adashev VE, Kotov AA, Bazylev SS, Kombarov IA, Olenkina OM, Shatskikh AS, Olenina LV. Essential functions of RNA helicase Vasa in maintaining germline stem cells and piRNA-guided Stellate silencing in Drosophila spermatogenesis. Front Cell Dev Biol 2024; 12:1450227. [PMID: 39184915 PMCID: PMC11341464 DOI: 10.3389/fcell.2024.1450227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box RNA helicase Vasa is required for gonad development and fertility in multiple animals. Vasa is implicated in many crucial aspects of Drosophila oogenesis, including translation regulation, primordial germ cell specification, piRNA silencing of transposable elements, and maintenance of germline stem cells (GSCs). However, data about Vasa functions in Drosophila spermatogenesis remain controversial. Here we showed that loss-of-function vasa mutations led to failures of GSC maintenance in the testes, a severe loss of total germ cell content, and a cessation of male fertility over time. Defects in GSC maintenance in vasa mutant testes were not associated with an increasing frequency of programmed cell death, indicating that a premature loss of GSCs occurred via entering differentiation. We found that Vasa is implicated in the positive regulation of rhino expression both in the testes and ovaries. The introduction of a transgene copy of rhino, encoding a nuclear component of piRNA pathway machinery, in vasa mutant background allowed us to restore premeiotic stages of spermatogenesis, including the maintenance of GSCs and the development of spermatogonia and spermatocytes. However, piRNA-guided repression of Stellate genes in spermatocytes of vasa mutant testes with additional rhino copy was not restored, and male fertility was disrupted. Our study uncovered a novel mechanistic link involving Vasa and Rhino in a regulatory network that mediates GSC maintenance but is dispensable for the perfect biogenesis of Su(Ste) piRNAs in testes. Thus, we have shown that Vasa functions in spermatogenesis are essential at two distinct developmental stages: in GSCs for their maintenance and in spermatocytes for piRNA-mediated silencing of Stellate genes.
Collapse
Affiliation(s)
- Vladimir E. Adashev
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A. Kotov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S. Bazylev
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilia A. Kombarov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oxana M. Olenkina
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre Kurchatov Institute, Moscow, Russia
| | - Aleksei S. Shatskikh
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V. Olenina
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Lu L, Bu L, Laidemitt MR, Zhang SM, Loker ES. Different metazoan parasites, different transcriptomic responses, with new insights on parasitic castration by digenetic trematodes in the schistosome vector snail Biomphalaria glabrata. BMC Genomics 2024; 25:608. [PMID: 38886647 PMCID: PMC11184841 DOI: 10.1186/s12864-024-10454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Gastropods of the genus Biomphalaria (Family Planorbidae) are exploited as vectors by Schistosoma mansoni, the most common causative agent of human intestinal schistosomiasis. Using improved genomic resources, overviews of how Biomphalaria responds to S. mansoni and other metazoan parasites can provide unique insights into the reproductive, immune, and other systems of invertebrate hosts, and their responses to parasite challenges. RESULTS Using Illumina-based RNA-Seq, we compared the responses of iM line B. glabrata at 2, 8, and 40 days post-infection (dpi) to single infections with S. mansoni, Echinostoma paraensei (both digenetic trematodes) or Daubaylia potomaca (a nematode parasite of planorbid snails). Responses were compared to unexposed time-matched control snails. We observed: (1) each parasite provoked a distinctive response with a predominance of down-regulated snail genes at all time points following exposure to either trematode, and of up-regulated genes at 8 and especially 40dpi following nematode exposure; (2) At 2 and 8dpi with either trematode, several snail genes associated with gametogenesis (particularly spermatogenesis) were down-regulated. Regarding the phenomenon of trematode-mediated parasitic castration in molluscs, we define for the first time a complement of host genes that are targeted, as early as 2dpi when trematode larvae are still small; (3) Differential gene expression of snails with trematode infection at 40dpi, when snails were shedding cercariae, was unexpectedly modest and revealed down-regulation of genes involved in the production of egg mass proteins and peptide processing; and (4) surprisingly, D. potomaca provoked up-regulation at 40dpi of many of the reproduction-related snail genes noted to be down-regulated at 2 and 8dpi following trematode infection. Happening at a time when B. glabrata began to succumb to D. potomaca, we hypothesize this response represents an unexpected form of fecundity compensation. We also document expression patterns for other Biomphalaria gene families, including fibrinogen domain-containing proteins (FReDs), C-type lectins, G-protein coupled receptors, biomphalysins, and protease and protease inhibitors. CONCLUSIONS Our study is relevant in identifying several genes involved in reproduction that are targeted by parasites in the vector snail B. glabrata and that might be amenable to manipulation to minimize their ability to serve as vectors of schistosomes.
