1
|
Wang H, Yuan X, Han J, Wu Z, Ma Z, Shi F, Luo Z, Chen Z, Guo C, Yuan G, He X, Ling Z, Meng L, Shen R, Huang J, Xu R. RO5126766 attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through mediating the ERK pathway. J Orthop Translat 2025; 52:27-39. [PMID: 40231159 PMCID: PMC11995706 DOI: 10.1016/j.jot.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/09/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that remains challenging to treat due to lack of complete understanding of its pathogenesis. Previous studies have identified RO5126766 (RO) as a small molecule compound that inhibited RAF/MEK-ERK pathway and garnered much interest for its anti-cancer properties. But its role in the treatment of OA remains unclear. Methods This study employed the anterior cruciate ligament transection (ACLT) procedure to create an OA model in mice. The effects of RO on pathological changes in articular cartilage and subchondral bone were assessed using micro-CT and histological staining. Mice received peritoneal injections of RO at 1 mg/kg and 5 mg/kg biweekly for 4 weeks after ACLT, while control mice received saline. In vitro, bone marrow-derived macrophages were cultured to examine the effects of RO on osteoclast activation using immunofluorescence, TRAP staining, and bone resorption assays. The inflammatory degeneration of chondrocytes and gene expression levels were evaluated using staining and RT-qPCR. Western blot and immunohistochemistry were used to analyze MAPK signaling and autophagy-related protein expression, investigating RO's molecular mechanism in OA treatment. Human single-cell data were also analyzed to identify genes and pathways upregulated in OA tissues. Results Our findings showed that RO protects subchondral bone by inhibiting osteoclast formation in the ACLT mouse model of OA. In vitro, RO was shown to inhibit osteoclast differentiation and reduce inflammatory degeneration of chondrocytes. Mechanistically, RO counteracted subchondral osteoclast hyperactivation by suppressing the ERK/c-fos/NFATc1 signaling pathway. Additionally, RO inhibited LPS-induced inflammatory degeneration of chondrocytes and enhanced autophagy via the ERK pathway. Single-cell analysis further confirmed significant upregulation of the ERK signaling pathway in human OA tissues. Conclusions Overall, our findings suggested that RO inhibited osteoclast differentiation and protected articular cartilage, suggesting its potential as a novel treatment for OA. Translational potential of this article In this study, we have, for the first time, substantiated the therapeutic potential of RO in the treatment of OA. By demonstrating its ability to inhibit osteoclast differentiation and protect articular cartilage, RO could offer a new avenue for disease-modifying treatments in OA. Thus, this paper provides valuable insights into understanding the molecular mechanisms and treatment of OA.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiwen Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zheru Ma
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Fan Shi
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zhengqiong Luo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zihan Chen
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chenyang Guo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xuemei He
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Meng
- Department of Electronic and Computer Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Rong Shen
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jianming Huang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ren Xu
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| |
Collapse
|
2
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Pan J, Zhang L, Li D, Li Y, Lu M, Hu Y, Sun B, Zhang Z, Li C. Hypoxia-inducible factor-1: Regulatory mechanisms and drug therapy in myocardial infarction. Eur J Pharmacol 2024; 963:176277. [PMID: 38123007 DOI: 10.1016/j.ejphar.2023.176277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Myocardial infarction (MI), an acute cardiovascular disease characterized by coronary artery blockage, inadequate blood supply, and subsequent ischemic necrosis of the myocardium, is one of the leading causes of death. The cellular, physiological, and pathological responses following MI are complex, involving multiple intertwined pathological mechanisms. Hypoxia-inducible factor-1 (HIF-1), a crucial regulator of hypoxia, plays a significant role in of the development of MI by modulating the behavior of various cells such as cardiomyocytes, endothelial cells, macrophages, and fibroblasts under hypoxic conditions. HIF-1 regulates various post-MI adaptive reactions to acute ischemia and hypoxia through various mechanisms. These mechanisms include angiogenesis, energy metabolism, oxidative stress, inflammatory response, and ventricular remodeling. With its crucial role in MI, HIF-1 is expected to significantly influence the treatment of MI. However, the drugs available for the treatment of MI targeting HIF-1 are currently limited, and most contain natural compounds. The development of precision-targeted drugs modulating HIF-1 has therapeutic potential for advancing MI treatment research and development. This study aimed to summarize the regulatory role of HIF-1 in the pathological responses of various cells following MI, the diverse mechanisms of action of HIF-1 in MI, and the potential drugs targeting HIF-1 for treating MI, thus providing the theoretical foundations for potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bowen Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, 266000, China.
| |
Collapse
|
4
|
Wang J, Du H, Sun Q, Wan W, Zhang H. The promotion of sestrin2/AMPK signaling by HIF-1α overexpression enhances the damage caused by acute myocardial infarction. BMC Cardiovasc Disord 2023; 23:571. [PMID: 37986153 PMCID: PMC10662688 DOI: 10.1186/s12872-023-03604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE Acute myocardial infarction (AMI), is a serious form of coronary heart disease. The present study sought to investigate the impact of HIF-1α on AMI, along with its fundamental mechanism. METHODS Sprague-Dawley (SD) rats were used to conduct an AMI model. 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining was used examine the region of myocardial infract area at various time intervals. Protein expression levels were detected using western blotting. The rats were randomly divided into sham, model, negative control (NC), HIF-1α overexpression (HIF-1α-OE), and HIF-1α-OE+ si-sestrin2 groups. We examined the impact of HIF-1α overexpression on AMI rats using Haematoxylin-Eosin (H&E) staining, TTC staining, enzyme-linked immunosorbent assay (ELISA), TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, and immunohistochemistry (IHC) staining. RESULTS According to the TTC findings, the region affected by myocardial infarction reached its peak at day 14. Based on the results from the western blot analysis, the levels of HIF-1α and sestrin2 were found the minimum on day 28. Subsequently, we discovered that the overexpression of HIF-1α rescued the cardiac function parameters, improved the morphology of myocardial tissue, and mitigated inflammation. Furthermore, the overexpression of HIF-1α led to a reduction in the levels of MDA and an increase in the levels of SOD. Moreover, the overexpression of HIF-1α resulted in a decrease in cellular apoptosis. This result was confirmed by the expression levels of Bcl-2 and Bax. Nevertheless, the defensive impact of elevated HIF-1α expression was somewhat counteracted by the suppression of sestrin2. In terms of mechanism, the overexpression of HIF-1α enhanced the levels of sestrin2 and the protein adenosine monophosphate activated kinase (AMPK). CONCLUSION Our research suggests that the overexpression of HIF-1α may rescue the damage to myocardial tissue, and this effect is associated with the sestrin2/AMPK signaling pathway. Our study provides a novel comprehension of the protective effects of HIF-1α overexpression on AMI.
Collapse
Affiliation(s)
- Jie Wang
- Cardiac Intensive Care Unit, Yantaishan Hospital, Yantai, Shandong, China
| | - Honglei Du
- Department of Cardiology, Yantai Yeda Hospital, No.23-1, the Yellow River Road, Yantai economic and Technological Development Zone, Yantai, Shandong, 264006, China
| | - Qing Sun
- Department of Cardiology, Yantaishan Hospital, Yantai, China
| | - Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Yantai, Shandong, China
| | - Haifeng Zhang
- Department of Cardiology, Yantai Yeda Hospital, No.23-1, the Yellow River Road, Yantai economic and Technological Development Zone, Yantai, Shandong, 264006, China.
