1
|
Ichihara G. Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane: studies for evidence-based preventive medicine. J Occup Health 2025; 67:uiaf004. [PMID: 39869365 PMCID: PMC11847597 DOI: 10.1093/joccuh/uiaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Bromopropane was introduced commercially as an alternative to ozone-depleting and global-warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties. Moreover, decreased cognition, abnormal findings on brain magnetic resonance imaging, urinary incontinence, and numbness in the perineal area have also been described in workers exposed to 1-bromopropane. Murine histological studies showed that exposure to 1-bromopropane reduced the density of brain noradrenergic axons. Furthermore, proteome studies demonstrated 1-bromopropane-induced changes in the expression of proteins in the hippocampus of rats, similar to the changes seen in mice exposed to acrylamide, suggesting a common mechanism of electrophile-induced neurotoxicity. In addition to its neurotoxicity, 1-bromopropane also induces male reproductive toxicity in rats, although the targeted areas in the reproductive system differ from those affected by 2-bromopropane. However, exposure to high levels of 1-bromopropane was reported to induce spermatogenic cell degeneration, similar to that caused by 2-bromopropane, suggesting common mechanism(s) underlying 1- and 2-bromopropane-induced male reproductive toxicity. Plural approaches, including human, animal, and mechanistic studies, are useful for identification of 1-bromopropane neurotoxicity. The International Agency for Research on Cancer summarized that 1-bromopropane as well as 2-bromopropane share several key characteristics of carcinogens. Plural approaches can establish evidence-based preventive medicine by modification of the conventional evidence-based medicine (EBM), which has been developed for therapeutic medicine and is represented by the EBM pyramid.
Collapse
Affiliation(s)
- Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
2
|
Jang H, Cho J, Kim C. Association of 1-bromopropane exposure with asthma prevalence: A Korean National health and Nutritional examination survey (2020-2021)-based study. ENVIRONMENTAL RESEARCH 2024; 259:119586. [PMID: 39002635 DOI: 10.1016/j.envres.2024.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Exposure to 1-bromopropane (1-BP) is an emerging environmental and health concern due to its increasing environmental prevalence. Although the health effects of 1-BP exposure have been under-recognized, current evidence suggests the possibility of adverse pulmonary health effects due to 1-BP exposure. However, the association between 1-BP exposure and asthma prevalence remains unclear. Thus, we aimed to examine the association between 1-BP exposure and asthma prevalence in the general population. Using nationally representative data, we explored the potential impacts of indoor air quality (IAQ)-related behavioral factors on the level of 1-BP exposure. This study included 1506 adults from the 2020-2021 Korea National Health and Nutrition Examination Survey. The prevalence of asthma was based on self-reported physician-diagnosed asthma. Urinary N-acetyl-S-(n-propyl)-L-cysteine (BPMA) levels were measured as a biomarker of 1-BP exposure, using high-performance liquid chromatography-mass spectrometry. Multiple logistic regression models were performed to investigate the associations between urinary BPMA metabolite and asthma prevalence after adjusting for potential confounders. Log-linear multiple regression models were used to examine the association between IAQ-related behavior and urinary BPMA concentration. Forty-seven individuals with asthma and 1459 without asthma were included. Individuals in the highest quartile of urinary BPMA concentration had a 2.9 times higher risk of asthma than those in the lowest quartile (odds ratio [OR]: 2.85, 95% confidence interval [CI]: 1.02-7.98). The combination of natural and mechanical ventilation was associated with a reduced urinary BPMA concentration. Our findings suggest that 1-BP exposure is associated with the prevalence of asthma in adults and revealed higher urinary levels of BPMA in our study population compared to those in other countries. Given the emerging importance of IAQ, actively managing and modifying behavioral patterns to reduce 1-BP exposure in indoor environments could substantially attenuate the risk of asthma-related to 1-BP exposure.
Collapse
Affiliation(s)
- Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, 21983, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, 21983, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Yang G, Zhou W, Zhang M, Zhong X, Qiu H, Xiang Y, Zhang Z, Li P, Wang D. Induced oxidative stress and apoptosis by 1-bromopropane in SH-SY5Y cells correlates with inhibition of Nrf2 function. Drug Chem Toxicol 2024; 47:756-766. [PMID: 38047545 DOI: 10.1080/01480545.2023.2288795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
In this study, we established SH-SY5Y human neuroblastoma cells as an in vitro model to investigate whether oxidative stress and the nuclear erythroid-2 related factor 2 (Nrf2) signaling pathway are associated with 1-bromopropane (1-BP) -induced nerve cell injury. We identified that 1-BP exhibited neurotoxicity mainly through oxidant-based processes in SH-SY5Y cells, as reactive oxygen species, malondialdehyde levels, and 8-hydroxy-2' -deoxyguanosine significantly increased, while superoxide dismutase activity decreased. Furthermore, Nrf2 translocation from the cytosol to the nucleus was inhibited, as was downstream protein expression of the Nrf2-regulated genes HO-1 and Bcl-2. Activation of caspase-9 and -3 increased, and apoptosis was observed. Vitamin C alleviated 1-BP-induced apoptosis by decreasing oxidative stress and activating the Nrf2 signaling pathway. Knockdown of Nrf2 in SH-SY5Y cells increased 1-BP-induced reactive oxygen species production and cell apoptosis, and inhibited HO-1 and Bcl-2 protein expression, while overexpression of Nrf2 alleviated these processes. These findings suggest that 1-BP-induced oxidative stress and apoptosis in SH-SY5Y cells are associated with Nrf2 function inhibition.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Wei Zhou
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Minhong Zhang
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Xiaohuan Zhong
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Haili Qiu
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Yingping Xiang
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Zhimin Zhang
- Department of Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Peimao Li
- Department of Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Dianpeng Wang
- Department of Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Song M, Qiang Y, Wang S, Shan S, Zhang L, Liu C, Song F, Zhao X. High-fat diet exacerbates 1-Bromopropane-induced loss of dopaminergic neurons in the substantia nigra of mice through mitochondrial damage associated necroptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116280. [PMID: 38574648 DOI: 10.1016/j.ecoenv.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shan Shan
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liwen Zhang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Caipei Liu
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Fergany A, Zong C, Ekuban FA, Wu B, Ueha S, Shichino S, Matsushima K, Iwakura Y, Ichihara S, Ichihara G. Transcriptome analysis of the cerebral cortex of acrylamide-exposed wild-type and IL-1β-knockout mice. Arch Toxicol 2024; 98:181-205. [PMID: 37971544 PMCID: PMC10761544 DOI: 10.1007/s00204-023-03627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Acrylamide is an environmental electrophile that has been produced in large amounts for many years. There is concern about the adverse health effects of acrylamide exposure due to its widespread industrial use and also presence in commonly consumed foods and others. IL-1β is a key cytokine that protects the brain from inflammatory insults, but its role in acrylamide-induced neurotoxicity remains unknown. We reported recently that deletion of IL-1β gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1β gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1β KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1β deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1β. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1β deletion-potentiated and ACR-induced neurotoxicity in mice.
Collapse
Affiliation(s)
- Alzahraa Fergany
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Laboratory of Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Bin Wu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
6
|
Ekuban A, Shichino S, Zong C, Ekuban FA, Kinoshita K, Ichihara S, Matsushima K, Ichihara G. Transcriptome analysis of human cholangiocytes exposed to carcinogenic 1,2-dichloropropane in the presence of macrophages in vitro. Sci Rep 2022; 12:11222. [PMID: 35780190 PMCID: PMC9250500 DOI: 10.1038/s41598-022-15295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
1,2-Dichloropropane (1,2-DCP), a synthetic organic solvent, has been implicated in causality of cholangiocarcinoma (bile duct cancer). 1,2-DCP-induced occupational cholangiocarcinoma show a different carcinogenic process compared to common cholangiocarcinoma, but its mechanism remains elusive. We reported previously that exposure of MMNK-1 cholangiocytes co-cultured with THP-1 macrophages, but not monocultured MMNK-1 cholangiocytes, to 1,2-DCP induced activation-induced cytidine deaminase (AID) expression, DNA damage and ROS production. The aim of this study was to identify relevant biological processes or target genes expressed in response to 1,2-DCP, using an in vitro system where cholangiocytes are co-cultured with macrophages. The co-cultured cells were exposed to 1,2-DCP at 0, 0.1 or 0.4 mM for 24 h, and then the cell lysates were assessed by transcriptome analysis. 1,2-DCP upregulated the expression of base excision repair genes in MMNK-1 cholangiocytes in the co-cultures, whereas it upregulated the expression of cell cycle-related genes in THP-1 macrophages. Activation of the base excision repair pathway might result from the previously observed DNA damage in MMNK-1 cholangiocytes co-cultured with THP-1 macrophages, although involvement of other mechanisms such as DNA replication, cell death or other types of DNA repair was not disproved. Cross talk interactions between cholangiocytes and macrophages leading to DNA damage in the cholangiocytes should be explored.