Collapse
Affiliation(s)
- Lijun Lu
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA.
| | - Lijing Bu
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Martina R Laidemitt
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Eric S Loker
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| |
Collapse
|
5
|
Yu M, Wang F, Li M, Wang Y, Gao X, Zhang H, Liu Z, Zhou Z, Zhao D, Zhang M, Wang L, Jiang H, Qiao Z. Characteristics of the Vasa Gene in Silurus asotus and Its Expression Response to Letrozole Treatment. Genes (Basel) 2024; 15:756. [PMID: 38927693 PMCID: PMC11202796 DOI: 10.3390/genes15060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The identification and expression of germ cells are important for studying sex-related mechanisms in fish. The vasa gene, encoding an ATP-dependent RNA helicase, is recognized as a molecular marker of germ cells and plays a crucial role in germ cell development. Silurus asotus, an important freshwater economic fish species in China, shows significant sex dimorphism with the female growing faster than the male. However, the molecular mechanisms underlying these sex differences especially involving in the vasa gene in this fish remain poorly understood. In this work, the vasa gene sequence of S. asotus (named as Savasa) was obtained through RT-PCR and rapid amplification of cDNA end (RACE), and its expression in embryos and tissues was analyzed using qRT-PCR and an in situ hybridization method. Letrozole (LT) treatment on the larvae fish was also conducted to investigate its influence on the gene. The results revealed that the open reading frame (ORF) of Savasa was 1989 bp, encoding 662 amino acids. The SaVasa protein contains 10 conserved domains unique to the DEAD-box protein family, showing the highest sequence identity of 95.92% with that of Silurus meridionalis. In embryos, Savasa is highly expressed from the two-cell stage to the blastula stage in early embryos, with a gradually decreasing trend from the gastrula stage to the heart-beating stage. Furthermore, Savasa was initially detected at the end of the cleavage furrow during the two-cell stage, later condensing into four symmetrical cell clusters with embryonic development. At the gastrula stage, Savasa-positive cells increased and began to migrate towards the dorsal side of the embryo. In tissues, Savasa is predominantly expressed in the ovaries, with almost no or lower expression in other detected tissues. Moreover, Savasa was expressed in phase I-V oocytes in the ovaries, as well as in spermatogonia and spermatocytes in the testis, implying a specific expression pattern of germ cells. In addition, LT significantly upregulated the expression of Savasa in a concentration-dependent manner during the key gonadal differentiation period of the fish. Notably, at 120 dph after LT treatment, Savasa expression was the lowest in the testis and ovary of the high concentration group. Collectively, findings from gene structure, protein sequence, phylogenetic analysis, RNA expression patterns, and response to LT suggest that Savasa is maternally inherited with conserved features, serving as a potential marker gene for germ cells in S.asotus, and might participate in LT-induced early embryonic development and gonadal development processes of the fish. This would provide a basis for further research on the application of germ cell markers and the molecular mechanisms of sex differences in S. asotus.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Fangyuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Muzi Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Yuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Xiangzhe Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Hanhan Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Zhenzhu Liu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Zhicheng Zhou
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Daoquan Zhao
- Yiluo River Aquatic Biology Field Scientific Observation and Research Station in the Yellow River Basin of Henan Province, Lushi, Sanmenxia City 472200, China;
| | - Meng Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Lei Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Hongxia Jiang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| | - Zhigang Qiao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China; (F.W.); (M.L.); (Y.W.); (X.G.); (H.Z.); (Z.L.); (Z.Z.); (M.Z.); (L.W.); (H.J.); (Z.Q.)
| |
Collapse
|
6
|
Kotov AA, Adashev VE, Kombarov IA, Bazylev SS, Shatskikh AS, Olenina LV. Molecular Insights into Female Hybrid Sterility in Interspecific Crosses between Drosophila melanogaster and Drosophila simulans. Int J Mol Sci 2024; 25:5681. [PMID: 38891872 PMCID: PMC11172174 DOI: 10.3390/ijms25115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.