| |
Collapse
|
5
|
He P, Zhang M, Zhao M, Zhang M, Ma B, Lv H, Han Y, Wu D, Zhong Z, Zhao W. A Novel Polysaccharide From Chuanminshen violaceum and Its Protective Effect Against Myocardial Injury. Front Nutr 2022; 9:961182. [PMID: 35911096 PMCID: PMC9330552 DOI: 10.3389/fnut.2022.961182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
We isolated and purified a novel polysaccharide from the root of Chuanminshen violaceum, namely, Chuanminshen violaceumis polysaccharide (CVP) and confirmed its structure and molecular weight. Furthermore, in vivo experiment, CVP’s protective effect against myocardial ischemia-reperfusion (I/R) injury in mice was evidenced by significantly reducing I/R-induced myocardial infarction (MI) size, decreasing the secretion of heart damage biomarkers, and improving cardiac function. Then, the myocardial anoxia/reoxygenation (A/R) injury model was established to mimic reperfusion injury. Noticeably, ferroptosis was the major death manner for A/R-damaged H9c2 cells. Meanwhile, CVP significantly inhibited ferroptosis by decreasing intracellular Fe2+ level, enhancing GPX4 expression, and suppressing lipid peroxidation to confront A/R injury. In conclusion, CVP, with a clear structure, ameliorated I/R injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Peng He
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Mi Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Meng Zhao
- School of Nursing, Qingdao University, Qingdao, China
| | - Mengyao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Benxu Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Hongyu Lv
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macao SAR, China
- Zhangfeng Zhong,
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macao SAR, China
- *Correspondence: Wenwen Zhao,
| |
Collapse
|
6
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
7
|
Xie F, Zou T, Chen J, Liang P, Wang Z, You J. Polysaccharides from Enteromorpha prolifera improves insulin sensitivity and promotes adipose thermogenesis in diet-induced obese mice associated with activation of PGC-1α-FNDC5/irisin pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
9
|
Wassie T, Lu Z, Duan X, Xie C, Gebeyew K, Yumei Z, Yin Y, Wu X. Dietary Enteromorpha Polysaccharide Enhances Intestinal Immune Response, Integrity, and Caecal Microbial Activity of Broiler Chickens. Front Nutr 2021; 8:783819. [PMID: 34912840 PMCID: PMC8667661 DOI: 10.3389/fnut.2021.783819] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xinyi Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Chunyan Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Kefyalew Gebeyew
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhang Yumei
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
10
|
Li X, Gao X, Zhang H, Liu Y, Sarker MMR, Wu Y, Chen X, Zhao C. The anti-hyperuricemic effects of green alga Enteromorpha prolifera polysaccharide via regulation of the uric acid transporters in vivo. Food Chem Toxicol 2021; 158:112630. [PMID: 34687833 DOI: 10.1016/j.fct.2021.112630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022]
Abstract
A novel polysaccharide obtained from Enteromorpha prolifera (EPP) was purified through diethylaminoethyl cellulose-52 and Sephadex G-75 chromatography. Fourier transform infrared spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance (NMR) spectroscopy were employed to analyse the structure of EPP. It mainly comprised rhamnose, glucuronic acid, galactose, arabinose, and xylose at a molar ratio of 20.45:12.74:10.99:5.84:1.95, and its average molecular weight was 46.56 kDa. The seven major glycosidic residues identified by NMR were as follows: →2)-α-L-Araf-(1→, →2)-α-L-Rhap-(1→, →4)-α-L-Rhap-(1→, →2,6)-β-D-Galp-(1→, →4)-β-D-GlcpA-(1→, →3,4)-β-D-GlcpA-(1→, and →4)-β-Xylp-(1→. The effect of EPP on hyperuricemic mice was determined by analysing correlative general physical parameters, renal histopathology, renal gene expressions, and gut microbiome. EPP significantly reduced serum uric acid (UA), serum blood urea nitrogen, serum xanthine oxidase (XOD), and hepatic XOD as well as improved histological parameters in hyperuricemic mice. Furthermore, mRNA and protein expression analyses showed the upregulation of UA excretion genes such as ABCG2, OAT1, and NPT1 and downregulation of UA resorption gene URAT1. Moreover, EPP maintained the stability of the intestinal flora and confirmed that Parasutterella is closely related to the regulation of hyperuricemia. This study is the first to demonstrate the anti-hyperuricemic activity of EPP and highlight its therapeutic potential for hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Xiaoqing Li
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoxiang Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh; Pharmacology and Toxicology Research Division, Health Med Science Research Limited, 3/1 Lalmatia, 1207, Dhaka, Bangladesh
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Wassie T, Niu K, Xie C, Wang H, Xin W. Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha prolifera Polysaccharide. Front Nutr 2021; 8:747928. [PMID: 34692752 PMCID: PMC8529069 DOI: 10.3389/fnut.2021.747928] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