Collapse
Affiliation(s)
- Abigail Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Building No. 15, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, 278-0022, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Building No. 15, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Building No. 15, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, Shizuoka, 420-0881, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, 278-0022, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Building No. 15, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
7
|
Zhang Y, Xiao J, Lv J, Chen X, Li Y, Yang H, Miao Q, Wuhan B, Gao W, Li B. Biomarkers of exposure and effect in the serum and urine of rats or workers exposed to 1-bromopropane. Toxicol Ind Health 2022; 38:351-364. [DOI: 10.1177/07482337221096306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extensively used in several industries in China as a cleaning agent, 1-bromopropane (1-BP) has significant adverse effects on the central nervous system. However, neither its mechanism of action nor sensitive biomarkers related to it have been determined thus far. In this study, animal experiments and occupational surveys were performed to explore the typical exposure and effect biomarkers of neurotoxicity induced by 1-BP. Male Wistar rats were exposed to 0, 500, or 1000 ppm of 1-BP followed by pathological and biomarker analyses. An epidemiological survey was conducted on 71 workers each from 1-BP exposed and control groups. Serum and urine samples were collected for biomarker testing. cNSE represents neuron-specific enolase (NSE) in the cerebral cortex, where as sNSE represents NSE in the serum; similar terminology applies to S-100β, and cyclooxygenase-2 (COX-2). In rats exposed to 1000 ppm 1-BP, pathological changes were observed in Purkinje cells, lumbar gray matter, and tibiofibular nerve, while levels of cNSE, cS-100β, cCOX-2, sS-100β, and sCOX-2 were significantly elevated at different time checkpoints. In the 500 ppm group, cCOX-2, sNSE, and sCOX-2 levels were significantly elevated at different time checkpoints. 1-BP and N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) were detected in rat urine, and there was a correlation between the level of sNSE or sCOX-2 and AcPrCys in the 500 ppm group. In the occupational epidemiological study, a significant correlation between AcPrCys and exposure concentration was also detected. The findings of this study indicated that AcPrCys was a sensitive exposure biomarker of 1-BP in rats as well as occupational populations.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingwei Xiao
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Lab of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaqi Lv
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Chen
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yulu Li
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haitao Yang
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Miao
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baolier Wuhan
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Bin Li
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Lab of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Takizawa R, Ichihara S, Zong C, Kinoshita K, Sakurai T, Ikegami A, Mise N, Ichihara G. 1,2-Dichloropropane induces γ-H2AX expression in human cholangiocytes only in the presence of macrophages. Toxicol Lett 2021; 349:134-144. [PMID: 34153406 DOI: 10.1016/j.toxlet.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/13/2023]
Abstract
Recent epidemiological studies reported cases of cholangiocarcinoma in workers exposed to 1,2-dichloropropane (1,2-DCP) in an offset proof printing factory in Japan. The present study investigated the effects of 1,2-DCP on the expression of histone family member X (H2AX) phosphorylated on Ser 139 (γ-H2AX), a marker of DNA double strand break, in human immortalized cholangiocytes MMNK-1 cells. Mono-cultures of MMNK-1 cells and co-cultures of MMNK-1 cells with THP-1 macrophages were exposed to 1,2-DCP at concentrations of 100 and 500 μM for 24 h. Expression of γ-H2AX was visualized by immunofluorescence staining. Exposure to 1,2-DCP had no effect on the expression of γ-H2AX in mono-cultured MMNK-1 cells, but significantly increased the number of nuclear foci stained by γ-H2AX in MMNK-1 cells co-cultured with THP-1 macrophages. Exposure to 1,2-DCP also significantly increased the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in co-cultured MMNK-1 cells. The results suggest that macrophages play a critical role by producing cytokines in 1,2-DCP-induced DNA double strand break in MMNK-1 cells.
Collapse
Affiliation(s)
- Ryoya Takizawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan; Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
9
|
Yang G, Xiang Y, Zhou W, Zhong X, Zhang Y, Lin D, Huang X. 1-Bromopropane-induced apoptosis in OVCAR-3 cells via oxidative stress and inactivation of Nrf2. Toxicol Ind Health 2020; 37:59-67. [PMID: 33305700 DOI: 10.1177/0748233720979427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bromoalkane, 1-bromopropane (1-BP), may damage the reproductive system though oxidative stress, while the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in regulating intracellular antioxidant levels against oxidative stress. This study explored the role of oxidative stress and the Nrf2 signaling pathway in mediating the reproductive toxicity of 1-BP using the ovarian carcinoma cell line OVCAR-3 as an in vitro model of the human ovary. OVCAR-3 cells were treated with 1, 5, 10 and 15 mM 1-BP. After 24 h, the cellular reactive oxygen species and malondialdehyde concentrations significantly increased, while the superoxide dismutase activity decreased; translocation of Nrf2 from the cytosol to the nucleus as well as downstream protein expression of Nrf2-regulated genes heme oxygenase-1 and Bcl-2 was inhibited. Apoptosis was also observed, accompanied by increased caspase-3 and caspase-9 activity. The antioxidant vitamin C alleviated 1-BP-induced apoptosis by inhibiting caspase activity activating the Nrf2 signaling pathway. These findings suggested that 1-BP induced oxidative stress and apoptosis in OVCAR-3 cells through inactivation of Nrf2 signaling.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Yingping Xiang
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Wei Zhou
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Xiaohuan Zhong
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Yanfang Zhang
- Department of Medical Laboratory, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Dafeng Lin
- Department of Medical Laboratory, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Xianqing Huang
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Suo J, Zhang C, Wang P, Hou L, Wang Q, Zhao X. Allyl Sulfide Counteracts 1-Bromopropane-Induced Neurotoxicity by Inhibiting Neuroinflammation and Oxidative Stress. Toxicol Sci 2020; 167:397-407. [PMID: 30247689 DOI: 10.1093/toxsci/kfy240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic exposure to 1-bromopropane (1-BP), an alternative to ozone-depleting solvents, produces potential neurotoxicity in occupational populations. However, no therapeutic strategy is available currently. Accumulating evidence suggests that cytochrome P4502E1 (CYP2E1) is critical for the active metabolism of 1-BP. The purpose of this study is aimed to test whether inhibition of CYP2E1 by allyl sulfide, a specific inhibitor of CYP2E1, could be able to protect against 1-BP-induced neurotoxicity. Male Wistar rats were intoxicated with 1-BP for 9 continuous weeks with or without allyl sulfide pretreatment. Results clearly demonstrated that 1-BP exposure induced decrease in NeuN+ cells and increase in cleaved caspase-3 expression and TUNEL+ cells in motor cortex of rats, which was significantly ameliorated by allyl sulfide. Allyl sulfide treatment also recovered the motor performance of rats treated with 1-BP. Mechanistically, allyl sulfide-inhibited 1-BP-induced expression of CYP2E1 in microglia, which was associated with suppression of microglial activation and M1 polarization in motor cortex of rats. Reduced oxidative stress was also observed in rats treated with combined allyl sulfide and 1-BP compared with 1-BP alone group. Furthermore, we found that allyl sulfide abrogated 1-BP-induced activation of Nuclear factor(NF)-κB and GSH/Thioredoxin/ASK1 pathways, the key factor for the maintenance of M1 microglial inflammatory response and oxidative stress-related neuronal apoptosis, respectively. Thus, our results showed that allyl sulfide exerted neuroprotective effects in combating 1-BP-induced neurotoxicity through inhibition of neuroinflammation and oxidative stress. Blocking CYP2E1 activity by allyl sulfide might be a promising avenue for the treatment of neurotoxicity elicited by 1-BP and other related neurotoxicants.