Collapse
Affiliation(s)
- Alexei A. Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Vladimir E. Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Ilia A. Kombarov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Sergei S. Bazylev
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Aleksei S. Shatskikh
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Ludmila V. Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| |
Collapse
|
7
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Bustos P, Schmitt P, Brown DI, Farlora R. Silencing of the Vasa gene by RNA Interference Affects Embryonic Development and Reproductive Output in the Sea Louse Caligus rogercresseyi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:612-623. [PMID: 37526783 DOI: 10.1007/s10126-023-10232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
The sea louse Caligus rogercresseyi is a major ectoparasitic copepod that causes significant economic losses in the salmon farming industry. Despite recent advancements, the mechanisms underlying germline and embryo development in this species remain poorly understood. The Vasa gene encodes a highly conserved DEAD box helicase that is required for germ cell formation and function in many species. In this study, the Vasa gene was characterized in C. rogercresseyi, and its expression and function were analyzed. Phylogenetic analysis showed that the Cr-Vasa gene product formed clusters in clades with Vasa proteins from closely related species of crustaceans. Cr-Vasa gene expression patterns were assessed by qPCR, and the results showed a significantly higher relative expression level in adult females compared to copepodid, chalimus, and adult male stages. Tissue-specific localization of Cr-Vasa mRNA in C. rogercresseyi was determined using chromogenic in situ hybridization, and strong positive signal was observed in male testes, but also in the intestine and cuticle, while in females, it was observed in the ovaries, oocytes, cuticle, intestine, and egg strings. RNAi-mediated gene silencing of Cr-Vasa impacted embryonic development and reproductive output in adult female lice. Females from the dsVasa-treated group displayed unusual phenotypes, including shorter egg strings with numerous extra-embryonic inclusions, irregularly shaped abnormal embryos, and aborted egg strings. This study provides insights into the role of the Vasa gene in C. rogercresseyi embryonic development and reproductive output, which may have implications for the control of this parasitic copepod in the salmon farming industry.
Collapse
Affiliation(s)
- Paulina Bustos
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, 2360102, Valparaíso, Chile
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, 2360102, Valparaíso, Chile.
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
9
|
Curnutte HA, Lan X, Sargen M, Ao Ieong SM, Campbell D, Kim H, Liao Y, Lazar SB, Trcek T. Proteins rather than mRNAs regulate nucleation and persistence of Oskar germ granules in Drosophila. Cell Rep 2023; 42:112723. [PMID: 37384531 PMCID: PMC10439980 DOI: 10.1016/j.celrep.2023.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
RNA granules are membraneless condensates that provide functional compartmentalization within cells. The mechanisms by which RNA granules form are under intense investigation. Here, we characterize the role of mRNAs and proteins in the formation of germ granules in Drosophila. Super-resolution microscopy reveals that the number, size, and distribution of germ granules is precisely controlled. Surprisingly, germ granule mRNAs are not required for the nucleation or the persistence of germ granules but instead control their size and composition. Using an RNAi screen, we determine that RNA regulators, helicases, and mitochondrial proteins regulate germ granule number and size, while the proteins of the endoplasmic reticulum, nuclear pore complex, and cytoskeleton control their distribution. Therefore, the protein-driven formation of Drosophila germ granules is mechanistically distinct from the RNA-dependent condensation observed for other RNA granules such as stress granules and P-bodies.
Collapse
Affiliation(s)
- Harrison A Curnutte
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xinyue Lan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Manuel Sargen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Si Man Ao Ieong
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Dylan Campbell
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hyosik Kim
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah Bailah Lazar
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tatjana Trcek
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
11
|
Feijão T, Marques B, Silva RD, Carvalho C, Sobral D, Matos R, Tan T, Pereira A, Morais-de-Sá E, Maiato H, DeLuca SZ, Martinho RG. Polycomb group (PcG) proteins prevent the assembly of abnormal synaptonemal complex structures during meiosis. Proc Natl Acad Sci U S A 2022; 119:e2204701119. [PMID: 36215502 PMCID: PMC9586294 DOI: 10.1073/pnas.2204701119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.
