1
|
Iida A, Takahashi E, Kuranuki S, Shimamoto S, Nakamura T, Kitagaki H. Water-Soluble Cellulose Acetate Changes the Intestinal Microbiota in Mice with Non-Alcoholic Steatohepatitis. Nutrients 2025; 17:500. [PMID: 39940357 PMCID: PMC11820315 DOI: 10.3390/nu17030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic disorder of the liver and affects many people worldwide. Intestinal bacteria are thought to be involved in the pathological progression of NAFLD; therefore, improving the intestinal microbiota may be important in controlling NAFLD. In this study, we assessed the effects of water-soluble cellulose acetate (WSCA) on the intestinal microbiota in a non-alcoholic steatohepatitis (NASH) mouse model. Methods: NASH model (STAM mice) was created by streptozotocin injection and feeding the mice a high-fat diet. The serum biochemical parameters were analyzed. Intestinal bacterial populations were analyzed using paired-end sequencing of 16S rRNA, 18S rRNA, and internal transcribed spacer gene. Results: Our findings indicated that WSCA administration tends to improve the serum alanine aminotransferase and glucose levels in STAM mice and decreased the alpha diversity and altered the beta diversity of their intestinal microbiota. Additionally, WSCA intake resulted in an increase in the abundance of Coriobacteriaceae_UCG-002 and a decrease in the abundance of Enterobacter. Conclusions: WSCA intake can alter specific microbial compositions to improve blood glucose levels and liver functions and may improve the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Ayaka Iida
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Ena Takahashi
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Sachi Kuranuki
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Shu Shimamoto
- Daicel Corporation, Konan 2-18-1, Minatoku, Tokyo 108-8230, Japan;
| | - Tsuyoshi Nakamura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan;
| | - Hiroshi Kitagaki
- Faculty of Agriculture, Saga University, Honjo-cho, 1, Saga 840-8502, Japan;
| |
Collapse
|
2
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
3
|
Wu T, Wang M, Ning F, Zhou S, Hu X, Xin H, Reilly S, Zhang X. Emerging role for branched-chain amino acids metabolism in fibrosis. Pharmacol Res 2023; 187:106604. [PMID: 36503000 DOI: 10.1016/j.phrs.2022.106604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Fibrosis is a common pathological feature of organ diseases resulting from excessive production of extracellular matrix, which accounts for significant morbidity and mortality. However, there is currently no effective treatment targeting fibrogenesis. Recently, metabolic alterations are increasingly considered as essential factors underlying fibrogenesis, and especially research on metabolic regulation of amino acids is flourishing. Among them, branched-chain amino acids (BCAAs) are the most abundant essential amino acids, including leucine, isoleucine and valine, which play significant roles in the substance and energy metabolism and their regulation. Dysregulation of BCAAs metabolism has been proven to contribute to numerous diseases. In this review, we summarize the metabolic regulation of fibrosis and the changes in BCAAs metabolism secondary to fibrosis. We also review the effects and mechanisms of the BCAAs intervention, and its therapeutic targeting in hepatic, renal and cardiac fibrosis, with a focus on the fibrosis in liver and associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tiangang Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengling Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China.
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Márquez-Quiroga LV, Arellanes-Robledo J, Vásquez-Garzón VR, Villa-Treviño S, Muriel P. Models of nonalcoholic steatohepatitis potentiated by chemical inducers leading to hepatocellular carcinoma. Biochem Pharmacol 2021; 195:114845. [PMID: 34801522 DOI: 10.1016/j.bcp.2021.114845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, arises after a long period of exposure to etiological factors. Nonalcoholic steatohepatitis (NASH) is ranked as the main risk factor for developing HCC; hence, experimental models of NASH leading to HCC have become key tools both to investigate the molecular mechanisms underlying the pathophysiology and to evaluate new putative drugs for treating chronic liver diseases in humans. Animal models of NASH induced by a high-fat diet (HFD) plus chemical inducers, such as the NASH-HCC (STAM), high-fat diet/diethylnitrosamine (HFD/DEN), choline-deficient high-fat diet/DEN (CDHFD/DEN), and Western diet/carbon tetrachloride (WD/CCl4) models, are promising because they exacerbate liver damage and significantly shorten the experimental time. In this review, we critically summarize and discuss the ability of these models to recapitulate the liver alterations that precede and lead to HCC progression, as well as the impact of the diet in promoting liver injury progression. We also emphasize the strengths and weaknesses of the models' ability to closely mimic the stages of liver injury development that occur in humans. Based on the molecular mechanisms induced by the currently available NASH models leading to HCC, we argue that although several NASH models have importantly contributed to describing the disease chronology, the progress in emulating the progression from NASH to HCC has been partial. Thus, the development of novel NASH/HCC models remains an unmet need.
