1
|
Zhang A, Haywood NS, Money DT, Byler MR, Osuru HP, Atluri N, Laubach VE, Mehaffey JH, Charlton JR, Lunardi N, Kron IL, Teman NR. Rodent Model of Cardiopulmonary Bypass Demonstrates Systemic Inflammation and Neuromarker Changes. J Surg Res 2024; 303:780-787. [PMID: 39471762 PMCID: PMC11602341 DOI: 10.1016/j.jss.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION The physiologic derangements imposed by cardiopulmonary bypass (CPB) can result in complications such as postoperative delirium. We aim to validate a rodent survival model of CPB demonstrating a systemic inflammatory response and hypothesize that this contributes to post-CPB delirium. METHODS Adult Sprague-Dawley rats were randomized to three groups: 1) Sham peripheral surgical cannulation, 2) CPB followed by acute phase harvest, or 3) CPB followed by 24-h survival. CPB was carried out for 60 min before decannulation and weaning from mechanical ventilation. Physiological and biochemical endpoints were compared between groups. Gene expression analysis of hippocampal tissue was performed using quantitative RT-PCR panels and protein expression levels were confirmed with Western blot. RESULTS Sixteen animals underwent cannulation and were successfully decannulated without transfusion requirement or inotrope use with one procedure-related mortality. Serum acute phase proinflammatory chemokines cytokine-induced neutrophil chemoattractant 1, cytokine-induced neutrophil chemoattractant 3, fractalkine, and lipopolysaccharide-induced CXC chemokine as well as interleukin (IL)-10 were increased 1 h following CPB compared to sham (P < 0.05). Significant changes in hippocampal expression of biomarkers apolipoprotein 1, vascular epithelial growth factor A, and synapsin 1 were demonstrated following CPB. CONCLUSIONS This study validated a model of CPB that captures the resultant systemic inflammatory response, and identified differentially expressed proteins that may be associated with brain injury. Modulation of the CPB-induced inflammatory response may be a promising therapeutic target to attenuate post-CPB delirium, and this survival rat model of CPB with low surgical attrition will allow for more comprehensive evaluations of the short- and long-term effects of both CPB and potential therapeutic interventions.
Collapse
Affiliation(s)
- Aimee Zhang
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Nathan S Haywood
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dustin T Money
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Matthew R Byler
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Hari P Osuru
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jennifer R Charlton
- Division of Pediatric Nephrology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Nicholas R Teman
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
2
|
Öz M, Erdal H. A TNF-α inhibitor abolishes sepsis-induced cognitive impairment in mice by modulating acetylcholine and nitric oxide homeostasis, BDNF release, and neuroinflammation. Behav Brain Res 2024; 466:114995. [PMID: 38599251 DOI: 10.1016/j.bbr.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.
Collapse
Affiliation(s)
- Mehmet Öz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkiye.
| | - Hüseyin Erdal
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkiye
| |
Collapse
|
3
|
Aldecoa C, Bettelli G, Bilotta F, Sanders RD, Aceto P, Audisio R, Cherubini A, Cunningham C, Dabrowski W, Forookhi A, Gitti N, Immonen K, Kehlet H, Koch S, Kotfis K, Latronico N, MacLullich AMJ, Mevorach L, Mueller A, Neuner B, Piva S, Radtke F, Blaser AR, Renzi S, Romagnoli S, Schubert M, Slooter AJC, Tommasino C, Vasiljewa L, Weiss B, Yuerek F, Spies CD. Update of the European Society of Anaesthesiology and Intensive Care Medicine evidence-based and consensus-based guideline on postoperative delirium in adult patients. Eur J Anaesthesiol 2024; 41:81-108. [PMID: 37599617 PMCID: PMC10763721 DOI: 10.1097/eja.0000000000001876] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Postoperative delirium (POD) remains a common, dangerous and resource-consuming adverse event but is often preventable. The whole peri-operative team can play a key role in its management. This update to the 2017 ESAIC Guideline on the prevention of POD is evidence-based and consensus-based and considers the literature between 01 April 2015, and 28 February 2022. The search terms of the broad literature search were identical to those used in the first version of the guideline published in 2017. POD was defined in accordance with the DSM-5 criteria. POD had to be measured with a validated POD screening tool, at least once per day for at least 3 days starting in the recovery room or postanaesthesia care unit on the day of surgery or, at latest, on postoperative day 1. Recent literature confirmed the pathogenic role of surgery-induced inflammation, and this concept reinforces the positive role of multicomponent strategies aimed to reduce the surgical stress response. Although some putative precipitating risk factors are not modifiable (length of surgery, surgical site), others (such as depth of anaesthesia, appropriate analgesia and haemodynamic stability) are under the control of the anaesthesiologists. Multicomponent preoperative, intra-operative and postoperative preventive measures showed potential to reduce the incidence and duration of POD, confirming the pivotal role of a comprehensive and team-based approach to improve patients' clinical and functional status.