Collapse
Affiliation(s)
- Tália Feijão
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Marques
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rui D. Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, Caparica, 2819-516 Portugal
| | - Ricardo Matos
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Tian Tan
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - António Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Eurico Morais-de-Sá
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Hélder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | | | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
12
|
Amirian M, Azizi H, Hashemi Karoii D, Skutella T. VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Sci Rep 2022; 12:17259. [PMID: 36241908 PMCID: PMC9568577 DOI: 10.1038/s41598-022-22137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
VASA, also known as DDX4, is a member of the DEAD-box proteins and an RNA binding protein with an ATP-dependent RNA helicase. The VASA gene expression, which is required for human germ cell development, may lead to infertility. Immunocytochemistry and immunohistochemistry were used to examine the expression of VASA protein in the human testis sections of azoospermic patients, in-vitro and in-silico models. Some studies of fertile humans showed VASA expression in the basal and adluminal compartments of seminiferous tubules. Our Immunocytochemistry and immunohistochemistry in infertile humans showed expression of VASA in the luminal compartments of the seminiferous tubule. The immunohistochemical analysis of three human cases with different levels of non-obstructive azoospermia revealed a higher expression of VASA-positive cells. For this purpose, Enrichr and Shiny Gene Ontology databases were used for pathway enrichment analysis and gene ontology. STRING and Cytoscape online evaluation were applied to predict proteins' functional and molecular interactions and performed to recognize the master genes, respectively. According to the obtained results, the main molecular functions of the up-regulated and downregulated genes include the meiotic cell cycle, RNA binding, and differentiation. STRING and Cytoscape analyses presented seven genes, i.e., DDX5, TNP2, DDX3Y, TDRD6, SOHL2, DDX31, and SYCP3, as the hub genes involved in infertility with VASA co-function and protein-protein interaction. Our findings suggest that VASA and its interacting hub proteins could help determine the pathophysiology of germ cell abnormalities and infertility.
Collapse
Affiliation(s)
- Mehdi Amirian
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Hossein Azizi
- grid.495554.cFaculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Danial Hashemi Karoii
- grid.495554.cFaculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Sun M, Liu JQ, Du XL, Liu SQ, Wang L. Cloning and expression analysis of Shvasa and the molecular regulatory pathways implicated in Cd-induced reproductive toxicity in the freshwater crab Sinopotamon henanense. CHEMOSPHERE 2022; 288:132437. [PMID: 34627817 DOI: 10.1016/j.chemosphere.2021.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a widespread, severely toxic heavy metal, can cause serious reproductive toxicity in animals. However, the molecular pathways associated with Cd-induced effects remain unknown. In this study, we first cloned the vasa gene (Shvasa) and characterized the VASA protein (ShVASA) in Sinopotamon henanense. We then investigated the molecular mechanisms of Cd-induced reproductive toxicity. Shvasa was specifically expressed in the ovary and testis. ShVASA was abundant in early ovarian development and significantly less abundant in mature ovaries. During oogenesis, ShVASA was abundant and evenly distributed in the cytoplasm of the oogonium and previtellogenic oocytes, but gradually accumulated in the nuclear periphery of vitellogenic and mature oocytes. As Cd concentration increased, ShVASA abundance decreased gradually in proliferation-stage ovaries, and increased gradually in mature ovaries. Notably, at the small and large growth stages, ShVASA was upregulated following exposure to 14.5 mg/L Cd and downregulated following exposure to 29 mg/L Cd. In contrast to the unexposed control, ShVASA accumulated around the nuclear periphery in Cd-exposed previtellogenic oocytes and scattered gradually into the cytoplasm in Cd-exposed vitellogenic and mature oocytes. Shvasa RNA interference (RNAi) downregulated Shnanos and Shpiwi, but simultaneous Cd exposure and Shvasa RNAi significantly upregulated Shnanos and downregulated Shpiwi. These data suggested that Cd disrupted Shvasa expression and function, as well as the functions of Shnanos and Shpiwi, leading to severe reproductive toxicity in S. henanense.