There is increasing interest in the use of marine algae as functional food additives for improving human health. Enteromorpha (Ulva) prolifera (E. prolifera) is a seaweed green alga (Chlorophyta) that contains many bioactive compounds, of which polysaccharide is the main component. With the advancement of technology in the methods of extraction and analysis, recent studies in in vitro and animals model showed that polysaccharides derived from E. prolifera exert various biological activities, such as gut microbiota modulation, immunomodulation, antioxidant, antidiabetic, antimicrobial, and hypolipidemic. Research evidence has shown that methods of extraction and molecular modification, such as degradation, carboxymethylation, and sulfonation could alter the biological activities of polysaccharides. Therefore, in this review, we discussed the different extraction techniques, structural-activity relationship, and health benefits of sulfated polysaccharides derived from E. prolifera, and suggested future research avenues. This review helps to advance the extraction techniques and promote the application of marine algae polysaccharides as functional food and therapeutic agent.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Chunyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haihua Wang
- Qingdao Seawin Biotech Group Co., Ltd., Qingdao, China
| | - Wu Xin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
12
|
Liang B, Cai XY, Gu N. Marine Natural Products and Coronary Artery Disease. Front Cardiovasc Med 2021; 8:739932. [PMID: 34621803 PMCID: PMC8490644 DOI: 10.3389/fcvm.2021.739932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease is the major cause of mortality worldwide, especially in low- and middle-income earners. To not only reduce angina symptoms and exercise-induced ischemia but also prevent cardiovascular events, pharmacological intervention strategies, including antiplatelet drugs, anticoagulant drugs, statins, and other lipid-lowering drugs, and renin-angiotensin-aldosterone system blockers, are conducted. However, the existing drugs for coronary artery disease are incomprehensive and have some adverse reactions. Thus, it is necessary to look for new drug research and development. Marine natural products have been considered a valuable source for drug discovery because of their chemical diversity and biological activities. The experiments and investigations indicated that several marine natural products, such as organic small molecules, polysaccharides, proteins, and bioactive peptides, and lipids were effective for treating coronary artery disease. Here, we particularly discussed the functions and mechanisms of active substances in coronary artery disease, including antiplatelet, anticoagulant, lipid-lowering, anti-inflammatory, and antioxidant activities.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yi Cai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Guo F, Han M, Lin S, Ye H, Chen J, Zhu H, Lin W. Enteromorpha prolifera polysaccharide prevents high- fat diet-induced obesity in hamsters: A NMR-based metabolomic evaluation. J Food Sci 2021; 86:3672-3685. [PMID: 34191277 DOI: 10.1111/1750-3841.15818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Enteromorpha prolifera polysaccharide (EP) has been shown to exhibit hypolipidemic and hypoglycemic activities in various experimental models. Here, an 1 H-NMR-based metabolomic study was conducted to explore the regulatory effects of EP on serum metabolic changes in obese hamsters. High-fat diet (HFD)-fed hamsters were orally administrated with EP (300, 450, or 600 mg/kg) once daily for 12 weeks. Compared with HFD-fed hamsters, EP treatment (450 and 600 mg/kg) significantly decreased the body weight (by 8.69 and 8.24%), liver weight (by 7.87 and 8.25%), epididymal white adipose tissue (by 19.54 and 17.26%), perirenal white adipose tissue (by 28.09 and 28.94%), serum total cholesterol (by 24.31 and 18.61%), triglyceride (by 30.64 and 31.38%), and low-density lipoprotein cholesterol (by 38.26 and 36.30%), respectively. In addition, EP intervention also significantly decreased hepatic cholesterol (by 23.20, 38.16, and 34.57%) and triglyceride content (by 17.78, 41.47, and 35.50%) as well as serum levels of alanine aminotransferase (ALT) and ALT/aspartate aminotransferase (AST) ratio. The serum samples of normal diet (ND) group, HFD group and HFD + EP 450 mg/kg (HFD + MEP) group were further analyzed by 1 H-NMR spectroscopy. Compared with ND group, 17 and 2 metabolites were significantly upregulated and downregulated in HFD group, respectively. Interestingly, EP treatment significantly downregulated nine metabolites and upregulated one metabolite when compared to those in HFD group. Our results indicated that EP intervention partially ameliorated HFD-induced metabolic dysfunction, and the most prominent metabolic pathways included citrate cycle, synthesis and degradation of ketone bodies, pyruvate metabolism, valine, leucine and isoleucine degradation, and arginine biosynthesis. PRACTICAL APPLICATION: Enteromorpha prolifera polysaccharide (EP), the main active component of Enteromorpha prolifera, is reported to have many biological activities. However, the antiobesity effect of EP and its corresponding metabolic mechanism have not been reported so far. The results of this study confirmed the antiobesity effect of EP on HFD-induced obese hamsters and elucidated its possible metabolic mechanism. Our study highlighted that EP might be used in weight-loss functional foods.
