1
|
Guo S, Liu C, Wang Y, Chen F, Zhu J, Li S, Li E. Effect of resveratrol on spermatogenesis in breeding boars and the proteomic analysis for testes. Reprod Biol 2024; 24:100930. [PMID: 39173316 DOI: 10.1016/j.repbio.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Effect of resveratrol (RSV) on spermatogenesis and the mechanism of resveratrol in promoting spermatogenesis of breeding boars was explored by feeding sexually mature Duroc boars with normal diet and 20 mg/kg resveratrol diet for 14 days to the control group and experimental group, respectively. Semen volume, sperm density, motility, viability and abnormality rate were analyzed on day 0, 7, and 14. Blood samples were collected, and levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) in serum were analyzed. On day 14, the testis tissue was collected for antioxidant and proteomics analysis etc. The semen volume, sperm density, motility, and viability of the experimental group and the contents of serum FSH, LH, T and plasma SOD activity were significantly higher than those in the control group. However, the serum IL-6, TNF-α and plasma MDA were remarkably lower in experimental group. The above results showed that resveratrol can simulate spermatogenesis in breeding boars. Proteomic results demonstrated that three differentially expressed proteins (DEPs) were up-regulated and 12 DEPs were down-regulated; ODF1, calmodulin, Cabs1, and Hp were involved in spermatogenesis; and the main enriched metabolic pathway is steroid hormone synthesis pathway. Therefore, the improvement in sperm quality by resveratrol may be achieved by regulating the changes in outer dense fiber 1, calmodulin, spermatid specific 1, and haptoglobin expression and steroid synthesis pathway.
Collapse
Affiliation(s)
- Shuang Guo
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Chaoying Liu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China; Zhumadian Academy of Industry Innovation and Development, Zhumadian, Henan province 463000, PR China
| | - Ye Wang
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Fujia Chen
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Jinjin Zhu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Siqiang Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Enzhong Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China.
| |
Collapse
|
2
|
Thomas M, G R, V RT, V AT. Genomic profiling of selective sweeps through haplotype differentiation unravelled genes associated with production and reproduction traits in Indian goat breeds. Trop Anim Health Prod 2024; 56:296. [PMID: 39340615 DOI: 10.1007/s11250-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
A comprehensive genomic scan of selective sweeps was conducted in autochthonous Attappady Black and improved dual-purpose Malabari goat breeds in south India. High-throughput single nucleotide polymorphism (SNP) marker data, obtained through Illumina goat SNP50 BeadChip genotyping of 48 goats (24 each of Attappady Black and Malabari goats), were utilized for the analysis. Selection signature analysis, employing hapFLK analysis based on haplotype differentiation, identified seven significant sweep regions (p < 0.005). Notably, one of these regions encompassed the genomic area housing the casein cluster and quantitative trait loci associated with milk production on chromosome 6. Gene ontology enrichment analysis of 166 putative selective genes associated with these sweep regions revealed 13 significantly over-represented Panther pathways (p ≤ 0.05), including the TGF-beta signalling pathway and GNRHR pathway. The selective sweeps detected in this study contributed significantly to the phenotypic divergence observed between Attappady Black and Malabari goats in south India.
Collapse
Affiliation(s)
- Marykutty Thomas
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India.