Collapse
Affiliation(s)
- Jinning Suo
- Institute of Toxicology, School of Public Health, Shandong University, 250012 Jinan, Shandong Province, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 250012 Jinan, Shandong Province, China
| | - Pin Wang
- Department of Neurology, the Second Hospital of Shandong University, Jinan 250012, China
| | - Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 250012 Jinan, Shandong Province, China
| |
Collapse
|
11
|
Nagashima D, Zhang L, Kitamura Y, Ichihara S, Watanabe E, Zong C, Yamano Y, Sakurai T, Oikawa S, Ichihara G. Proteomic analysis of hippocampal proteins in acrylamide-exposed Wistar rats. Arch Toxicol 2019; 93:1993-2006. [DOI: 10.1007/s00204-019-02484-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023]
|
12
|
Stelljes M, Young R, Weinberg J. 28-Day somatic gene mutation study of 1-bromopropane in female Big Blue ® B6C3F1 mice via whole-body inhalation: Support for a carcinogenic threshold. Regul Toxicol Pharmacol 2019; 104:1-7. [PMID: 30779931 DOI: 10.1016/j.yrtph.2019.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
Abstract
A 2-year inhalation rat and mouse cancer study by the National Toxicology Program (NTP) on 1-bromopropane, a brominated solvent most commonly used as a vapor degreaser, showed significant increase in tumors in the lung of female mice and in the large intestine of male and female rats. The most sensitive endpoint was lung tumors in female mice. Mice of both sexes had hyperplasia and inflammation of the nose and showed regeneration of lung tissue. The NTP assumed that these tumors were due to genotoxic effects and that a linear dose-response relationship was appropriate. It is plausible that, similar to chloroform, hyperplasia and inflammation are required as initial events for tumor development. If true, then a threshold-based model may be more appropriate for 1-bromopropane. To test this hypothesis, a 28-day repeat dose inhalation Big Blue® Assay was conducted using female transgenic B6C3F1 mice. The target exposure concentrations and the exposure regimen were identical to those used by the NTP. Results demonstrated no elevation in mutant frequency of the cII transgene in lung, colon, or liver. Positive controls produced statistically significant increases in mutant frequencies across all tested tissues. These results demonstrate that 1-bromopropane does not induce cII mutants in lungs, colon, or liver under the testing conditions. These data have important ramifications in the quantitative evaluation of tumor results for this chemical and support a mechanism of action where a threshold for carcinogenicity is plausible.
Collapse
Affiliation(s)
| | - Robert Young
- MilliporeSigma, BioReliance(®) Testing Services, Rockville, MD, USA
| | | |
Collapse
|
13
|
Lisbôa CD, Mello MGDS. Voice and speech signs and symptoms in individuals exposed to chemical agents: an analysis of medical records. REVISTA CEFAC 2018. [DOI: 10.1590/1982-0216201820214717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: to identify voice and speech signs and symptoms in patients exposed to chemical agents. Methods: an exploratory and descriptive study analyzing the data from the medical records of patients who sought health services at a toxicology outpatient clinic located in Southeastern Brazil. Results: a total of 139 medical records were obtained, 75 being selected. Twelve of the records selected contained data regarding voice and speech symptoms, including hoarseness (3), loss of voice (2), chronic throat inflammation (1), sore throat (1), secretion and burning in the throat (1), dry throat and mouth (1), lump in the throat associated with difficulty in swallowing (1), difficulty in articulating words (1), and difficulty in verbal expression (1). Diseases capable of causing phono-articulatory problems were detected in 6 cases. These symptoms affected individuals with occupational exposure to different substances, particularly community health agents (7) and pesticide applicators (7). Conclusion: individuals exposed to chemical substances experienced voice and speech problems, either due to a possible irritation caused by chemical agents or due to diseases developed during or after the exposure.
Collapse
|
14
|
Zong C, Garner CE, Huang C, Zhang X, Zhang L, Chang J, Toyokuni S, Ito H, Kato M, Sakurai T, Ichihara S, Ichihara G. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450. Toxicol Lett 2016; 258:249-258. [DOI: 10.1016/j.toxlet.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
|
15
|
Zong C, Zhang X, Huang C, Chang J, Garner CE, Sakurai T, Kato M, Ichihara S, Ichihara G. Role of cytochrome P450s in the male reproductive toxicity of 1-bromopropane. Toxicol Res (Camb) 2016; 5:1522-1529. [PMID: 30090453 DOI: 10.1039/c6tx00164e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022] Open
Abstract
1-Bromopropane (1BP) is widely used as an alternative to ozone-depleting solvents. The present study investigated the role of P450s in 1BP-induced male reproductive toxicity. Mice co-treated with 1-aminobenzotriazole (ABT), a non-selective P450 inhibitor, were exposed to 1BP at 0, 50, 250, or 1200 ppm, while saline-treated control mice were exposed to 1BP at 0, 50, or 250 ppm, for 4 weeks. In the saline-treated mice, exposure to 1BP at 250 ppm decreased the sperm count and sperm motility. Histopathological examination showed that exposure to 1BP at 50 and 250 ppm increased the number of elongated spermatids retained at the basal region of stage IX, X and XI seminiferous tubules, while exposure to 1BP at 250 ppm increased the number of periodic acid-Schiff (PAS)-positive round structures in stage IX, X, and XI seminiferous tubules. Co-treatment with ABT prevented the above changes induced by exposure to 1BP at 50 or 250 ppm. However, ABT-treated mice exposed to 1BP in the 1200 ppm group showed decreases in the weights of reproductive organs, epididymal sperm count and motility, increases in epididymal sperm with abnormal heads, retained spermatids and PAS-positive round structures in stages IX-XI, depletion of spermatogenic cells in part of the seminiferous tubules, and a small number of round spermatids in stage VII seminiferous tubules. The results at 50 and 250 ppm of 1-BP exposure indicate that P450s play important roles in 1BP-induced testicular toxicity. The control of P450 activity reduced 1BP-induced male reproductive toxicities including spermiation failure, reduction of epididymal sperm count and motility, and formation of PAS-positive round structures at postspermiation stages.