Collapse
Affiliation(s)
- César Aldecoa
- From the Department of Anaesthesia and Postoperative Critical Care, Hospital Universitario Rio Hortega, Valladolid, Spain (CA), Department of Biomedical Studies, University of the Republic of San Marino, San Marino (GB), Department of Anesthesiology, Critical Care and Pain Medicine, 'Sapienza' University of Rome, Rome, Italy (FB, AF, LM), Specialty of Anaesthetics & NHMRC Clinical Trials Centre, University of Sydney & Department of Anaesthetics and Institute of Academic Surgery, Royal Prince Alfred Hospital (RDS), Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt Universität zu Berlin, Campus Charité Mitte, and Campus Virchow Klinikum (CDS, SK, AM, BN, LV, BW, FY), Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (PA), Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy (PA), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden (RA), Geriatria, Accettazione Geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy (AC), School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland (CC), First Department of Anaesthesiology and Intensive Care Medical University of Lublin, Poland (WD), Research Unit of Nursing Science and Health Management, University of Oulu, Oulu, Finland (KI), Section of Surgical Pathophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark (HK), Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland (KK), Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia (NG, NL, SP, SR), Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy (NL, SP), Edinburgh Delirium Research Group, Ageing and Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom (AMJM), Department of Anaesthesia and Intensive Care, Nykoebing Hospital; University of Southern Denmark, SDU (SK, FR), Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia (ARB), Center for Intensive Care Medicine, Luzerner Kantonsspital, Lucerne, Switzerland (ARB), Department of Health Science, Section of Anesthesiology, University of Florence (SR), Department of Anaesthesia and Critical Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (SR), School of Health Sciences, Institute of Nursing, ZHAW Zurich University of Applied Science, Winterthur, Switzerland (MS), Departments of Psychiatry and Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands (AJCS), Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium (AJCS) and Dental Anesthesia and Intensive Care Unit, Polo Universitario Ospedale San Paolo, Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milano, Milan, Italy (CT)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Huang W, Cai H, Liu T, Du Y, Xue X, Feng G. Histopathological changes of the dural myeloid cells and lymphatic vessels in a mouse model of sepsis-associated encephalopathy. Exp Neurol 2023; 369:114521. [PMID: 37634695 DOI: 10.1016/j.expneurol.2023.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
As a common diffuse encephalopathy caused by sepsis, sepsis-associated encephalopathy (SAE) is closely associated with increased mortality, severe cognition dysfunction and increased cost of health care in patients of sepsis. Accumulating evidence suggests that the dura mater, the outermost meninges of the central nervous system (CNS), plays an important role in CNS immunity, especially with the discovery of meningeal lymphatic vessels (mLVs), as well as a plentiful array of resident or infiltrating immune cells harbored in the dura. Although these findings have significantly enhanced our understanding of the immune function of dura under both steady-state and pathological condition of CNS, whether and how the immune cells and mLVs within dura response to SAE still remains largely unexplored. Here, we established lipopolysaccharide (LPS) intraperitoneal injection-induced SAE model and examined the dural resident immune cells and mLVs. We analysed the histological change in dura by performing hematoxylin and eosin (H&E) and immunofluorescence staining. Results showed that systemic exposure to LPS induced neutrophils recruitment, exudation and gathering around the dural blood vessels. Moreover, resident macrophage altered its shape as well as location, and downregulated major histocompatibility (MHC) class II expression following LPS injection. We also found that LPS exposure induced dorsal meningeal lymphangiogenesis. Together, these findings collectively demonstrated that LPS-induced SAE can stimulate immune cells and mLVs within dura and provided more information about the immune response of the dura in sepsis.