| | - Radhika G
- College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| | - R Thirupathy V
- Centre for Pig Production and Research, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, Kerala, India
| | - Aravindakshan T V
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| |
Collapse
|
3
|
Reyes-Serratos E, Ramielle L. Santos J, Puttagunta L, Lewis SJ, Watanabe M, Gonshor A, Buck R, Befus AD, Marcet-Palacios M. Identification and characterization of calcium binding protein, spermatid-associated 1 (CABS1)# in selected human tissues and fluids. PLoS One 2024; 19:e0301855. [PMID: 38753592 PMCID: PMC11098423 DOI: 10.1371/journal.pone.0301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium binding protein, spermatid associated 1 (CABS1) is a protein most widely studied in spermatogenesis. However, mRNA for CABS1 has been found in numerous tissues, albeit with little information about the protein. Previously, we identified CABS1 mRNA and protein in human salivary glands and provided evidence that in humans CABS1 contains a heptapeptide near its carboxyl terminus that has anti-inflammatory activities. Moreover, levels of an immunoreactive form of CABS1 were elevated in psychological stress. To more fully characterize human CABS1 we developed additional polyclonal and monoclonal antibodies to different sections of the protein and used these antibodies to characterize CABS1 in an overexpression cell lysate, human salivary glands, saliva, serum and testes using western blot, immunohistochemistry and bioinformatics approaches exploiting the Gene Expression Omnibus (GEO) database. CABS1 appears to have multiple molecular weight forms, consistent with its recognition as a structurally disordered protein, a protein with structural plasticity. Interestingly, in human testes, its cellular distribution differs from that in rodents and pigs, and includes Leydig cells, primary spermatogonia, Sertoli cells and developing spermatocytes and spermatids, Geodata suggests that CABS1 is much more widely distributed than previously recognized, including in the urogenital, gastrointestinal and respiratory tracts, as well as in the nervous system, immune system and other tissues. Much remains to be learned about this intriguing protein.
Collapse
Affiliation(s)
- Eduardo Reyes-Serratos
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Joy Ramielle L. Santos
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J. Lewis
- Departments of Pediatrics and Pharmacology, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Mechiko Watanabe
- Departments of Pediatrics and Pharmacology, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- Division of Pediatric Cardiology, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | | | - Robert Buck
- GB Diagnostics, Montreal, Quebec, Canada
- GB Diagnostics, Albuquerque, New Mexico, United States of America
| | - A. Dean Befus
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Marcelo Marcet-Palacios
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Seabury CM, Smith JL, Wilson ML, Bhattarai E, Santos JEP, Chebel RC, Galvão KN, Schuenemann GM, Bicalho RC, Gilbert RO, Rodriguez-Zas SL, Rosa G, Thatcher WW, Pinedo PJ. Genome-wide association and genomic prediction for a reproductive index summarizing fertility outcomes in U.S. Holsteins. G3 (BETHESDA, MD.) 2023; 13:jkad043. [PMID: 36848195 PMCID: PMC10468724 DOI: 10.1093/g3journal/jkad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/18/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023]
Abstract
Subfertility represents one major challenge to enhancing dairy production and efficiency. Herein, we use a reproductive index (RI) expressing the predicted probability of pregnancy following artificial insemination (AI) with Illumina 778K genotypes to perform single and multi-locus genome-wide association analyses (GWAA) on 2,448 geographically diverse U.S. Holstein cows and produce genomic heritability estimates. Moreover, we use genomic best linear unbiased prediction (GBLUP) to investigate the potential utility of the RI by performing genomic predictions with cross validation. Notably, genomic heritability estimates for the U.S. Holstein RI were moderate (h2 = 0.1654 ± 0.0317-0.2550 ± 0.0348), while single and multi-locus GWAA revealed overlapping quantitative trait loci (QTL) on BTA6 and BTA29, including the known QTL for the daughter pregnancy rate (DPR) and cow conception rate (CCR). Multi-locus GWAA revealed seven additional QTL, including one on BTA7 (60 Mb) which is adjacent to a known heifer conception rate (HCR) QTL (59 Mb). Positional candidate genes for the detected QTL included male and female fertility loci (i.e. spermatogenesis and oogenesis), meiotic and mitotic regulators, and genes associated with immune response, milk yield, enhanced pregnancy rates, and the reproductive longevity pathway. Based on the proportion of the phenotypic variance explained (PVE), all detected QTL (n = 13; P ≤ 5e - 05) were estimated to have moderate (1.0% < PVE ≤ 2.0%) or small effects (PVE ≤ 1.0%) on the predicted probability of pregnancy. Genomic prediction using GBLUP with cross validation (k = 3) produced mean predictive abilities (0.1692-0.2301) and mean genomic prediction accuracies (0.4119-0.4557) that were similar to bovine health and production traits previously investigated.