Collapse
Affiliation(s)
- Cai Zong
- Department of Occupational and Environmental Health , Faculty of Pharmaceutical Sciences , Tokyo University of Science , Noda 278-8510 , Japan . ; ; Tel: +81-4-7121-361.,Department of Occupational and Environmental Health , Nagoya University Graduate School of Medicine , Nagoya 466-8550 , Japan
| | - Xiao Zhang
- Department of Occupational and Environmental Health , Faculty of Pharmaceutical Sciences , Tokyo University of Science , Noda 278-8510 , Japan . ; ; Tel: +81-4-7121-361.,Department of Occupational and Environmental Health , Nagoya University Graduate School of Medicine , Nagoya 466-8550 , Japan
| | - Chinyen Huang
- Department of Occupational and Environmental Health , Nagoya University Graduate School of Medicine , Nagoya 466-8550 , Japan
| | - Jie Chang
- School of Public Health , Medical College of Soochow University , Suzhou 215123 , China.,Department of Occupational and Environmental Health , Nagoya University Graduate School of Medicine , Nagoya 466-8550 , Japan
| | - C Edwin Garner
- Lovelace Respiratory Research Institute , Albuquerque , New Mexico 87108 , USA
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health , Faculty of Pharmaceutical Sciences , Tokyo University of Science , Noda 278-8510 , Japan . ; ; Tel: +81-4-7121-361
| | - Masashi Kato
- Department of Occupational and Environmental Health , Nagoya University Graduate School of Medicine , Nagoya 466-8550 , Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies , Mie University , Tsu 514-8507 , Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health , Faculty of Pharmaceutical Sciences , Tokyo University of Science , Noda 278-8510 , Japan . ; ; Tel: +81-4-7121-361
| |
Collapse
|
16
|
Ishidao T, Fueta Y, Ueno S, Yoshida Y, Hori H. A cross-fostering analysis of bromine ion concentration in rats that inhaled 1-bromopropane vapor. J Occup Health 2016; 58:241-6. [PMID: 27108641 PMCID: PMC5356948 DOI: 10.1539/joh.15-0284-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: Inhaled 1-bromopropane decomposes easily and releases bromine ion. However, the kinetics and transfer of bromine ion into the next generation have not been clarified. In this work, the kinetics of bromine ion transfer to the next generation was investigated by using cross-fostering analysis and a one-compartment model. Methods: Pregnant Wistar rats were exposed to 700 ppm of 1-bromopropane vapor for 6 h per day during gestation days (GDs) 1-20. After birth, cross-fostering was performed between mother exposure groups and mother control groups, and the pups were subdivided into the following four groups: exposure group, postnatal exposure group, gestation exposure group, and control group. Bromine ion concentrations in the brain were measured temporally. Results: Bromine ion concentrations in mother rats were lower than those in virgin rats, and the concentrations in fetuses were higher than those in mothers on GD20. In the postnatal period, the concentrations in the gestation exposure group decreased with time, and the biological half-life was 3.1 days. Conversely, bromine ion concentration in the postnatal exposure group increased until postnatal day 4 and then decreased. This tendency was also observed in the exposure group. A one-compartment model was applied to analyze the behavior of bromine ion concentration in the brain. By taking into account the increase of body weight and change in the bromine ion uptake rate in pups, the bromine ion concentrations in the brains of the rats could be estimated with acceptable precision.
Collapse
Affiliation(s)
- Toru Ishidao
- Department of Environmental Management, School of Health Sciences, University of Occupational and Environmental Health
| | | | | | | | | |
Collapse
|
17
|
Arnold C. The Right Tools for the Job: Evaluating Frameworks for Chemical Alternatives Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A58. [PMID: 26930701 PMCID: PMC4786974 DOI: 10.1289/ehp.124-a58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Carrie Arnold
- Carrie Arnold is a freelance science writer living in Virginia. Her work has appeared in Scientific American, Discover, New Scientist, Smithsonian, and more
| |
Collapse
|
18
|
Lotti M, Aminoff MJ. Evaluating suspected work-related neurologic disorders (clinical diagnosis). HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:9-21. [PMID: 26563780 DOI: 10.1016/b978-0-444-62627-1.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The clinical diagnosis of work-related neurologic disorders is essentially one of exclusion because symptoms and signs are often nonspecific. The clinical reasoning requires a three-step approach: (1) establish the characteristics of the presenting disease; (2) ascertain that observed clinical features are consistent with those caused by the suspected agent(s); and (3) assess occupational exposures. A detailed history is of paramount importance in evaluating patients with suspected work-related neurologic disorders as it is in other clinical contexts, especially because in some circumstances it may represent the only criterion to establish causality. Thus, besides characterization of neurologic symptoms, including their location, quality, timecourse, and possible other associated symptoms, the work environment of the patient should be understood in full detail. In this respect, when a neurotoxin is suspected, then the history collection can be guided by the knowledge of the likely syndromes it produces. Similarly, physical examination should be directed to the target of toxicity/entrapment based on information from the work history. Although specific sites and elements of the nervous system may be affected depending on the offending agent, most neurotoxic disorders are characterized by generalized rather than focal neurologic abnormalities. Laboratory toxicologic tests have limited application for the etiologic diagnosis of neurotoxic disorders, except in cases of acute poisoning and in patients exposed to neurotoxic chemicals with prolonged half-life. In most cases examination takes place after the end of exposure, when the offending chemical is no longer detectable in body fluids. Electrophysiologic studies, in particular evoked potentials, electromyography, and conduction velocities, are important to confirm the organic basis of symptoms, particularly to detect subclinical or early neurologic involvement and to reduce the number of disorders to be considered in the differential diagnoses. In general, imaging studies with computed tomography and magnetic resonance are of limited utility in the evaluation of suspected neurotoxic disorders, except for helping to exclude other causes of the patient's clinical state. Improved conditions and safer practices in the workplace have led to a gradual shift in application of neuropsychologic evaluation from the assessment of severe neurotoxic damage to the evaluation of mild subclinical disturbances, and these tests are nowadays extensively used in screening workers exposed to neurotoxicants. Tools used in the screening of large groups of workers exposed to neurotoxicants may differ from those used in the clinic. Whereas some are obviously impractical, such as physical examination, others, such as, for instance, toxicologic tests, are used for biologic monitoring of exposure to ascertain compliance with occupational exposure limits.
Collapse
Affiliation(s)
- Marcello Lotti
- Department of Cardiology, Thoracic and Vascular Sciences, School of Medicine, University of Padua, Padua, Italy.
| | - Michael J Aminoff
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Ravibabu K, Barman T, Rajmohan HR. Serum neuron-specific enolase, biogenic amino-acids and neurobehavioral function in lead-exposed workers from lead-acid battery manufacturing process. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2015; 6:50-7. [PMID: 25588226 PMCID: PMC6977058 DOI: 10.15171/ijoem.2015.436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/23/2014] [Indexed: 11/22/2022]
Abstract
Background: The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. Objective: To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). Methods: In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests—simple reaction time (SRT), symbol digit substitution test (SDST), and serial digit learning test (SDLT). Results: There was a significant correlation (r 0.199, p<0.05) between SDST and BLL. SDLT and SRT had also a significant positive correlation (r 0.238, p<0.01). NSE had a negative correlation (r –0.194, p<0.05) with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Conclusion: Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the "attention and perception" (SDST).
Collapse
Affiliation(s)
- K Ravibabu
- Regional Occupational Health Centre (Southern), Nirmal Bhavan, ICMR Complex, Kannamangala (Post), Devanahalli, Bangalore-562110, Karnataka, India.
| | | | | |
Collapse
|
20
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Hu S, Huang H, Ichihara G. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2015; 282:151-60. [PMID: 25448045 DOI: 10.1016/j.taap.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenlie Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shijie Hu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China
| | - Hanlin Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
21
|
Guo Y, Yuan H, Jiang L, Yang J, Zeng T, Xie K, Zhang C, Zhao X. Involvement of decreased neuroglobin protein level in cognitive dysfunction induced by 1-bromopropane in rats. Brain Res 2014; 1600:1-16. [PMID: 25557405 DOI: 10.1016/j.brainres.2014.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
1-Bromopropane (1-BP) is used as a substitute for ozone-depleting solvents (ODS) in industrial applications. 1-BP could display central nervous system (CNS) neurotoxicity manifested by cognitive dysfunction. Neuroglobin (Ngb) is an endogenous neuroprotectant and is predominantly expressed in the nervous system. The present study aimed to investigate Ngb involvement in CNS neurotoxicity induced by 1-BP in rats. Male Wistar rats were randomly divided into 5 groups (n=14) and treated with 0, 100, 200, 400 and 800 mg/kg bw 1-BP, respectively, by gavage for consecutive 12 days. Rats displayed cognitive dysfunction dose-dependently through Morris water maze (MWM) test. Significant neuron loss in layer 5 of the prelimbic cortex (PL) was observed. Moreover, 1-BP decreased Ngb protein level in cerebral cortex and Ngb decrease was significantly positively correlated with cognitive dysfunction. Glutathione (GSH) content, GSH/oxidized glutathione (GSSG) ratio and glutamate cysteine ligase (GCL) activity decreased in cerebral cortex, coupled with the increase in GSSG content. GSH and GSH/GSSG ratio decrease were significantly positively correlated with cortical Ngb decrease. Additionally, levels of N-epsilon-hexanoyl-lysine (HEL) and 4-hydroxy-2-nonenal (4-HNE) modified proteins in cerebral cortex of 1-BP-treated rats increased significantly. In conclusion, it was suggested that 1-BP resulted in decreased endogenous neuroprotectant Ngb in cerebral cortex, which might play an important role in CNS neurotoxicity induced by 1-BP and that 1-BP-induced oxidative stress in cerebral cortex might partly be responsible for Ngb decrease.