Collapse
Affiliation(s)
- Wenmian Huang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Hanxiao Cai
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tao Liu
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yutao Du
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xiaochang Xue
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Guodong Feng
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
6
|
Zhao T, Wang D, Wu D, Du J, Zhao M, Peng F, Zhang M, Zhou W, Hao A. Astilbin attenuates neonatal postnatal immune activation-induced long-lasting cognitive impairment in adult mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
7
|
Zhang M, Yin Y. Dual roles of anesthetics in postoperative cognitive dysfunction: Regulation of microglial activation through inflammatory signaling pathways. Front Immunol 2023; 14:1102312. [PMID: 36776829 PMCID: PMC9911670 DOI: 10.3389/fimmu.2023.1102312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent clinical entity following surgery and is characterized by declined neurocognitive function. Neuroinflammation mediated by microglia is the essential mechanism of POCD. Anesthetics are thought to be a major contributor to the development of POCD, as they promote microglial activation and induce neuroinflammation. However, this claim remains controversial. Anesthetics can exert both anti- and pro-inflammatory effects by modulating microglial activation, suggesting that anesthetics may play dual roles in the pathogenesis of POCD. Here, we review the mechanisms by which the commonly used anesthetics regulate microglial activation via inflammatory signaling pathways, showing both anti- and pro-inflammatory properties of anesthetics, and indicating how perioperative administration of anesthetics might either relieve or worsen POCD development. The potential for anesthetics to enhance cognitive performance based on their anti-inflammatory properties is further discussed, emphasizing that the beneficial effects of anesthetics vary depending on dose, exposure time, and patients' characteristics. To minimize the incidence of POCD, we recommend considering these factors to select appropriate anesthetics.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
8
|
Nemoto T, Irukayama-Tomobe Y, Hirose Y, Tanaka H, Takahashi G, Takahashi S, Yanagisawa M, Kanbayashi T. Effect of sevoflurane preconditioning on sleep reintegration after alteration by lipopolysaccharide. J Sleep Res 2022; 31:e13556. [PMID: 35170121 DOI: 10.1111/jsr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Despite extensive evidence on the organ protective effects of sevoflurane, its effect on disturbed sleep remains unclear. We hypothesised that sevoflurane preconditioning positively impacts disturbed sleep caused by systemic inflammation. A prospective, randomised laboratory investigation was conducted in C57BL/6J mice. A mouse model of lipopolysaccharide (LPS)-induced systemic inflammation was employed to investigate the effects of sevoflurane on sleep recovery. Symptom recovery was evaluated through electroencephalography/electromyography (EEG/EMG) and histological studies. The mice were exposed to 2% sevoflurane before and after peritoneal injection of LPS. The EEG and EMG were recorded for 24 h after the procedure. Brain tissue was harvested after the sevoflurane/LPS procedure and was immunostained using individual antibodies against choline acetyltransferase (ChAT) and Fos. The ChAT-positive and ChAT/Fos double-positive cells were analysed quantitatively in the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus (PPTg/LDTg). Compared with control mice, mice preconditioned with sevoflurane but not post-conditioned showed a significant increase in rapid eye movement (REM) sleep during EEG recording following the LPS challenge. They also demonstrated a shorter REM latency, indicating an early recovery from LPS-altered sleep. The bouts of REM episodes were retained with sevoflurane preconditioning. More ChAT/Fos double-positive cells were observed in the PPTg/LDTg in the sevoflurane preconditioning plus LPS group than in the LPS-only group. Sevoflurane preconditioning promotes recovery from altered sleep induced by systemic inflammation. Activation of PPTg/LDTg is considered a mechanism underlying sleep reintegration. The recovery phenomenon shows potential for clinical application in cases of sleep disturbances induced by systemic inflammation.
Collapse
Affiliation(s)
- Tsuyoshi Nemoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,School of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Irukayama-Tomobe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuki Hirose
- School of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromu Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,School of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Genki Takahashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,School of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Life Science Centre for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takashi Kanbayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Ibaraki Prefectural Medical Centre of Psychiatry, Kasama, Japan
| |
Collapse
|
9
|
Xu D, Zhou C, Lin J, Cai W, Lin W. MicroRNA-367-3p suppresses sevoflurane-induced adult rat astrocyte apoptosis by targeting BCL2L11. Exp Ther Med 2021; 23:9. [PMID: 34815761 PMCID: PMC8593860 DOI: 10.3892/etm.2021.10931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to characterize the effect of microRNA (miR)-367-3p on sevoflurane anesthesia and elucidate the underlying mechanism. A total of 36 4-month-old adult Sprague-Dawley rats were divided into six groups. Sevoflurane was inhaled at concentrations of 0, 1, 2, 4, 8 and 16% for a total of 6 h; the hippocampus of the brain was subsequently minced and digested, and astrocytes were isolated. Various methods, including reverse transcription-quantitative (RT-q)PCR, western blotting and TUNEL staining, were used to determine the expression levels of Bax, BCL-2 and BCL-2-like protein 11 (BCL2L11), as well as the level of apoptosis. The rats were treated with 8% sevoflurane and the astrocytes from the rats were transfected with miR-367-3p or anti-miR-367-3p. The present study demonstrated that sevoflurane promoted astrocytes apoptosis. Western blotting revealed that with an increase of sevoflurane concentration, the expression levels of the apoptotic proteins Bax and BCL2L11 were significantly increased, whereas the protein expression levels of BCL-2 were significantly decreased. However, overexpression of miR-367-3p reversed these effects. TUNEL staining revealed that sevoflurane promoted the apoptosis of astrocytes, while apoptosis was reversed by miR-367-3p overexpression. RT-qPCR demonstrated that sevoflurane inhibited the expression of miR-367-3p. Notably, miR-367-3p reduced the expression of BCL2L11, thereby inhibiting the apoptosis of astrocytes originating from the hippocampal area of adult rats induced by sevoflurane. Therefore, miR-367-3p and BCL2L11 may act as effective targets for the study of anesthesia.