Collapse
Affiliation(s)
- Christopher M Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Johanna L Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Eric Bhattarai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Jose E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ricardo C Chebel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Gustavo M Schuenemann
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Rob O Gilbert
- Department of Clinical Sciences, School of Veterinary Medicine, Ross University, St. Kitts, West Indies, KN
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA
| | - Guilherme Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - William W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Pablo J Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
5
|
Zhang W, Liu L, Zhou M, Su S, Dong L, Meng X, Li X, Wang C. Assessing Population Structure and Signatures of Selection in Wanbei Pigs Using Whole Genome Resequencing Data. Animals (Basel) 2022; 13:ani13010013. [PMID: 36611624 PMCID: PMC9817800 DOI: 10.3390/ani13010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Wanbei pig (WBP) is one of the indigenous pig resources in China and has many germplasm characteristics. However, research on its genome is lacking. To assess the genomic variation, population structure, and selection signatures, we resequenced 18 WBP for the first time and performed a comprehensive analysis with resequenced data of 10 Asian wild boars. In total, 590.03 Gb of data and approximately 41 million variants were obtained. Polymorphism level (θπ) ratio and genetic differentiation (fixation index)-based cross approaches were applied, and 539 regions, which harbored 176 genes, were selected. Functional analysis of the selected genes revealed that they were associated with lipid metabolism (SCP2, APOA1, APOA4, APOC3, CD36, BCL6, ADCY8), backfat thickness (PLAG1, CACNA2D1), muscle (MYOG), and reproduction (CABS1). Overall, our results provide a valuable resource for characterizing the uniqueness of WBP and a basis for future breeding.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lin Dong
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinxin Meng
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xueting Li
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
6
|
Zhang W, Li X, Jiang Y, Zhou M, Liu L, Su S, Xu C, Li X, Wang C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front Genet 2022; 13:1022261. [PMID: 36324508 PMCID: PMC9618877 DOI: 10.3389/fgene.2022.1022261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
The genetic resources among pigs in Anhui Province are diverse, but their value and potential have yet to be discovered. To illustrate the genetic diversity and population structure of the Anhui pigs population, we resequenced the genome of 150 pigs from six representative Anhui pigs populations and analyzed this data together with the sequencing data from 40 Asian wild boars and commercial pigs. Our results showed that Anhui pigs were divided into two distinct types based on ancestral descent: Wannan Spotted pig (WSP) and Wannan Black pig (WBP) origins from the same ancestor and the other four populations origins from another ancestor. We also identified several potential selective sweep regions associated with domestication characteristics among Anhui pigs, including reproduction-associated genes (CABS1, INSL6, MAP3K12, IGF1R, INSR, LIMK2, PATZ1, MAPK1), lipid- and meat-related genes (SNX19, MSTN, MC5R, PRKG1, CREBBP, ADCY9), and ear size genes (MSRB3 and SOX5). Therefore, these findings expand the catalogue and how these genetic differences among pigs and this newly generated data will be a valuable resource for future genetic studies and for improving genome-assisted breeding of pigs and other domesticated animals.
Collapse
|
7
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
8
|
Selvaraju S, Ramya L, Parthipan S, Swathi D, Binsila BK, Kolte AP. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res 2021; 385:207-222. [PMID: 33783607 DOI: 10.1007/s00441-021-03443-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Deciphering sperm transcriptome is the key to understanding the molecular mechanisms governing peri-fertilization, embryonic development, and pregnancy establishment. This study aimed to profile sperm transcriptome to identify signature transcripts regulating male fertility. Semen samples were collected from 47 bulls with varied fertility rates. The sperm total RNA was isolated (n = 8) and subjected to transcriptome sequencing. Based on the expression pattern obtained from RNA profiling, the bulls were grouped (p = 0.03) into high-fertile and sub-fertile, and signature transcripts controlling sperm functions and fertility were identified. The results were validated using the OMIM database, qPCR, and sperm function tests. The sperm contains 1100 to 1700 intact transcripts, of which BCL2L11 and CAPZA3 were abundant and associated (p < 0.05) with spermatogenesis and post-embryonic organ morphogenesis. The upregulated genes in the acrosome integrity and functional membrane integrity groups had a close association with the fertility rate. The biological functions of these upregulated genes (p < 0.05) in the high-fertile bulls were associated with spermatogenesis (AFF4 and BRIP1), sperm motility (AK6 and ATP6V1G3), capacitation and zona binding (AGFG1), embryo development (TCF7 and AKIRIN2), and placental development (KRT19). The transcripts involved in pathways regulating embryonic development such as translation (EEF1B2 and MTIF3, p = 8.87E-05) and nonsense-mediated decay (RPL23 and RPL7A, p = 5.01E-27) were upregulated in high-fertile bulls. The identified transcripts may significantly impact oocyte function, embryogenesis, trophectoderm development, and pregnancy establishment. In addition, the study also reveals that the genes governing sperm functional membrane integrity and acrosome integrity have a prospective effect on male fertility.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
9
|
Cabs1 Maintains Structural Integrity of Mouse Sperm Flagella during Epididymal Transit of Sperm. Int J Mol Sci 2021; 22:ijms22020652. [PMID: 33440775 PMCID: PMC7827751 DOI: 10.3390/ijms22020652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The calcium-binding protein spermatid-associated 1 (Cabs1) is a novel spermatid-specific protein. However, its function remains largely unknown. In this study, we found that a long noncoding RNA (lncRNA) transcripted from the Cabs1 gene antisense, AntiCabs1, was also exclusively expressed in spermatids. Cabs1 and AntiCabs1 knockout mice were generated separately (using Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 methods) to investigate their functions in spermatogenesis. The genetic loss of Cabs1 did not affect testicular and epididymal development; however, male mice exhibited significantly impaired sperm tail structure and subfertility. Ultrastructural analysis revealed defects in sperm flagellar differentiation leading to an abnormal annulus and disorganization of the midpiece-principal piece junction, which may explain the high proportion of sperm with a bent tail. Interestingly, the proportion of sperm with a bent tail increased during transit in the epididymis. Furthermore, Western blot and immunofluorescence analyses showed that a genetic loss of Cabs1 decreased Septin 4 and Krt1 and increased cyclin Y-like 1 (Ccnyl1) levels compared with the wild type, suggesting that Cabs1 deficiency disturbed the expression of cytoskeleton-related proteins. By contrast, AntiCabs1-/- mice were indistinguishable from the wild type regarding testicular and epididymal development, sperm morphology, concentration and motility, and male fertility. This study demonstrates that Cabs1 is an important component of the sperm annulus essential for proper sperm tail assembly and motility.
Collapse
|
10
|
Marcet-Palacios M, Reyes-Serratos E, Gonshor A, Buck R, Lacy P, Befus AD. Structural and posttranslational analysis of human calcium-binding protein, spermatid-associated 1. J Cell Biochem 2020; 121:4945-4958. [PMID: 32692864 DOI: 10.1002/jcb.29824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Recently, we detected a novel biomarker in human saliva called calcium-binding protein, spermatid-associated 1 (CABS1). CABS1 protein had previously been described only in testis, and little was known of its characteristics other than it was considered a structurally disordered protein. Levels of human CABS1 (hCABS1) in saliva correlate with stress, whereas smaller sized forms of hCABS1 in saliva are associated with resilience to stress. Interestingly, hCABS1 also has an anti-inflammatory peptide sequence near its carboxyl terminus, similar to that of a rat prohormone, submandibular rat 1. We performed phylogenetic and sequence analysis of hCABS1. We found that from 72 CABS1 sequences currently annotated in the National Center for Biotechnology Information protein database, only 14 contain the anti-inflammatory domain "TxIFELL," all of which are primates. We performed structural unfoldability analysis using PONDER and FoldIndex and discovered three domains that are highly disordered. Predictions of three-dimensional structure of hCABS1 using RaptorX, IonCom, and I-TASSER software agreed with these findings. Predicted neutrophil elastase cleavage density also correlated with hCABS1 regions of high structural disorder. Ligand binding prediction identified Ca2+ , Mg2+ , Zn2+ , leucine, and thiamine pyrophosphate, a pattern observed in enzymes associated with energy metabolism and mitochondrial localization. These new observations on hCABS1 raise intriguing questions about the interconnection between the autonomic nervous system, stress, and the immune system. However, the precise molecular mechanisms involved in the complex biology of hCABS1 remain unclear. We provide a detailed in silico analysis of relevant aspects of the structure and function of hCABS1 and postulate extracellular and intracellular roles.