Collapse
Affiliation(s)
- Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Mengyuan Han
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China.,Department of Women's Health Care, Fujian Obstetrics and Gynecology Hospital, FuZhou, P. R. China
| | - Song Lin
- Department of Child Health Care, Fuqing Maternal and Child Health Care Hospital, FuQing, China
| | - Hui Ye
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Jiedong Chen
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Hongni Zhu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| | - Wenting Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, FuZhou, P. R. China
| |
Collapse
|
14
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
15
|
Liu Y, Wu X, Jin W, Guo Y. Immunomodulatory Effects of a Low-Molecular Weight Polysaccharide from Enteromorpha prolifera on RAW 264.7 Macrophages and Cyclophosphamide- Induced Immunosuppression Mouse Models. Mar Drugs 2020; 18:md18070340. [PMID: 32605327 PMCID: PMC7401259 DOI: 10.3390/md18070340] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 01/28/2023] Open
Abstract
The water-soluble polysaccharide EP2, from Enteromorpha prolifera, belongs to the group of polysaccharides known as glucuronoxylorhamnan, which mainly contains glucuronic acid (GlcA), xylose (Xyl), and rhamnose (Rha). The aim of this study was to detect the immunomodulatory effects of EP2 on RAW 264.7 macrophages and cyclophosphamide (CYP)-induced immunosuppression mouse models. The cells were treated with EP2 for different time periods (0, 0.5, 1, 3, and 6 h). The results showed that EP2 promoted nitric oxide production and up-regulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in a time-dependent manner. Furthermore, we found that EP2-activated iNOS, COX2, and NLRP3 inflammasomes, and the TLR4/MAPK/NF-κB signaling pathway played an important role. Moreover, EP2 significantly increased the body weight, spleen index, thymus index, inflammatory cell counts, and the levels of IL-1β, IL-6, and TNF-α in CYP-induced immunosuppression mouse models. These results indicate that EP2 might be a potential immunomodulatory drug and provide the scientific basis for the comprehensive utilization and evaluation of E. prolifera in future applications.
Collapse
Affiliation(s)
- Yingjuan Liu
- Medical College, Qingdao University, Qingdao 266071, China; (Y.L.); (X.W.)
| | - Xiaolin Wu
- Medical College, Qingdao University, Qingdao 266071, China; (Y.L.); (X.W.)
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (W.J.); (Y.G.); Tel.: +86-532-8299-1711 (Y.G.)
| | - Yunliang Guo
- Medical College, Qingdao University, Qingdao 266071, China; (Y.L.); (X.W.)
- Correspondence: (W.J.); (Y.G.); Tel.: +86-532-8299-1711 (Y.G.)
| |
Collapse
|
16
|
Li L, Li ZB, Jia M, Chu HT. Therapeutic effects of KANK2 in myocardial infarction rats might be associated with the NF-κB p65 inhibition. Int Immunopharmacol 2020; 86:106687. [PMID: 32570033 DOI: 10.1016/j.intimp.2020.106687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE KN motif and ankyrin repeat domains 2 (KANK2) may inhibit the activation of (NF-kappaB) p65, which plays a role in myocardial injury. Thus, our study aims to discover the effect of KANK2 on myocardial infarction (MI) induced by ligating the left anterior descending coronary artery (LAD) through regulating NF-κB p65 in vivo. METHODS MI rats underwent LAD ligation were administered with intramyocardial injections of KANK2/Control activation plasmids. Six weeks after MI, pressure-volume (P/V) loops was used to investigate the cardiac function of rats, then the following detections were performed, including TTC staining, HE staining, immunofluorescence, Masson' s trichrome staining, ELISA assay, TUNEL staining, immunohistochemistry, qRT-PCR and Western blotting. RESULTS MI rats decreased in maximum pressure (pmax), ejection fraction (EF%), peak rate of pressure rise (dpdtmax) and decline (-dpdtmax) with increased end diastolic pressure (EDP), which was partially reversed by KANK2 overexpression. Besides, KANK2 CRISPR activation plasmids reduced infarct size with less collagen fiber proliferation and neutrophil infiltration in infarct tissues, as well as suppressed pro-inflammatory factors expressions in MI rats. Moreover, injection of KANK2 activation plasmid decreased collagen deposition, aggravated cardiomyocyte apoptosis, enhanced the capillary density, and increased the expressions of VEGF and bFGF in the infarct and peri-infarct regions of MI rats. KANK2 lowered myocardial NF-κB p65 expression in MI rats. CONCLUSION KANK2 may play its therapeutic role in MI through improving cardiac function, decreasing myocardial collagen deposition, reducing cardiomyocyte apoptosis, and increasing angiogenesis, which might be associated with the reduction of NF-κB p65 expression.