Collapse
Affiliation(s)
- Min Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jun Qing Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiao Lin Du
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Si Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
14
|
Xu C, Cao Y, Bao J. Building RNA-protein germ granules: insights from the multifaceted functions of DEAD-box helicase Vasa/Ddx4 in germline development. Cell Mol Life Sci 2021; 79:4. [PMID: 34921622 PMCID: PMC11072811 DOI: 10.1007/s00018-021-04069-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
The segregation and maintenance of a dedicated germline in multicellular organisms is essential for species propagation in the sexually reproducing metazoan kingdom. The germline is distinct from somatic cells in that it is ultimately dedicated to acquiring the "totipotency" and to regenerating the offspring after fertilization. The most striking feature of germ cells lies in the presence of characteristic membraneless germ granules that have recently proven to behave like liquid droplets resulting from liquid-liquid phase separation (LLPS). Vasa/Ddx4, a faithful DEAD-box family germline marker highly conserved across metazoan species, harbors canonical DEAD-box motifs and typical intrinsically disordered sequences at both the N-terminus and C-terminus. This feature enables it to serve as a primary driving force behind germ granule formation and helicase-mediated RNA metabolism (e.g., piRNA biogenesis). Genetic ablation of Vasa/Ddx4 or the catalytic-dead mutations abolishing its helicase activity led to sexually dimorphic germline defects resulting in either male or female sterility among diverse species. While recent efforts have discovered pivotal functions of Vasa/Ddx4 in somatic cells, especially in multipotent stem cells, we herein summarize the helicase-dependent and -independent functions of Vasa/Ddx4 in the germline, and discuss recent findings of Vasa/Ddx4-mediated phase separation, germ granule formation and piRNA-dependent retrotransposon control essential for germline development.
Collapse
Affiliation(s)
- Caoling Xu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Anhui, China
| | - Yuzhu Cao
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Anhui, China
| | - Jianqiang Bao
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Anhui, China.
| |
Collapse
|
15
|
Bestetti I, Barbieri C, Sironi A, Specchia V, Yatsenko SA, De Donno MD, Caslini C, Gentilini D, Crippa M, Larizza L, Marozzi A, Rajkovic A, Toniolo D, Bozzetti MP, Finelli P. Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency. Hum Reprod 2021; 36:2975-2991. [PMID: 34480478 PMCID: PMC8523209 DOI: 10.1093/humrep/deab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
STUDY QUESTION Can a targeted whole exome sequencing (WES) on a cohort of women showing a primary ovarian insufficiency (POI) phenotype at a young age, combined with a study of copy number variations, identify variants in candidate genes confirming their deleterious effect on ovarian function? SUMMARY ANSWER This integrated approach has proved effective in identifying novel candidate genes unveiling mechanisms involved in POI pathogenesis. WHAT IS KNOWN ALREADY POI, a condition occurring in 1% of women under 40 years of age, affects women’s fertility leading to a premature loss of ovarian reserve. The genetic causes of POI are highly heterogeneous and several determinants contributing to its prominent oligogenic inheritance pattern still need to be elucidated. STUDY DESIGN, SIZE, DURATION WES screening for pathogenic variants of 41 Italian women with non-syndromic primary and early secondary amenorrhoea occurring before age 25 was replicated on another 60 POI patients, including 35 French and 25 American women, to reveal statistically significant shared variants. PARTICIPANTS/MATERIALS, SETTING, METHODS The Italian POI patients’ DNA were processed by targeted WES including 542 RefSeq genes expressed or functioning during distinct reproductive or ovarian processes (e.g. DNA repair, meiosis, oocyte maturation, folliculogenesis and menopause). Extremely rare variants were filtered and selected by means of a Fisher Exact test using several publicly available datasets. A case-control Burden test was applied to highlight the most significant genes using two ad-hoc control female cohorts. To support the obtained data, the identified genes were screened on a novel cohort of 60 Caucasian POI patients and the same case-control analysis was carried out. Comparative analysis of the human identified genes was performed on mouse and Drosophila melanogaster by analysing the orthologous genes in their ovarian phenotype, and two of the selected genes were fruit fly modelled to explore their role in fertility. MAIN RESULTS AND THE ROLE OF CHANCE The filtering steps applied to search for extremely rare pathogenic variants in the Italian cohort revealed 64 validated single-nucleotide variants/Indels in 59 genes in 30 out of 41 screened women. Burden test analysis highlighted 13 ovarian genes as being the most enriched and significant. To validate these findings, filtering steps and Burden analysis on the second cohort of Caucasian patients yielded 11 significantly enriched genes. Among them, AFP, DMRT3, MOV10, FYN and MYC were significant in both patient cohorts and hence were considered strong candidates for POI. Mouse and Drosophila comparative analysis evaluated a conserved role through the evolution of several candidates, and functional studies using a Drosophila model, when applicable, supported the conserved role of the MOV10 armitage and DMRT3 dmrt93B orthologues in female fertility. LARGE SCALE DATA The datasets for the Italian cohort generated during the current study are publicly available at ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/): accession numbers SCV001364312 to SCV001364375. LIMITATIONS, REASONS FOR CAUTION This is a targeted WES analysis hunting variants in candidate genes previously identified by different genomic approaches. For most of the investigated