Collapse
Affiliation(s)
- Ying Guo
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Hua Yuan
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Junlin Yang
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China.
| |
Collapse
|
22
|
Garner CE, Yu X. Species and sex-dependent toxicokinetics of 1-bromopropane: the role of hepatic cytochrome P450 oxidation and glutathione (GSH). Xenobiotica 2014; 44:644-56. [PMID: 24438363 DOI: 10.3109/00498254.2013.879624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The objectives of the current studies were to evaluate the factors influencing the toxicokinetics of 1-bromopropane (1-BP) in rodents after intravenous (IV) and inhalation exposure. 2. F-344 rats were administered 1-BP via IV bolus injection at 5 and 20 mg/kg and blood concentration determined versus time. F-344 rats and B6C3F1 mice were also exposed to starting inhalation concentrations 70, 240, 800 and 2700 ppm 1-BP in a closed gas uptake system and chamber 1-BP levels were monitored for 6 h. Plasma bromide concentrations were determined to estimate total metabolized dose. Rats were pretreated with chemical inhibitors of cytochrome P450 and glutathione (GSH) synthesis, prior to exposure to 1-BP at 800 ppm within inhalation chambers. 3. Systemic clearance of 1-BP in rat was rapid and decreased with increasing dose. As inhalation chamber concentration of 1-BP increased, the terminal elimination rates decreased. Half-life of 1-BP in rats following inhibition of P450 (9.6 h) or depletion of GSH (4.1 h) increased relative to controls (2.0 h) at 800 ppm. The percentage of 1-BP metabolized decreased with increasing inhalation exposure. Hepatic levels of GSH were significantly lowered regardless of the exposure level in both rats and mice. Chamber concentration-time curves were fit to a two compartment model which was used to estimate metabolic rate constants. 4. These data suggest that in rat, 1-BP clearance is saturable and that elimination is highly dependent on both P450 and GSH-dependent metabolism. This investigation in rodents may provide an understanding of interspecies differences in toxicokinetics and eventually aid translation of animal studies to human risk assessment.
Collapse
Affiliation(s)
- C Edwin Garner
- RTI International, Research Triangle Park , NC , USA and
| | | |
Collapse
|
23
|
Schulte PA, McKernan LT, Heidel DS, Okun AH, Dotson GS, Lentz TJ, Geraci CL, Heckel PE, Branche CM. Occupational safety and health, green chemistry, and sustainability: a review of areas of convergence. Environ Health 2013; 12:31. [PMID: 23587312 PMCID: PMC3639149 DOI: 10.1186/1476-069x-12-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/02/2013] [Indexed: 05/04/2023]
Abstract
With increasing numbers and quantities of chemicals in commerce and use, scientific attention continues to focus on the environmental and public health consequences of chemical production processes and exposures. Concerns about environmental stewardship have been gaining broader traction through emphases on sustainability and "green chemistry" principles. Occupational safety and health has not been fully promoted as a component of environmental sustainability. However, there is a natural convergence of green chemistry/sustainability and occupational safety and health efforts. Addressing both together can have a synergistic effect. Failure to promote this convergence could lead to increasing worker hazards and lack of support for sustainability efforts. The National Institute for Occupational Safety and Health has made a concerted effort involving multiple stakeholders to anticipate and identify potential hazards associated with sustainable practices and green jobs for workers. Examples of potential hazards are presented in case studies with suggested solutions such as implementing the hierarchy of controls and prevention through design principles in green chemistry and green building practices. Practical considerations and strategies for green chemistry, and environmental stewardship could benefit from the incorporation of occupational safety and health concepts which in turn protect affected workers.
Collapse
Affiliation(s)
- Paul A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Lauralynn T McKernan
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Donna S Heidel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
- Bureau Veritas, Edison, NJ, USA
| | - Andrea H Okun
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Gary Scott Dotson
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Thomas J Lentz
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Charles L Geraci
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Pamela E Heckel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Christine M Branche
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| |
Collapse
|
24
|
Zhang L, Nagai T, Yamada K, Ibi D, Ichihara S, Subramanian K, Huang Z, Mohideen SS, Naito H, Ichihara G. Effects of sub-acute and sub-chronic inhalation of 1-bromopropane on neurogenesis in adult rats. Toxicology 2012; 304:76-82. [PMID: 23266320 DOI: 10.1016/j.tox.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE 1-Bromopropane (1-BP) intoxication is associated with depression and cognitive and memory deficits. The present study tested the hypothesis that 1-BP suppresses neurogenesis in the dentate gyrus, which is involved in higher cerebral function, in adult rats. METHODS Four groups of 12 male Wistar rats were exposed to 0, 400, 800, 1000 ppm 1-BP, 8 h/day for 7 days. Another four groups of six rats each were exposed to 0, 400, 800 and 1000 ppm 1-BP for 2 weeks followed by 0, 200, 400 and 800 ppm for another 2 weeks, respectively. Another four groups of six rats each were exposed to 0, 200, 400 and 800 ppm 1-BP for 4 weeks. Rats were injected with 5-bromo-2'-deoxy-uridine (BrdU) after 4-week exposure at 1000/800 ppm to examine neurogenesis in the dentate gyrus by immunostaining. We measured factors known to affect neurogenesis, including monoamine levels, and mRNA expression levels of brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), in different brain regions. RESULTS BrdU-positive cells were significantly lower in the 800/1000 ppm-4-week group than the control. 1-Week exposure to 1-BP at 800 and 1000 ppm significantly reduced noradrenalin level in the striatum. Four-week exposure at 800 ppm significantly decreased noradrenalin levels in the hippocampus, prefrontal cortex and striatum. 1-BP also reduced hippocampal BDNF and GR mRNA levels. CONCLUSION Long-term exposure to 1-BP decreased neurogenesis in the dentate gyrus. Downregulation of BDNF and GR mRNA expression and low hippocampal norepinephrine levels might contribute, at least in part, to the reduced neurogenesis.
Collapse
Affiliation(s)
- Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology 2012; 302:18-24. [DOI: 10.1016/j.tox.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/22/2022]
|
26
|
Mohideen SS, Ichihara S, Subramanian K, Huang Z, Naito H, Kitoh J, Ichihara G. Effects of exposure to 1-bromopropane on astrocytes and oligodendrocytes in rat brain. J Occup Health 2012. [PMID: 23183024 DOI: 10.1539/joh.12-0118-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Human cases of 1-bromopropane (1-BP) toxicity showed ataxic gait and cognitive dysfunction, whereas rat studies showed pyknotic shrinkage in cerebellar Purkinje cells and electrophysiological changes in the hippocampus. The present study investigated the effects of 1-BP on astrocytes and oligodendrocytes in the rat cerebellum and hippocampus to find sensitive markers of central nervous system toxicity. METHODS Forty-eight F344 rats were divided into four equal groups and exposed to 1-BP at 0, 400, 800 and 1,000 ppm for 8 h/day; 7 days/week, for 4 weeks. Nine and three rats per group were used for biochemical and histopathological studies, respectively. RESULTS Kluver-Barrera staining showed pyknotic shrinkage in the cytoplasm of Purkinje cells and nuclei of granular cells in the cerebellum at 1,000 ppm. Immunohistochemical analysis showed increased length of glial fibrillary acidic protein (GFAP)-positive processes of astrocytes in the cerebellum, hippocampus and dentate gyrus at 800 and 1,000 ppm. The myelin basic protein (MBP) level was lower at 1,000 ppm. The numbers of astrocytes and granular cells per tissue volume increased at 400 ppm or higher. CONCLUSION The present study showed that elongation of processes of astrocytes accompanies degeneration of granular cells and Purkinje cells in the cerebellum of the rats exposed to 1-BP. The decrease in MBP and number of oligodendrocytes suggest adverse effects on myelination. The increase in astrocyte population per tissue volume in the cerebellum might be a sensitive marker of 1-BP neurotoxicity, but the underlying mechanism for this change remains elusive.