Collapse
Affiliation(s)
- Deming Xu
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Changbi Zhou
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Juanyun Lin
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Wenhui Cai
- Department of Anesthesiology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Wei Lin
- Department of General Surgery, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| |
Collapse
|
10
|
Liu Y, Liu L, Xing W, Sun Y. Anesthetics mediated the immunomodulatory effects via regulation of TLR signaling. Int Immunopharmacol 2021; 101:108357. [PMID: 34785143 DOI: 10.1016/j.intimp.2021.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Anesthetics have been widely used in surgery and found to suppress inflammatory injury and affect the outcomes of the surgery and diseases. In contrast, anesthetics are also found to induce neuronal injury and inflammation. However, the immune-modulation mechanism of anesthetics is still not clear. Recent studies have shown that the immune-modulation of anesthetics is associated with the regulation of toll-like receptor (TLR)-mediated signaling. Moreover, the regulation of anesthetics in TLR signaling is related to modulations of non-coding RNAs (nc RNAs). Consistently, nc RNAs are mainly divided into micro RNAs (miRs) and long non-coding RNAs (lnc RNAs), which have been found to exert regulatory effects on the immune system. In this review, we summarize the immunomodulatory functions of the widely used anesthetic agents, which are associated with regulation of TLR signaling. In addition, we also focus on the roles of nc RNAs induced by anesthetics in regulations of TLR signaling.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Li Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
11
|
Inhibition of α-Synuclein Accumulation Improves Neuronal Apoptosis and Delayed Postoperative Cognitive Recovery in Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5572899. [PMID: 34194605 PMCID: PMC8181110 DOI: 10.1155/2021/5572899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022]
Abstract
Delayed neurocognitive recovery (dNCR) is a major complication after anesthesia and surgery in older adults. Alpha-synuclein (α-syn; encoded by the gene, SNCA) has recently been shown to play an important role in hippocampus-dependent working memory. Aggregated forms of α-syn are associated with multiple neurotoxic mechanisms, such as mitochondrial dysfunction and cell death. In this study, we found that blocking α-syn improved both mitochondrial function and mitochondria-dependent neuronal apoptosis in a mouse model of dNCR. Various forms of α-syn (including total α-syn, phosphorylated-Ser129-α-syn, and oligomers) were upregulated in hippocampal tissue and extracted mitochondria after surgical challenge. Clenbuterol is a novel transcription modulator of Scna. Clenbuterol significantly attenuated surgery-induced progressive accumulation of various toxic α-syn forms in the hippocampus, as well as mitochondrial damage and memory deficits in aged mice following surgery. We also observed excessive mitochondrial α-syn accumulation and increased mitochondria-mediated apoptosis in vitro using nerve growth factor-differentiated PC12 cells and primary hippocampal neurons exposed to lipopolysaccharide. To further validate the neuroprotective effect of α-syn inhibition, we used a lentiviral Snca-shRNA (Lv-shSnca) to knockdown Snca. Of note, Lv-shSnca transfection significantly inhibited neuronal apoptosis mediated by the mitochondrial apoptosis pathway in neurons exposed to lipopolysaccharide. This α-syn inhibition improved the disruption to mitochondrial morphology and function, as well as decreased levels of apoptosis. Our results suggest that targeting pathological α-syn may achieve neuroprotection through regulation of mitochondrial homeostasis and suppression of apoptosis in the aged hippocampus, further strengthening the therapeutic potential of targeting α-syn for dNCR.