Collapse
Affiliation(s)
- Linda Vanessa Márquez-Quiroga
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica - INMEGEN, Ciudad de México, Mexico; Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología - CONACYT, Ciudad de México, Mexico.
| | - Verónica Rocío Vásquez-Garzón
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico; Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología - CONACYT, Ciudad de México, Mexico
| | - Saul Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Kakehashi A, Chariyakornkul A, Suzuki S, Khuanphram N, Tatsumi K, Yamano S, Fujioka M, Gi M, Wongpoomchai R, Wanibuchi H. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers (Basel) 2021; 13:cancers13061216. [PMID: 33802238 PMCID: PMC8001421 DOI: 10.3390/cancers13061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary The aim of the present study was to discover novel early molecular biomarkers of liver neoplasms which arise in non-alcoholic steatohepatitis (NASH) Stelic Animal Model (STAM) mice. Significant increase of lipid deposits, hepatocyte ballooning, fibrosis, and incidences and multiplicities of hepatocellular adenomas and carcinomas were detected in the livers of 18-week-old STAM mice. From the results of proteome analysis of STAM mice hepatocellular carcinomas, significant elevation of a novel protein, cache domain-containing 1 (CACHD1) was found. Furthermore, we observed CACHD1-positive foci in STAM mice livers, which number, area, and cell proliferation index within the foci were significantly elevated. Results of immunohistochemical and in vitro functional analysis indicated that CACHD1 may become a useful early biomarker and potential molecular target in NASH-associated hepatocarcinogenesis, which is involved in control of cell proliferation, autophagy and apoptosis. Abstract In the present study, potential molecular biomarkers of NASH hepatocarcinogenesis were investigated using the STAM mice NASH model, characterized by impaired insulin secretion and development of insulin resistance. In this model, 2-days-old C57BL/6N mice were subjected to a single subcutaneous (s.c.) injection of 200 μg streptozotocin (STZ) to induce diabetes mellitus (DM). Four weeks later, mice were administered high-fat diet (HFD) HFD-60 for 14 weeks (STAM group), or fed control diet (STZ group). Eighteen-week-old mice were euthanized to allow macroscopic, microscopic, histopathological, immunohistochemical and proteome analyses. The administration of HFD to STZ-treated mice induced significant fat accumulation and fibrosis development in the liver, which progressed to NASH, and rise of hepatocellular adenomas (HCAs) and carcinomas (HCCs). In 18-week-old animals, a significant increase in the incidence and multiplicity of HCAs and HCCs was found. On the basis of results of proteome analysis of STAM mice HCCs, a novel highly elevated protein in HCCs, cache domain-containing 1 (CACHD1), was chosen as a potential NASH-HCC biomarker candidate. Immunohistochemical assessment demonstrated that STAM mice liver basophilic, eosinophilic and mixed-type altered foci, HCAs and HCCs were strongly positive for CACHD1. The number and area of CACHD1-positive foci, and cell proliferation index in the area of foci in mice of the STAM group were significantly increased compared to that of STZ group. In vitro siRNA knockdown of CACHD1 in human Huh7 and HepG2 liver cancer cell lines resulted in significant inhibition of cell survival and proliferation. Analysis of the proteome of knockdown cells indicated that apoptosis and autophagy processes could be activated. From these results, CACHD1 is an early NASH-associated biomarker of liver preneoplastic and neoplastic lesions, and a potential target protein in DM/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
- Correspondence: ; Tel.: +81-66-645-3737
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Napaporn Khuanphram
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Kumiko Tatsumi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Shotaro Yamano
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Masaki Fujioka
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Min Gi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| |
Collapse
|
6
|
Microbiota-Associated Therapy for Non-Alcoholic Steatohepatitis-Induced Liver Cancer: A Review. Int J Mol Sci 2020; 21:ijms21175999. [PMID: 32825440 PMCID: PMC7504062 DOI: 10.3390/ijms21175999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Even though advancement in medicine has contributed to the control of many diseases to date, cancer therapy continues to pose several challenges. Hepatocellular carcinoma (HCC) etiology is multifactorial. Recently, non-alcoholic fatty liver disease (NAFLD) has been considered as an important risk factor of HCC. NAFLD can be divided into non-alcoholic simple fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) based on histopathological features. Recently, studies have indicated that the gut microbiota is associated with NAFLD and HCC. Therefore, in this review, we have discussed the effects of gut microbiota-related mechanisms, including dysbiosis and gut barrier function, and gut microbiota-derived metabolites on NAFLD and HCC pathogenesis and the potential therapeutic strategies for NAFLD and HCC. With a better understanding of the gut microbiota composition and function, new and improved diagnostic, prognostic, and therapeutic strategies for common liver diseases can be developed.