Collapse
Affiliation(s)
- Sahabudeen Sheik Mohideen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Subramanian K, Mohideen SS, Ichihara G. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure. Toxicol Appl Pharmacol 2012; 263:44-52. [DOI: 10.1016/j.taap.2012.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/18/2012] [Accepted: 05/26/2012] [Indexed: 01/05/2023]
|
28
|
Ichihara G, Kitoh J, Li W, Ding X, Ichihara S, Takeuchi Y. Neurotoxicity of 1-bromopropane: Evidence from animal experiments and human studies. J Adv Res 2012. [DOI: 10.1016/j.jare.2011.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Meyer-Baron M, Kim EA, Nuwayhid I, Ichihara G, Kang SK. Occupational exposure to neurotoxic substances in Asian countries - challenges and approaches. Neurotoxicology 2011; 33:853-61. [PMID: 22202747 DOI: 10.1016/j.neuro.2011.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
The fact that a conference on neurotoxicity was held in China triggered the idea to provide an insight into occupational diseases, their development and the approaches to investigate them in Asian countries. A historical review, a meta-analysis, and studies on humans and animals provide impressions on past and current problems. The Korean example showed that each newly introduced industry is accompanied by its own problems as regards occupational diseases. Mercury and carbon disulfide were of importance in the beginning, whereas solvents and manganese became important later. Outbreaks of diseases were important reasons to guide both the public and the governmental attention to prevention and allowed within a relatively short time considerable progress. As the example on the replacement of 2-bromopropane by 1-bromopropane showed, also the introduction of chemicals that are more beneficial for the environment may result in additional occupational risks. A lower mutagenicity of 1-bromopopane was shown to be associated with a greater neurotoxicity in Japanese studies. Although occupational health and diseases are commonly related to adults, child workers exposed to solvents were examined in a Lebanese study. The study started outlining the health hazards in young workers because they might be at a much greater risk due to the not yet completed maturation of their nervous system. That some occupational diseases are not yet a focus of prevention was shown by the study on pesticides. If at all, the serious health consequences resulting from excessive exposure were investigated. Research enabling precautionary actions was not available from the international literature. Despite globalization the knowledge on occupational diseases is not yet "globalized" and each country obviously undergoes its own development triggered by local experiences. Economic development that requires a healthy workforce, but also public interest that challenges governmental regulations further efforts on the prevention of occupational diseases. The paper reflects a summary of the talks presented at the symposium "Occupational Neurotoxicities in Asian Countries" as part of the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health.
Collapse
Affiliation(s)
- Monika Meyer-Baron
- Leibniz Research Centre for Working Environment and Human Factors, Germany.
| | | | | | | | | |
Collapse
|
30
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Takahashi M, Subramanian K, Mohideen SS, Wang Y, Ichihara G. Proteomic analysis of hippocampal proteins of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2011; 257:93-101. [PMID: 21925529 DOI: 10.1016/j.taap.2011.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 12/28/2022]
Abstract
1-Bromopropane (1-BP) is a compound used as an alternative to ozone-depleting solvents and is neurotoxic both in experimental animals and human. However, the molecular mechanisms of the neurotoxic effects of 1-BP are not well known. To identify the molecular mechanisms of 1-BP-induced neurotoxicity, we analyzed quantitatively changes in protein expression in the hippocampus of rats exposed to 1-BP. Male F344 rats were exposed to 1-BP at 0, 400, or 1000 ppm for 8h/day for 1 or 4 weeks by inhalation. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) were conducted to detect and identify protein modification. Changes in selected proteins were further confirmed by western blot. 2D-DIGE identified 26 proteins with consistently altered model (increase or decrease after both 1- and 4-week 1-BP exposures) and significant changes in their levels (p<0.05; fold change ≥ ± 1.2) at least at one exposure level or more compared with the corresponding controls. Of these proteins, 19 were identified by MALDI-TOF-TOF/MS. Linear regression analysis of 1-BP exposure level identified 8 differentially expressed proteins altered in a dose-dependent manner both in 1- and 4-week exposure experiments. The identified proteins could be categorized into diverse functional classes such as nucleocytoplasmic transport, immunity and defense, energy metabolism, ubiquitination-proteasome pathway, neurotransmitter and purine metabolism. Overall, the results suggest that 1-BP-induced hippocampal damage involves oxidative stress, loss of ATP production, neurotransmitter dysfunction and inhibition of ubiquitination-proteasome system.
Collapse
Affiliation(s)
- Zhenlie Huang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mohideen SS, Ichihara G, Ichihara S, Nakamura S. Exposure to 1-bromopropane causes degeneration of noradrenergic axons in the rat brain. Toxicology 2011; 285:67-71. [PMID: 21527306 DOI: 10.1016/j.tox.2011.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
Abstract
1-Bromopropane (1-BP) has been used as an alternative to ozone-depleting solvents. Previous studies showed that 1-BP is neurotoxic in animals and humans. In humans, exposure to 1-BP caused various neurological and neurobehavioral symptoms or signs including depressive or irritated mood. However, the neurobiological changes underlying the depressive symptoms induced by 1-BP remain to be determined. The depressive symptoms are thought to be associated with degeneration of axons containing noradrenaline and serotonin. Based on this hypothesis, the present study examined the effects of repeated exposure to 1-BP on serotonergic and noradrenergic axons. Exposure to 1-BP induced dose-dependent decreases in the density of noradrenergic axons in the rat prefrontal cortex, but no apparent change in the density of serotonergic axons. The results suggest that depressive symptoms in workers exposed to 1-BP are due, at least in part, to the degeneration of noradrenergic axons in the brain.
Collapse
Affiliation(s)
- Sahabudeen Sheik Mohideen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
32
|
Frasch HF, Dotson GS, Barbero AM. In vitro human epidermal penetration of 1-bromopropane. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1249-1260. [PMID: 21830855 DOI: 10.1080/15287394.2011.595666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
1-Bromopropane (1-BP; CAS number 106-94-5), also known as n-propyl bromide, is a halogenated short-chain alkane used as an organic solvent with numerous commercial and industrial applications, including garment dry cleaning and vapor degreasing of metals. The purpose of this study was to determine the dermal absorption characteristics and corrosivity of 1-BP. Heat-separated human epidermal membranes were mounted on static diffusion cells. Different exposure scenarios were studied (infinite dose, finite dose, and transient exposure) using neat 1-BP and saturated aqueous solution as donor. Steady-state fluxes for infinite-dose neat 1-BP exposure averaged 625 to 960 μg cm(-2) h(-1). The finite-dose (10 μl/cm(2) = 13.5 mg/cm(2)) unoccluded donor resulted in penetration of <0.2% of the applied dose (22 μg/cm(2)). A 10-min transient exposure to infinite dose resulted in total penetration of 179 μg/cm(2). Steady-state 1-BP fluxes from neat application of a commercial dry cleaning solvent were similar (441 to 722 μg cm(-2) h(-1)). The permeability coefficient of 1-BP in water vehicle was 0.257 ± 0.141 cm/h. The absorption potential of 1-BP following dermal exposure is dependent upon the type and duration of exposure. Donor losses due to evaporation were approximately 500-fold greater than dermal absorption flux; evaporation flux was 420 mg cm(-2) h(-1). 1-BP is cytotoxic but not corrosive, based on results from a cultured reconstructed human epidermal model (EpiDerm Skin Corrosivity Test).