Collapse
Affiliation(s)
- Lin Li
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China
| | - Zai-Bo Li
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China
| | - Min Jia
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China
| | - Hong-Tao Chu
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China.
| |
Collapse
|
17
|
Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA-499 and miRNA-22 in acute myocardial infarction. J Clin Lab Anal 2020; 34:2410-2417. [PMID: 32529742 PMCID: PMC7439427 DOI: 10.1002/jcla.23332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Currently, acute myocardial infarction (AMI) represents a serious cardiovascular disease with high morbidity and mortality. Therefore, this study aimed to systematically evaluate the roles of miRNA-499 and miRNA-22 as potential biomarkers for AMI. METHODS According to the inclusion and exclusion criteria, we measured circulating levels of miRNAs in 50 AMI patients and 50 non-MI populations. The expression levels of plasma miRNA-499 and miRNA-22 were analyzed by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). A statistical analysis of clinical data of AMI patients was conducted by 90-day follow-up. RESULTS Real-time PCR analysis showed that the relative expression level of miRNA-499 increased gradually among the three groups (P < .05). However, the expression of miRNA-22 showed a downward trend (P < .05). According to logistic analysis, the relative levels of miRNA-499 and miRNA-22 were important predictors of AMI. When the miRNA-499 and miRNA-22 levels were 0.377 and 0.946 separately, the diagnostic value of miRNA-499 and miRNA-22 for AMI was 86.00% and 86.00% for sensitivity, and 98.00% and 94.00% for specificity, respectively. In addition, compared to the baseline GRACE scoring system, the combination of miRNA-499, miRNA-22, and GRACE scores had a stronger discriminating power for MACE occurrence, with a sensitivity of 100.00% and a specificity of 79.40%. CONCLUSIONS The results showed that plasma miRNA-499 and miRNA-22 were more sensitive and specific for the diagnosis of AMI, suggesting that they can be used as potential biomarkers for clinical diagnosis of AMI.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Lu Tian
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Qiyu Sun
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| |
Collapse
|
18
|
Jin W, He X, Long L, Fang Q, Wei B, Sun J, Zhang W, Wang H, Zhang F, Linhardt RJ. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydr Polym 2020; 237:116143. [PMID: 32241440 DOI: 10.1016/j.carbpol.2020.116143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
A sulfated glucurono-xylo-rhamnan (EP-3-H) was purified from a green alga, Enteromorpha prolifera. EP-3-H and its oligomers were characterized by high performance liquid chromatography, mass spectrometry and one and two-dimensional nuclear magnetic resource spectroscopy. The structural analysis showed EP-3-H has a backbone of glucurono-xylo-rhamnan, branches with glucuronic acid and sulfated at C3 of rhamnose and/or C2 of xylose. The inhibition of EP-3-H on human lung cancer A549 cell proliferation in vitro and its therapeutic effects in BALB/c-nu mice in vivo were determined to evaluate the anti-lung cancer activity of EP-3-H. The tumor inhibition level was 59 %, suggesting that EP-3-H might be a good candidate for the treatment of lung cancer. Surface plasmon resonance (SPR) studies revealed the IC50 on the binding of fibroblast growth factors, (FGF1 and FGF2), to heparin were 0.85 and 1.47 mg/mL, respectively. These results suggest that EP-3-H inhibits cancer proliferation by interacting with these growth factors.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liufei Long
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20878, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
19
|
Guo F, Zhuang X, Han M, Lin W. Polysaccharides from Enteromorpha prolifera protect against carbon tetrachloride-induced acute liver injury in mice via activation of Nrf2/HO-1 signaling, and suppression of oxidative stress, inflammation and apoptosis. Food Funct 2020; 11:4485-4498. [DOI: 10.1039/d0fo00575d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EPP protected against hepatic injury induced by CCl4-derived reactive intermediates through the suppression of hepatic oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Fuchuan Guo
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Xinyun Zhuang
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Mengyuan Han
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Wenting Lin
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| |
Collapse
|