sporadic cases, we could not track the parental inheritance, due to unavailability of the parents’ DNA samples; in addition, we might have overlooked additional rare variants in novel candidate POI genes extracted from the exome data. On the contrary, we might have considered some inherited variants whose clinical significance is uncertain and might not be causative for the patients’ phenotype. Additionally, as regards the Drosophila model, it will be extremely important in the future to have more mutants or RNAi strains available for each candidate gene in order to validate their role in POI pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS The genomic, statistical, comparative and functional approaches integrated in our study convincingly support the extremely heterogeneous oligogenic nature of POI, and confirm the maintenance across the evolution of some key genes safeguarding fertility and successful reproduction. Two principal classes of genes were identified: (i) genes primarily involved in meiosis, namely in synaptonemal complex formation, asymmetric division and oocyte maturation and (ii) genes safeguarding cell maintenance (piRNA and DNA repair pathways). STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Italian Ministry of Health grants ‘Ricerca Corrente’ (08C621_2016 and 08C924_2019) provided to IRCCS Istituto Auxologico Italiano, and by ‘Piano Sostegno alla Ricerca’ (PSR2020_FINELLI_LINEA_B) provided by the University of Milan; M.P.B. was supported by Telethon-Italy (grant number GG14181). There are no conflicts of interest.
Collapse
Affiliation(s)
- I Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - C Barbieri
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - A Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - S A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M D De Donno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - C Caslini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - D Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - L Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - A Marozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - A Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San, Francisco, San Francisco, CA, USA.,Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - D Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - M P Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - P Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| |
Collapse
|
16
|
Seyoum A, Pradhan A, Jass J, Olsson PE. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139682. [PMID: 32521362 DOI: 10.1016/j.scitotenv.2020.139682] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 05/15/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are synthetic organofluorine compounds with unique stability accompanied with hydrophobic and lipophobic properties. Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are of high concern due to their wide application in consumer and industrial products, extreme persistence, abundant occurrence in the environment and their toxic effect to humans and animals. However, knowledge on the molecular mechanisms of toxicity and the effects on reproduction output remain scarce. In this study, we analyzed the effects of PFOS and PFOA on Daphnia magna. Acute toxicity, development, reproduction, lipid metabolism (lipid-accumulation) and lifespan was investigated, as well as the expression of genes related to these endpoints. Exposure of PFOS and PFOA at 1, 10 and 25 μM did not cause acute lethality. Hatching was reduced following exposure to both compounds, and lifespan was decreased following exposure to 25 μM PFOS. Body length of Daphnia magna was reduced significantly by 25 μM PFOS following 7 days exposure. Lipid staining revealed that all PFAS exposures increased lipid accumulation. qRT-PCR analysis of genes involved in lipid metabolism suggests that the increase in lipid content could be due to inhibition of genes involved on absorption and catabolism of fatty acids. Exposure to both PFOA and PFOS reduced the fecundity significantly. Downregulation of genes involved in development and reproductive process, including vtg2, vasa, EcRA, EcRB, usp, jhe, HR3, ftz-F1, E74 and E75 were observed. The alterations in developmental and reproductive genes as well as the disturbed lipid metabolism provides mechanistic insight into the possible causes for decreased fecundity and lifespan observed following exposure to both PFOS and PFOA.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Ajay Pradhan
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
17
|
Bansal P, Madlung J, Schaaf K, Macek B, Bono F. An Interaction Network of RNA-Binding Proteins Involved in Drosophila Oogenesis. Mol Cell Proteomics 2020; 19:1485-1502. [PMID: 32554711 PMCID: PMC8143644 DOI: 10.1074/mcp.ra119.001912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
During Drosophila oogenesis, the localization and translational regulation of maternal transcripts relies on RNA-binding proteins (RBPs). Many of these RBPs localize several mRNAs and may have additional direct interaction partners to regulate their functions. Using immunoprecipitation from whole Drosophila ovaries coupled to mass spectrometry, we examined protein-protein associations of 6 GFP-tagged RBPs expressed at physiological levels. Analysis of the interaction network and further validation in human cells allowed us to identify 26 previously unknown associations, besides recovering several well characterized interactions. We identified interactions between RBPs and several splicing factors, providing links between nuclear and cytoplasmic events of mRNA regulation. Additionally, components of the translational and RNA decay machineries were selectively co-purified with some baits, suggesting a mechanism for how RBPs may regulate maternal transcripts. Given the evolutionary conservation of the studied RBPs, the interaction network presented here provides the foundation for future functional and structural studies of mRNA localization across metazoans.