Collapse
Affiliation(s)
- Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Northern Alberta Institute of Technology, Biological Sciences, Edmonton, Alberta, Canada
| | - Eduardo Reyes-Serratos
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Buck
- Fluids iQ Inc., Ottawa, Ontario, Canada
- GB Diagnostics, Kingman, Arizona
| | - Paige Lacy
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - A D Befus
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Zhang W, Yang M, Zhou M, Wang Y, Wu X, Zhang X, Ding Y, Zhao G, Yin Z, Wang C. Identification of Signatures of Selection by Whole-Genome Resequencing of a Chinese Native Pig. Front Genet 2020; 11:566255. [PMID: 33093844 PMCID: PMC7527633 DOI: 10.3389/fgene.2020.566255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Identification of genomic signatures of selection that help reveal genetic mechanisms underlying traits in domesticated pigs is of importance. Anqing six-end-white pig (ASP), a representative of the native breeds in China, has many distinguishing phenotypic characteristics. To identify the genomic signatures of selection of the ASP, whole-genome sequencing of 20 ASPs produced 469.01 Gb of sequence data and more than 26 million single-nucleotide polymorphisms. Combining these data with the available whole genomes of 13 Chinese wild boars, 157 selected regions harboring 48 protein-coding genes were identified by applying the polymorphism levels (θπ) and genetic differentiation (FST) based cross approaches. The genes found to be positively selected in ASP are involved in crucial biological processes such as coat color (MC1R), salivary secretion (STATH), reproduction (SPIRE2, OSBP2, LIMK2, FANCA, and CABS1), olfactory transduction (OR5K4), and growth (NPY1R, NPY5R, and SELENOM). Our research increased the knowledge of ASP phenotype-related genes and help to improve our understanding of the underlying biological mechanisms and provide valuable genetic resources that enable effective use of pigs in agricultural production.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Min Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuanlang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xudong Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guiying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
12
|
Reyes-Serratos E, Marcet-Palacios M, Rosenfield D, Ritz T, Befus AD. A method to study protein biomarkers in saliva using an automated capillary nano-immunoassay platform (Wes™). J Immunol Methods 2020; 479:112749. [PMID: 31972214 PMCID: PMC11416074 DOI: 10.1016/j.jim.2020.112749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022]
Abstract
Traditional immunoprobing techniques like Western blot continue to play a crucial role in the discovery and validation of biomarkers. This technique suffers from several limitations that affect reproducibility and feasibility for large-scale studies. Modern immunoprobing techniques have addressed several of these limitations. Here we contrast the use of Western blot and an automated capillary nano-immunoassay (CNIA), Wes™. We provide evidence highlighting the methodological advantages of Wes™ over Western blot in the validation of a novel biomarker, Calcium-binding protein and spermatid-associated 1 (hCABS1). While Wes™ offers a faster, more consistent approach with lower requirements for sample and antibody volumes, variations in expected molecular weights and computational algorithms used to analyze the data must receive careful consideration and assessment. Our data suggests that CNIA approaches are likely to positively impact biomarker discovery and validation.
Collapse
Affiliation(s)
- Eduardo Reyes-Serratos
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada.
| | - Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada; Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - A Dean Befus
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Shawki HH, Ishikawa-Yamauchi Y, Kawashima A, Katoh Y, Matsuda M, Al-Soudy AS, Minisy FM, Kuno A, Gulibaikelamu X, Hirokawa T, Takahashi S, Oishi H. EFCAB2 is a novel calcium-binding protein in mouse testis and sperm. PLoS One 2019; 14:e0214687. [PMID: 30933994 PMCID: PMC6443151 DOI: 10.1371/journal.pone.0214687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Calcium-binding proteins regulate ion metabolism and the necessary signaling pathways for the maturational events of sperm. Our aim is to identify the novel calcium-binding proteins in testis. The gene EFCAB2 (GenBank NM_026626.3, NP_080902.1) was not previously examined, and its properties and exact mechanisms of action are unknown. In this study, we performed phylogenetic and structure prediction analyses of EFCAB2, which displays definitive structural features. Additionally, the distribution, localization, and calcium binding ability of mouse EFCAB2 were investigated. Results revealed extensive conservation of EFCAB2 among different eukaryotic orthologs. The constructed 3D model predicted that mouse EFCAB2 contains seven α-helices and two EF-hand motifs. The first EF-hand motif is located in N-terminal, while the second is located in C-terminal. By aligning the 3D structure of Ca2+-binding loops from EFCAB2 with calmodulin, we predicted six residues that might be involved in Ca2+ binding. The distribution of the Efcab2 mRNA, as determined by northern blotting, was detected only in the testis among mouse tissues. Native and recombinant EFCAB2 protein were detected by western blotting as one band at 20 kDa. In situ hybridization and immunohistochemical analyses showed its localization specifically in spermatogenic cells from primary spermatocytes to elongate spermatids within the seminiferous epithelium, but neither spermatogonia nor somatic cells were expressed. Moreover, EFCAB2 was specifically localized to the principal piece of cauda epididymal sperm flagellum. Furthermore, the analyses of purified recombinant EFCAB2 by Stains-all, ruthenium red staining, and by applying in vitro autoradiography assay showed that the physiological function of this protein is Ca2+ binding. These results suggested that EFCAB2 might be involved in the control of sperm flagellar movement. Altogether, here we describe about EFCAB2 as a novel calcium-binding protein in mouse testis and sperm.
Collapse
Affiliation(s)
- Hossam H. Shawki
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yu Ishikawa-Yamauchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kawashima
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yuki Katoh
- Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Manabu Matsuda
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Al-Sayed Al-Soudy
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
| | - Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Pathology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiafukaiti Gulibaikelamu
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koutou-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
14
|
MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS One 2018; 13:e0190800. [PMID: 29324782 PMCID: PMC5764304 DOI: 10.1371/journal.pone.0190800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreER™ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells.
Collapse
|
15
|
Ritz T, Rosenfield D, St Laurent CD, Trueba AF, Werchan CA, Vogel PD, Auchus RJ, Reyes-Serratos E, Befus AD. A novel biomarker associated with distress in humans: calcium-binding protein, spermatid-specific 1 (CABS1). Am J Physiol Regul Integr Comp Physiol 2017; 312:R1004-R1016. [PMID: 28381457 DOI: 10.1152/ajpregu.00393.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/02/2017] [Accepted: 03/20/2017] [Indexed: 01/11/2023]
Abstract
Calcium-binding protein spermatid-specific 1 (CABS1) is expressed in the human submandibular gland and has an anti-inflammatory motif similar to that in submandibular rat 1 in rats. Here, we investigate CABS1 in human saliva and its association with psychological and physiological distress and inflammation in humans. Volunteers participated across three studies: 1) weekly baseline measures; 2) a psychosocial speech and mental arithmetic stressor under evaluative threat; and 3) during academic exam stress. Salivary samples were analyzed for CABS1 and cortisol. Additional measures included questionnaires of perceived stress and negative affect; exhaled nitric oxide; respiration and cardiac activity; lung function; and salivary and nasal inflammatory markers. We identified a CABS1 immunoreactive band at 27 kDa in all participants and additional molecular mass forms in some participants. One week temporal stability of the 27-kDa band was satisfactory (test-retest reliability estimate = 0.62-0.86). Acute stress increased intensity of 18, 27, and 55 kDa bands; 27-kDa increases were associated with more negative affect and lower heart rate, sympathetic activity, respiration rate, and minute ventilation. In both acute and academic stress, changes in 27 kDa were positively associated with salivary cortisol. The 27-kDa band was also positively associated with VEGF and salivary leukotriene B4 levels. Participants with low molecular weight CABS1 bands showed reduced habitual stress and negative affect in response to acute stress. CABS1 is readily detected in human saliva and is associated with psychological and physiological indicators of stress. The role of CABS1 in inflammatory processes, stress, and stress resilience requires careful study.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, Texas
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, Texas
| | - Chris D St Laurent
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ana F Trueba
- Department of Psychology, Southern Methodist University, Dallas, Texas.,Quito Brain and Behavior Laboratory, Universidad San Francisco de Quito, Quito, Ecuador
| | - Chelsey A Werchan
- Department of Psychology, Southern Methodist University, Dallas, Texas
| | - Pia D Vogel
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas; and
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Eduardo Reyes-Serratos
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - A Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|