Collapse
|
12
|
Ma H, Yang B, Yu L, Gao Y, Ye X, Liu Y, Li Z, Li H, Li E. Sevoflurane protects the liver from ischemia-reperfusion injury by regulating Nrf2/HO-1 pathway. Eur J Pharmacol 2021; 898:173932. [PMID: 33631180 DOI: 10.1016/j.ejphar.2021.173932] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
We aimed to investigate the role and mechanism of sevoflurane (SEV) preconditioning in liver ischemia-reperfusion (I/R) injury. In vivo, rats were randomly divided into Sham group, I/R rat model group, I/R + SEV group and SEV group. In vitro, hypoxia-reoxygenation (H/R) cell model were established. Hematoxylin-Eosin (H&E) and TUNEL assay were used to evaluate the degree of tissue damage and detect apoptosis in rats, respectively. HO-1, nuclear Nrf2 and cytosolic Nrf2 expressions were detected by immunohistochemical staining, Western blot analysis and quantitative real-time PCR (qRT-PCR), respectively. Contents of Lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) were determined by corresponding kits. Inflammatory factor levels, cell viability, apoptosis were detected by enzyme-linked immunosorbent assay (ELISA), MTT assay, and flow cytometry, respectively.In the I/R group, liver damage was severe, apoptosis-positive cells were increased, HO-1 and nuclear Nrf2 expressions were increased, and cytosolic Nrf2 expression was decreased. After SEV pretreatment, the degree of liver injury and apoptosis in rats were significantly reduced, HO-1 and nuclear Nrf2 expressions were increased significantly, and cytosolic Nrf2 expression was decreased. 4% SEV had the best mitigating effect on H/R-induced liver cell damage, as evidenced by reduced contents of LDH and MDA, decreased inflammatory factors, a lowered apoptosis rate, inhibited ROS production, effectively promoted Nrf2 nucleation, and activated Nrf/HO-1 pathway. ML385 pretreatment significantly inhibited the effect of SEV on hepatocytes.Sevoflurane protects the liver from ischemia-reperfusion injury by regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Baoyi Yang
- Department of Neursurgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No.26, Heping Road, Dongli District, Harbin, Heilongjiang, 150040, China
| | - Lu Yu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xiangmei Ye
- Laboratory of Hemooncology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Ying Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Zhengtian Li
- Department of Tumor Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, No.194, Xuefu Road, Harbin, Heilongjiang, 150001, China
| | - Enyou Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
13
|
Xu L, Xu Q, Dai S, Jiao C, Tang Y, Xie J, Wu H, Chen X. lncRNA Xist regulates sevoflurane-induced social and emotional impairment by modulating miR-98-5p/EDEM1 signaling axis in neonatal mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:939-950. [PMID: 34094712 PMCID: PMC8141605 DOI: 10.1016/j.omtn.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/09/2021] [Indexed: 12/01/2022]
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (Xist) is involved in apoptosis and inflammatory injury. This study aimed to assess the role of lncRNA Xist in sevoflurane-induced social and emotional impairment and neuronal apoptosis in neonatal mice and hippocampal neuronal cells. The performance in social and emotional tests and the expression levels of lncRNA Xist and microRNA (miR)-98-5p after sevoflurane exposure were measured. Moreover, the effects of suppression of lncRNA Xist on neuronal apoptosis and endoplasmic reticulum (ER) stress were determined. Subsequently, the association among lncRNA Xist, miR-98-5p, and ER degradation-enhancing α-mannosidase-like 1 protein (EDEM1) was explored. Our results showed that lncRNA Xist increased, miR-98-5p decreased, and social and emotional impairment appeared after sevoflurane exposure. Furthermore, suppression of lncRNA Xist improved sevoflurane-induced social and emotional impairment and reduced sevoflurane-induced neuronal apoptosis and ER stress in vivo and in vitro. Moreover, lncRNA Xist negatively regulated miR-98-5p expression, and it contributed to sevoflurane-induced neuronal apoptosis and ER stress by sponging miR-98-5p. Additionally, EDEM1 was identified as a target of miR-98-5p. Our findings revealed that the knockdown of lncRNA Xist ameliorates sevoflurane-induced social and emotional impairment through inhibiting neuronal apoptosis and ER stress by targeting the miR-98-5p/EDEM1 axis.
Collapse
Affiliation(s)
- Lili Xu
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shaobing Dai
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cuicui Jiao
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yingying Tang
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiaqian Xie
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xinzhong Chen
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Lan N, Liu Y, Juan Z, Zhang R, Ma B, Xie K, Sun L, Feng H, Sun M, Liu J. The TSPO-specific Ligand PK11195 Protects Against LPS-Induced Cognitive Dysfunction by Inhibiting Cellular Autophagy. Front Pharmacol 2021; 11:615543. [PMID: 33708121 PMCID: PMC7941270 DOI: 10.3389/fphar.2020.615543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) is a common postoperative neurological complication. Neuroinflammation is a major cause that leads to PND. Autophagy, an intracellular process of lysosomal degradation, plays an important role in the development and maintenance of nervous system. PK11195 is a classic translocator protein (TSPO) ligand, which can improve the cognitive function of rats. In this study, we evaluate the protective effect of PK11195 on the learning and memory of rats. A rat model of lipopolysaccharide (LPS)-induced cognitive dysfunction was established by intraperitoneal injection of LPS. Morris Water Maze (MWM), Western blot, qRT-PCR, confocal microscopy and transmission electron microscopy (TEM) were used to study the role of TSPO-specific ligand PK11195 in LPS-activated mitochondrial autophagy in rat hippocampus. We found that PK11195 ameliorated LPS-induced learning and memory impairment, as indicated by decreased escape latencies, swimming distances and increased target quadrant platform crossing times and swimming times during MWM tests. TSPO, ATG7, ATG5, LC3B and p62 protein and mRNA expression increased in the hippocampus of PND model rats. The hippocampal microglia of PND model rats also have severe mitochondrial damage, and a large number of autophagosomes and phagocytic vesicles can be seen. PK11195 pretreatment significantly decreased the expression of TSPO, ATG7, ATG5, LC3B and p62 protein and mRNA, as well as mitochondrial damage. These findings suggested that PK11195 may alleviate the damage of LPS-induced cognitive dysfunction of rats by inhibiting microglia activation and autophagy.