Collapse
Affiliation(s)
- Prashali Bansal
- Living Systems Institute, University of Exeter, Exeter, UK; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johannes Madlung
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Fulvia Bono
- Living Systems Institute, University of Exeter, Exeter, UK; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
18
|
Discrete roles of RNA helicases in human male germline and spermatogenesis. J Appl Genet 2020; 61:415-419. [PMID: 32328902 PMCID: PMC7413869 DOI: 10.1007/s13353-020-00558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/05/2022]
Abstract
RNA helicases are known from their ability to bind and unwind double-stranded RNA initiating RNA processing events. These evolutionary conserved RNA binding proteins are broadly expressed in a variety of tissues; however, we can distinguish those, which represent tissue-specific expression pattern and play unique roles in certain cell lineages. For instance, some RNA helicases mediate transcriptomic changes triggering cell differentiation which results in specification and establishment of germline in a developing embryo. Others act as safeguards responsible for maintenance of DNA integrity in germ cell. In this article, we focus on selected DEAD/DEAH-box RNA helicases involved in germline development and spermatogenesis presenting their diverse functions and implications for male fertility.
Collapse
|
19
|
Wang SC, Ching YH, Krishnaraj P, Chen GY, Radhakrishnan AS, Lee HM, Tu WC, Lin MD. Oogenesis of Hematophagous Midge Forcipomyia taiwana (Diptera: Ceratopogonidae) and Nuage Localization of Vasa in Germline Cells. INSECTS 2020; 11:E106. [PMID: 32033475 PMCID: PMC7074065 DOI: 10.3390/insects11020106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/24/2023]
Abstract
Forcipomyia taiwana is an irritating hematophagous midge that preferentially attacks humans and affects leisure industries in Taiwan. Understanding the female reproductive biology of such pests would facilitate the development of pest control strategies. However, knowledge about oogenesis in the genus Forcipomyia is unavailable. Accordingly, we examined the ovariole structure and features of oogenesis in terms of the oocyte and the nurse cell. After being blood-fed, we observed a high degree of gonotrophic harmony-the synchronization of developing follicles. The follicle of the F. taiwana has only one nurse cell connected to the oocyte, which is distinct among hematophagous midges. In the nurse cell, we identified the perinuclear localization of the germline marker, Vasa. The Vasa localization is reminiscent of the nuclear envelope-associated nuage observed by electron microscopy. To determine whether F. taiwana Vasa (FtVasa) is an authentic nuage component, we produced transgenic flies expressing FtVasa in the female germline and proved that FtVasa was able to be localized to Drosophila nuage. By characterizing the oogenesis and Vasa expression in the germline cells of F. taiwana, this study extends knowledge about the female reproductive biology of hematophagous midges.
Collapse
Affiliation(s)
- Szu-Chieh Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Preethi Krishnaraj
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
| | - Guan-Yu Chen
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Anna Shiny Radhakrishnan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
| | - Hsien-Min Lee
- Graduate Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
- Institute of Medical Science, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|