Collapse
|
7
|
Lee S, Woo DC, Kang J, Ra M, Kim KH, Lee SR, Choi DK, Lee H, Hong KB, Min SH, Lee Y, Yu JH. The Role of the Histone Methyltransferase EZH2 in Liver Inflammation and Fibrosis in STAM NASH Mice. BIOLOGY 2020; 9:biology9050093. [PMID: 32370249 PMCID: PMC7285133 DOI: 10.3390/biology9050093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading form of chronic liver disease, with few biomarkers and treatment options currently available. Non-alcoholic steatohepatitis (NASH), a progressive disease of NAFLD, may lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Epigenetic modification can contribute to the progression of NAFLD causing non-alcoholic steatohepatitis (NASH), in which the exact role of epigenetics remains poorly understood. To identify potential therapeutics for NASH, we tested small-molecule inhibitors of the epigenetic target histone methyltransferase EZH2, Tazemetostat (EPZ-6438), and UNC1999 in STAM NASH mice. The results demonstrate that treatment with EZH2 inhibitors decreased serum TNF-alpha in NASH. In this study, we investigated that inhibition of EZH2 reduced mRNA expression of inflammatory cytokines and fibrosis markers in NASH mice. In conclusion, these results suggest that EZH2 may present a promising therapeutic target in the treatment of NASH.
Collapse
Affiliation(s)
- Seul Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (D.K.C.); (H.L.); (K.B.H.); (S.-H.M.)
| | - Dong-Cheol Woo
- Convergence medicine research center, Asan Institute for Life Sciences, Asan Medical Center, and Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Jeeheon Kang
- Center for Bio-Imaging of New Drug Development, Asan Life Science Institution, Asan Medical Centre, Seoul 05505, Korea;
| | - Moonjin Ra
- Hongcheon Institute of Medicinal Herb, 101 Yeonbongri, Hongcheon 25142, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea; (K.H.K.); (S.R.L.)
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea; (K.H.K.); (S.R.L.)
| | - Dong Kyu Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (D.K.C.); (H.L.); (K.B.H.); (S.-H.M.)
| | - Heejin Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (D.K.C.); (H.L.); (K.B.H.); (S.-H.M.)
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Ki Bum Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (D.K.C.); (H.L.); (K.B.H.); (S.-H.M.)
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (D.K.C.); (H.L.); (K.B.H.); (S.-H.M.)
| | - Yongjun Lee
- Hongcheon Institute of Medicinal Herb, 101 Yeonbongri, Hongcheon 25142, Korea;
- Correspondence: (Y.L.); (J.H.Y.); Tel.: +82-33-439-3248 (Y.L.); +82-53-790-5232 (J.H.Y.); Fax: 82-33-439-3239 (Y.L.); 82-53-790-5219 (J.H.Y.)
| | - Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (D.K.C.); (H.L.); (K.B.H.); (S.-H.M.)
- Correspondence: (Y.L.); (J.H.Y.); Tel.: +82-33-439-3248 (Y.L.); +82-53-790-5232 (J.H.Y.); Fax: 82-33-439-3239 (Y.L.); 82-53-790-5219 (J.H.Y.)
| |
Collapse
|
8
|
Kawaguchi T, Torimura T. Branched chain amino acids: A factor for zone 3 steatosis in non-alcoholic fatty liver disease. Hepatol Res 2019; 49:841-843. [PMID: 31260576 DOI: 10.1111/hepr.13402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|