Collapse
Affiliation(s)
- Nannan Lan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yongxin Liu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Zhaodong Juan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Rui Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Baoyu Ma
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Keliang Xie
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Lina Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Hao Feng
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Meng Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Jianfeng Liu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| |
Collapse
|
15
|
Ye C, Zhang Y, Luo S, Cao Y, Gao F, Wang E. Correlation of Serum BACE1 With Emergence Delirium in Postoperative Patients: A Preliminary Study. Front Aging Neurosci 2020; 12:555594. [PMID: 33192455 PMCID: PMC7655534 DOI: 10.3389/fnagi.2020.555594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background: The mechanism underlying delirium, a common acute fluctuating mental state, may be related to the activation of a neuroinflammatory response. In this study, we attempted to investigate whether plasma inflammatory response markers, vascular and cerebrovascular injury-related markers, and neurodegeneration-associated markers were associated with emergence delirium (ED). Methods: Patients aged 50 years or above who underwent elective laparoscopic surgery under general anesthesia were included in this study. Delirium was assessed postoperatively with the Richmond Agitation Sedation Scale (RASS) and the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) scale. Plasma samples were collected from ED patients and non-ED patients to test concentrations of inflammation markers, including interleukin 6 (IL-6), chitinase 3-like 1 (CHI3L1), S100 calcium-binding protein B (S100B), lipoprotein-associated phospholipase-A2 (Lp-PLA2), and macrophage migration inhibitory factor (MIF); vascular and cerebrovascular injury-related markers, including intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1); and neurodegeneration-associated markers, including alpha-synuclein (α-Syn) and β-secretase 1 (BACE1). Binary logistic regression analysis was performed to analyze the relationship between biomarkers and ED, and receiver operating characteristic (ROC) curves were used to analyze the diagnostic value of biomarkers. Results: A total of 104 patients were included in this study, with an average age of 63.69 ± 7.21. IL-6 (OR = 2.73, 95% CI: 1.66–6.44, P = 0.022), S100B (OR = 4.74, 95% CI: 1.88–11.95, P = 0.001), and BACE1 (OR = 6.54, 95% CI: 2.57–16.65, P < 0.000) were independent biological indicators for the occurrence of ED.CHI3L1, Lp-PLA2, MIF, ICAM-1, VCAM-1, and α-Syn were unrelated to ED. Plasma BACE1 level had a possible diagnostic value for ED [area under curve (AUC) = 0.75, 95% CI: 0.66–0.85], whereas plasma IL-6 (AUC = 0.62, 95% CI: 0.51–0.73) and S100B (AUC = 0.65, 95% CI: 0.54–0.76) levels had little diagnostic value for distinguishing ED vs. non-ED. Conclusion: Higher levels of systemic inflammation marker IL-6, cerebral inflammation marker S100B, and neurodegeneration-associated marker BACE1 are related to ED. Plasma BACE1 may be a potential diagnostic biomarker for ED.
Collapse
Affiliation(s)
- Chunyan Ye
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yanrong Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Sumei Luo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yanan Cao
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| |
Collapse
|
16
|
Baicalin Ameliorates Cognitive Impairment and Protects Microglia from LPS-Induced Neuroinflammation via the SIRT1/HMGB1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4751349. [PMID: 33029280 PMCID: PMC7527898 DOI: 10.1155/2020/4751349] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control inflammatory brain diseases. Baicalin (BAI) has a wide variety of potent neuroprotective and cognitive enhancement properties in various models of neuronal injury through antioxidation, anti-inflammation, anti-apoptosis, and stimulating neurogenesis. Nevertheless, it remains unclear whether BAI can resolve neuroinflammation and cognitive decline triggered by systemic or distant inflammatory processes. In the present study, intraperitoneal lipopolysaccharide (LPS) administration was used to establish neuroinflammation to evaluate the potential neuroprotective and anti-inflammatory effects of BAI. Here, we report that BAI activated silent information regulator 1 (SIRT1) to deacetylate high-mobility group box 1 (HMGB1) protein in response to acute LPS-induced neuroinflammation and cognitive deficits. Furthermore, we demonstrated the anti-inflammatory and cognitive enhancement effects and the underlying molecular mechanisms of BAI in modulating microglial activation and systemic cytokine production, including tumor necrosis factor- (TNF-) α and interleukin- (IL-) 1β, after LPS exposure in mice and in the microglial cell line, BV2. In the hippocampus, BAI not only reduced reactive microglia and inflammatory cytokine production but also modulated SIRT1/HMGB1 signaling in microglia. Interestingly, pretreatment with SIRT1 inhibitor EX-527 abolished the beneficial effects of BAI against LPS exposure. Specifically, BAI treatment inhibited HMGB1 release via the SIRT1/HMGB1 pathway and reduced the nuclear translocation of HMGB1 in LPS-induced BV2 cells. These effects were reversed in BV2 cells by silencing endogenous SIRT1. Taken together, these findings indicated that BAI reduced microglia-associated neuroinflammation and improved acute neurocognitive deficits in LPS-induced mice via SIRT1-dependent downregulation of HMGB1, suggesting a possible novel protection against acute neurobehavioral deficits, such as delayed neurocognitive recovery after anesthesia and surgery challenges.