Collapse
Affiliation(s)
- H Frederick Frasch
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | |
Collapse
|
33
|
|
34
|
Hanley KW, Petersen MR, Cheever KL, Luo L. Bromide and N-acetyl-S-(n-propyl)-l-cysteine in urine from workers exposed to 1-bromopropane solvents from vapor degreasing or adhesive manufacturing. Int Arch Occup Environ Health 2010; 83:571-84. [DOI: 10.1007/s00420-010-0524-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
|
35
|
Liu F, Ichihara S, Valentine WM, Itoh K, Yamamoto M, Sheik Mohideen S, Kitoh J, Ichihara G. Increased susceptibility of Nrf2-null mice to 1-bromopropane-induced hepatotoxicity. Toxicol Sci 2010; 115:596-606. [PMID: 20211940 DOI: 10.1093/toxsci/kfq075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1-Bromopropane (1-BP) was introduced as an alternative to ozone-depleting solvents. However, it was found to exhibit neurotoxicity, reproductive toxicity, and hepatotoxicity in rodents and neurotoxicity in human. However, the mechanisms underlying the toxicities of 1-BP remain elusive. The present study investigated the role of oxidative stress in 1-BP-induced hepatotoxicity using nuclear factor erythroid 2-related factor 2 (Nrf2)-null mice. Groups of 24 male Nrf2-null mice and 24 male wild-type (WT) C57BL/6J mice were each divided into three groups of eight and exposed to 1-BP at 0, 100, or 300 ppm for 8 h/day for 28 days by inhalation. Liver histopathology showed significantly larger area of necrosis in Nrf2-null mice relative to WT mice at the same exposure level. Nrf2-null mice also had greater malondialdehyde (MDA) levels, higher ratio of oxidized glutathione/reduced form of glutathione, and lower total glutathione content. The constitutive level and the increase in ratio per exposure level of glutathione S-transferase (GST) activity were lower in the liver of Nrf2-null mice than WT mice. Exposure to 1-BP at 300 ppm increased the messenger RNA levels of heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GcLm), glutamate-cysteine synthetase (GcLc), glutathione reductase, and NAD(P)H: quinone oxidoreductase 1 (NQO1) in WT mice but not in Nrf2-null mice except for GST Yc2. Nrf2-null mice were more susceptible to 1-BP-induced hepatotoxicity. That oxidative stress plays a role in 1-BP hepatotoxicity is deduced from the low expression levels and activities of antioxidant enzymes and high MDA levels in Nrf2-null mice.
Collapse
Affiliation(s)
- Fang Liu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Changes in neurotransmitter receptor expression levels in rat brain after 4-week exposure to 1-bromopropane. Neurotoxicology 2009; 30:1078-83. [DOI: 10.1016/j.neuro.2009.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/10/2009] [Accepted: 06/20/2009] [Indexed: 11/18/2022]
|
37
|
Schulte PA, Chun H. Climate change and occupational safety and health: establishing a preliminary framework. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2009; 6:542-54. [PMID: 19551548 DOI: 10.1080/15459620903066008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The relationship between global climate change and occupational safety and health has not been extensively characterized. To begin such an effort, it may be useful to develop a framework for identifying how climate change could affect the workplace; workers; and occupational morbidity, mortality, and injury. This article develops such a framework based on a review of the published scientific literature from 1988-2008 that includes climatic effects, their interaction with occupational hazards, and their manifestation in the working population. Seven categories of climate-related hazards are identified: (1) increased ambient temperature, (2) air pollution, (3) ultraviolet exposure, (4) extreme weather, (5) vector-borne diseases and expanded habitats, (6) industrial transitions and emerging industries; and (7) changes in the built environment. This review indicates that while climate change may result in increasing the prevalence, distribution, and severity of known occupational hazards, there is no evidence of unique or previously unknown hazards. However, such a possibility should not be excluded, since there is potential for interactions of known hazards and new conditions leading to new hazards and risks.
Collapse
Affiliation(s)
- Paul A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA.
| | | |
Collapse
|
38
|
Hanley KW, Petersen MR, Cheever KL, Luo L. N-acetyl-S-(n-propyl)-l-cysteine in urine from workers exposed to 1-bromopropane in foam cushion spray adhesives. ANNALS OF OCCUPATIONAL HYGIENE 2009; 53:759-69. [PMID: 19706636 DOI: 10.1093/annhyg/mep051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br((-))] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br((-)) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers.
Collapse
Affiliation(s)
- Kevin W Hanley
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA.
| | | | | | | |
Collapse
|
39
|
Liu F, Ichihara S, Mohideen SS, Sai U, Kitoh J, Ichihara G. Comparative study on susceptibility to 1-bromopropane in three mice strains. Toxicol Sci 2009; 112:100-10. [PMID: 19638432 DOI: 10.1093/toxsci/kfp173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies indicate that 1-bromopropane (1BP) has neurotoxicity and reproductive toxicity both in humans and animals. The present study investigated strain differences in susceptibility to 1BP and identified possible biological factors that determine such susceptibility. Twenty-four male mice of each of the three strains (C57BL/6J, DBA/2J, and BALB/cA) were divided into four groups of six each and exposed to 1BP at 0, 50, 110, and 250 ppm for 8 h/day for 28 days by inhalation. At the end of exposure period, the relative susceptibilities of each strain to 1BP-mediated hepatotoxicity and male reproductive toxicity were evaluated. The contributing factors to strain-dependent susceptibility were assessed by determination of hepatic CYP2E1 levels, glutathione-S-transferase (GST) activity, glutathione (GSH) status, and NAD(P)H:quinone oxidoreductase and heme oxygenase-1 mRNA levels. Liver histopathology showed significantly larger area of liver necrosis and more degenerative lobules in BALB/cA in the order of BALB/cA > C57BL/6J > DBA/2J. BALB/cA showed higher CYP2E1 protein level and lower total GSH content and GST activity in the liver than DBA/2J. These results indicate that BALB/cA mice are the most susceptible to hepatotoxicity of 1BP among the three strains tested, and that CYP2E1, GSH level/GST activity may contribute to the susceptibility to 1BP hepatotoxicity. Exposure to > or = 50 ppm of 1BP also decreased sperm count and sperm motility and increased sperms with abnormal heads in all three strains mice in a dose-dependent manner. Comparison with previous studies in rats indicates that mice are far more susceptible than rats to 1BP regarding hepatotoxicity and reproductive toxicity.
Collapse
Affiliation(s)
- Fang Liu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Cheever K, Marlow K, B’Hymer C, Hanley K, Lynch D. Development of an HPLC–MS procedure for the quantification of N-acetyl-S-(n-propyl)-l-cysteine, the major urinary metabolite of 1-bromopropane in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:827-32. [DOI: 10.1016/j.jchromb.2009.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
41
|
Majersik JJ, Caravati EM, Steffens JD. Severe neurotoxicity associated with exposure to the solvent 1-bromopropane (n-propyl bromide). Clin Toxicol (Phila) 2008; 45:270-6. [PMID: 17453879 DOI: 10.1080/15563650701226218] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND 1-bromopropane was recently substituted for traditional ozone-depleting solvents in the industrial setting. CASE SERIES We report a cohort of six cases of 1-bromopropane neurotoxicity occurring in foam cushion gluers exposed to 1-bromopropane vapors from spray adhesives. Patients 1-5 were exposed 30-40 hours per week over three years; patient 6 had been employed for the previous three months. Exposure had peaked over the previous month when ventilatory fans were turned off. All patients complained of subacute onset of lower extremity pain or paresthesias. Five of six complained of difficulty walking and on examination had spastic paraparesis, distal sensory loss, and hyperreflexia. Three patients initially had nausea and headache. Serum bromide concentrations ranged from 44 to 170 mg/dL (reference 0-40 mg/dL). Apparent hyperchloremia was present with serum chloride concentrations of 105 to 139 mmol/L (reference 98-107 mmol/L). Air samples taken at the workplace during gluing operations revealed the mean air concentration of 1-bromopropane to be 130 ppm (range 91-176 ppm) with a seven hour time-weighted average of 108 ppm (range 92-127 ppm), well above the EPA-proposed limit of 25 ppm. Two years after exposure, the two most severely affected patients had minimal improvement of function and they, with a third patient, continued to experience chronic neuropathic pain. CONCLUSION This report supports the growing recognition of 1-bromopropane neurotoxicity in humans consisting most commonly of headache, nausea, and subacute spastic paraparesis with distal sensory loss. The pathogenesis of 1-BP neurotoxicity in humans has yet to be fully elucidated but may reflect a central distal axonopathy syndrome.