Collapse
|
17
|
Hou Y, Lin X, Lei Z, Zhao M, Li S, Zhang M, Zhang C, Yu J, Meng T. Sevoflurane prevents vulnerable plaque disruption in apolipoprotein E-knockout mice by increasing collagen deposition and inhibiting inflammation. Br J Anaesth 2020; 125:1034-1044. [PMID: 32943192 DOI: 10.1016/j.bja.2020.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sevoflurane may reduce the occurrence of major adverse cardiovascular events (MACCEs) in surgical patients, although the mechanisms are poorly understood. We hypothesised that sevoflurane stabilises atherosclerotic plaques by inhibiting inflammation and enhancing prolyl-4-hydroxylase α1 (P4Hα1), the rate-limiting subunit for the P4H enzyme essential for collagen synthesis. METHODS We established a vulnerable arterial plaque model in apolipoprotein E-knockout mice (ApoE-/-) fed a high-fat diet that underwent daily restraint/noise stress, with/without a single prior exposure to sevoflurane for 6 h (1-3%; n=30 per group). In vitro, smooth muscle cells (SMCs) were incubated with tumour necrosis factor-alpha in the presence/absence of sevoflurane. Immunohistochemistry, immunoblots, and mRNA concentrations were used to quantify the effect of sevoflurane on plaque formation, expression of inflammatory cytokines, P4Hα1, and collagen subtypes in atherosclerotic plaques or isolated SMCs. RESULTS In ApoE-/- mice, inhalation of sevoflurane 1-3% for 6 h reduced the aortic plaque size by 8-29% in a dose-dependent manner, compared with control mice that underwent restraint stress alone (P<0.05); this was associated with reduced macrophage infiltration and lower lipid concentrations in plaques. Sevoflurane reduced gene transcription and protein expression levels of pro-inflammatory cytokines (≥69-75%; P<0.05) and matrix metalloproteinases (≥39-65%; P<0.05) at both gene transcription and protein levels, compared with controls. Sevoflurane dose dependently increased Types I and III collagen deposition through enhanced protein expression of P4Hα1, both in vivo and in vitro (0.7-3.3-fold change; P<0.05). CONCLUSIONS Sevoflurane dose dependently promotes plaque stabilisation and decreases the incidence of plaque disruption in ApoE-/- mice by increasing collagen deposition and inhibiting inflammation. These mechanisms may contribute to sevoflurane reducing MACCE.
Collapse
Affiliation(s)
- Yonghao Hou
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhao
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengqiang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
18
|
Luo RY, Luo C, Zhong F, Shen WY, Li H, Hu ZL, Dai RP. ProBDNF promotes sepsis-associated encephalopathy in mice by dampening the immune activity of meningeal CD4 + T cells. J Neuroinflammation 2020; 17:169. [PMID: 32466783 PMCID: PMC7257240 DOI: 10.1186/s12974-020-01850-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) increases the mortality of septic patients, but its mechanism remains unclear. The present study aimed to investigate the roles of T lymphocytes, proBDNF, and their interaction in the pathogenesis of SAE. METHODS Fear conditioning tests were conducted for cognitive assessment in the lipopolysaccharide (LPS, 5 mg kg-1)-induced septic mice. Meninges and peripheral blood were harvested for flow cytometry or qPCR. FTY720 and monoclonal anti-proBDNF antibody (McAb-proB) were used to investigate the effect of lymphocyte depletion and blocking proBDNF on the impaired cognitive functions in the septic mice. RESULTS In the septic mice, cognitive function was impaired, the percentage of CD4+ T cells were decreased in the meninges (P = 0.0021) and circulation (P = 0.0222), and pro-inflammatory cytokines were upregulated, but the anti-inflammatory cytokines interleukin (IL)-4 (P < 0.0001) and IL-13 (P = 0.0350) were downregulated in the meninges. Lymphocyte depletion by intragastrically treated FTY720 (1 mg kg-1) for 1 week ameliorated LPS-induced learning deficit. In addition, proBDNF was increased in the meningeal (P = 0.0042) and peripheral (P = 0.0090) CD4+ T cells. Intraperitoneal injection of McAb-proB (100 μg) before LPS treatment significantly alleviated cognitive dysfunction, inhibited the downregulation of meningeal (P = 0.0264) and peripheral (P = 0.0080) CD4+ T cells, and normalized the gene expression of cytokines in the meninges. However, intra-cerebroventricular McAb-proB injection (1 μg) did not have such effect. Finally, exogenous proBDNF downregulated the percentage of CD4+ T cells in cultured splenocytes from septic mice (P = 0.0021). CONCLUSION Upregulated proBDNF in immune system promoted the pathogenesis of SAE through downregulating the circulating CD4+ T cells, limiting its infiltration into the meninges and perturbing the meningeal pro-/anti-inflammatory homeostasis.
Collapse
Affiliation(s)
- Ru-Yi Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, Hunan Province, China.,Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, Hunan Province, China.,Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Feng Zhong
- Anesthesia Medical Research Center, Central South University, Changsha, China.,Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, Hunan Province, China.,Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, Hunan Province, China.,Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, Hunan Province, China.,Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, Hunan Province, China. .,Anesthesia Medical Research Center, Central South University, Changsha, China.
| |
Collapse
|
19
|
Li Y, Xing N, Yuan J, Yang J. Sevoflurane attenuates cardiomyocyte apoptosis by mediating the miR-219a/AIM2/TLR4/MyD88 axis in myocardial ischemia/reperfusion injury in mice. Cell Cycle 2020; 19:1665-1676. [PMID: 32449438 DOI: 10.1080/15384101.2020.1765512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Myocardial infarction (MI) is a vital cause of death and disability globally. The primary treatment for diminishing acute myocardial ischemic injury is myocardial reperfusion, which may induce cardiomyocyte death. Our aim is to unravel the mechanism of sevoflurane (Sev) in microRNA-219a (miR-219a)-mediated regulation of absent in melanoma 2 (AIM2) and TLR4/MyD88 pathway during myocardial ischemia/reperfusion (I/R). The area of MI and apoptosis of cardiomyocytes of the developed mouse model were evaluated by TTC staining and TUNEL, respectively. After the determination of miR-219a as our target using microarray analysis, miR-219a atagomiR was used to treat the mouse model. The luciferase assay verified whether miR-219a targeted AIM2, and the miR-219a and AIM2 expression in myocardial tissues was detected by RT-qPCR and Western blot. miR-219a was significantly increased in myocardial tissues from mice treated with Sev, and the area of MI and cardiomyocyte apoptosis were decreased as a consequence. The miR-219a inhibitor reversed the action of Sev. Moreover, overexpression of AIM2 or induction of the TLR4 pathway aggravated myocardial I/R injury alleviated by miR-219a. All in all, the treatment of Sev upregulated miR-219a expression, which blocked the TLR4 pathway by targeting AIM2 and attenuated cardiomyocyte apoptosis in myocardial I/R mouse model.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| | - Na Xing
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| | - Jingjing Yuan
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| | - Jianjun Yang
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| |
Collapse
|
20
|
Yang A, Liu B. May sevoflurane prevent the development of neurogenic pulmonary edema and improve the outcome? Or as a new sedation method for severe brain injury patients. Med Hypotheses 2020; 137:109538. [PMID: 31911369 DOI: 10.1016/j.mehy.2019.109538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication that develops rapidly and dramatically after injury to the central nervous system (CNS). Severe primary brain injury and subsequent secondary brain injury cascade events are thought to be involved in the development of NPE. Activation of the sympathetic nervous system and release of vasoactive substances are also essential prerequisites for NPE. We hypothesize that sevoflurane may be an effective treatment for preventing the development of NPE. Sevoflurane may play a role in protecting brain and lung tissue after acute brain injury through its sympatholytic, antioxidative, ion channel stabilizing, anti-inflammatory, anti-apoptotic, and pulmonary protection effects. It has the potential to be used as a sedative in the neurosurgical intensive care unit (NICU), which can help maintain nervous system and cardiopulmonary function in patients with acute brain injury to improve prognosis. Sevoflurane also has the advantages of fast induction of anesthesia, rapid drug metabolism, little interference to the cardiovascular system, and controllable depth of anesthesia. If our hypothesis is supported by further experiments, use of sevoflurane may open a new door for the treatment of acute brain injury and NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China.
| |
Collapse
|