Collapse
|
42
|
Suda M, Honma T, Miyagawa M, Wang RS. Alteration of brain levels of neurotransmitters and amino acids in male F344 rats induced by three-week repeated inhalation exposure to 1-bromopropane. INDUSTRIAL HEALTH 2008; 46:348-359. [PMID: 18716383 DOI: 10.2486/indhealth.46.348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study investigated the effects of 1-bromopropane (1BP) on brain neuroactive substances of rats to determine the extent of its toxicity to the central nervous system (CNS). We measured the changes in neurotransmitters (acetylcholine, catecholamine, serotonin and amino acids) and their metabolites or precursors in eight brain regions after inhalation exposure to 1BP at 50 to 1,000 ppm for 8 h per day for 7 d per week for 3 wk. Rats were sacrificed at 2 h (Case 1), or at 19 h (Case 2) after the end of exposure. In Case 1, the level of 5-hydroxyindoleacetic acid (5HIAA) was lowered in some brain regions by 1BP exposure. The decrease of 5HIAA in the frontal cortex was statistically significant at 50 ppm 1BP exposure. In Case 2, gamma-amino butyric acid (GABA) and taurine were decreased in many brain regions of exposed rats, and a significant decrease of taurine in the midbrain occurred at 50 ppm 1BP exposure. In both cases of 2-h and 19-h intervals from the end of exposure to sacrifice, aspartate and glutamine levels were elevated in many brain regions, but the acetylcholine level did not change in any brain region. Three-week repeated exposure to 1BP produced significantly changes in amino acid contents of rat brains, particularly at 1,000 ppm.
Collapse
Affiliation(s)
- Megumi Suda
- National Institute of Occupational Safety and Health (JNIOSH),Kawasaki, Japan
| | | | | | | |
Collapse
|
43
|
Banu S, Ichihara S, Huang F, Ito H, Inaguma Y, Furuhashi K, Fukunaga Y, Wang Q, Kitoh J, Ando H, Kikkawa F, Ichihara G. Reversibility of the Adverse Effects of 1-Bromopropane Exposure in Rats. Toxicol Sci 2007; 100:504-12. [PMID: 17890766 DOI: 10.1093/toxsci/kfm245] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous experiments indicated that 1-bromopropane (1-BP), an alternative to chloroflurocarbons, is neurotoxic and inhibits spermiation in the testis. Here we investigated the reversibility of the toxic effects of 1-BP in rats. Male Wistar rats were divided into three equal groups of 24 each and exposed by inhalation to 0, 400 or 1000 ppm of 1-BP for 6 weeks (8 hrs/day, 7 days/week). Eight rats from each group were sacrificed at the end of 6 weeks exposure, and at 4 and 14 weeks after the end of exposure, to assess the recovery processes. We studied sperm count, motility, morphology and testicular histopathology, as well as blood pressure, skin temperature and hindlimb muscle strength. At the end of 6 weeks of exposure to 1000 ppm (0 week recovery), testicular weight, epididymal weight, sperm count and motility were low, morphologically abnormal sperm were increased and spermatogenic cells showed diffuse degeneration. These changes did not show full recovery at 14 weeks recovery, with the exception of the prostate and seminal vesicular weights, which recovered back to control values. At 400 ppm, increased retained spermatids at 0 week recovery returned to normal at 4 weeks recovery. Exposure to 1000 ppm produced sustained reduction of hindlimb muscle strength at 14 weeks recovery, whereas normalization of the skin temperature and blood pressure was noted after transient changes. Our study showed that the effect of 1-BP on spermatogenesis is dose-dependent; low exposure inhibited spermiation and hormone-dependent organ weight reduction and these changes were transient, while a higher dose of 1000 ppm 1-BP caused persistent depletion of spermatogenic cells.
Collapse
Affiliation(s)
- Shameema Banu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Raymond LW, Ford MD. Severe Illness in Furniture Makers Using a New Glue: 1-Bromopropane Toxicity Confounded by Arsenic. J Occup Environ Med 2007; 49:1009-19. [PMID: 17848857 DOI: 10.1097/jom.0b013e318145b616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe the illnesses of four workers with high concentrations of serum bromide after exposure to glue containing 1-bromopropane (1-BP). METHODS We reviewed all available clinical records, examined the workers, and obtained additional urinary arsenic values. We used standard autoanalyzer and other routine methods for blood and urinalysis. RESULTS All four workers had symptoms and abnormal physical findings when hospitalized, remaining symptomatic with abnormal examinations 3 months later. Milder symptoms persisted in two workers, 8 years after their initial illnesses. Both have returned to work. Follow-up was unavailable for the other two workers. CONCLUSIONS Severe illness occurred in four gluers after 1-BP exposures associated with elevated levels of serum bromide. All had elevated urinary arsenic concentrations, the source of which remains unknown, but which confound interpretation of the abnormal bromide levels and clinical findings present during the acute illnesses.
Collapse
Affiliation(s)
- Lawrence W Raymond
- Carolinas Poison Center and Department of Family Medicine, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | |
Collapse
|
45
|
Furuhashi K, Kitoh J, Tsukamura H, Maeda KI, Wang H, Li W, Ichihara S, Nakajima T, Ichihara G. Effects of exposure of rat dams to 1-bromopropane during pregnancy and lactation on growth and sexual maturation of their offspring. Toxicology 2006; 224:219-28. [PMID: 16777312 DOI: 10.1016/j.tox.2006.04.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022]
Abstract
1-Bromopropane (1-BP) exhibits neuroreproductive toxicities in adult rats and humans. Here, we determined the effects of exposure of rat dams to 1-BP during pregnancy and lactation on the growth and sexual maturation of their offspring. In Experiment 1, 40 rats were exposed to 0, 100, 400 and 800ppm 1-BP during pregnancy and lactation for 8h/day. Ten rats that were not placed in chambers throughout the experiment served to observe the effect of separation of dams from offspring. In Experiment 2, three groups of 10 pregnant rats each were exposed to fresh air in three chambers and 10 other rats were exposed to 800ppm 1-BP during pregnancy and lactation for 8h/day. After delivery, offspring of the exposed and non-exposed dams were swapped so that they were nursed by the opposite dams. In Experiment 1, the survival rate and body weight of offspring were lower than the non-exposed in 1-BP dose-dependent manner. In Experiment 2, the survival rate and body weight of offspring (Group A) nursed by exposed dams and those (Group B) of exposed dams were significantly lower than non-exposed groups. The body weight of Group A was lower than that of Group B, although the two groups showed a significant equal decrease in the survival rate. The number of dead offspring from Group A was significantly higher. Our results indicate that exposure to 1-BP during pregnancy and lactation has comparable effects on survival rate, but exposure during lactation has a more adverse effect on growth of offspring than that during pregnancy. Moreover, exposure during lactation is associated with reduced early survival of third generation (F2) rats.
Collapse
Affiliation(s)
- Koichi Furuhashi
- Department of Occupational and Environmental Health, Field of Social Life Science, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Toraason M, Lynch DW, DeBord DG, Singh N, Krieg E, Butler MA, Toennis CA, Nemhauser JB. DNA damage in leukocytes of workers occupationally exposed to 1-bromopropane. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:1-14. [PMID: 16412685 DOI: 10.1016/j.mrgentox.2005.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 11/23/2022]
Abstract
1-bromopropane (1-BP; n-propyl bromide) (CAS No. 106-94-5) is an alternative to ozone-depleting chlorofluorocarbons that has a variety of potential applications as a degreasing agent for metals and electronics, and as a solvent vehicle for spray adhesives. Its isomer, 2-brompropane (2-BP; isopropyl bromide) (CAS No. 75-26-3) impairs antioxidant cellular defenses, enhances lipid peroxidation, and causes DNA damage in vitro. The present study had two aims. The first was to assess DNA damage in human leukocytes exposed in vitro to 1- or 2-BP. DNA damage was also assessed in peripheral leukocytes from workers with occupational exposure to 1-BP. In the latter assessment, start-of- and end-of-work week blood and urine samples were collected from 41 and 22 workers at two facilities where 1-BP was used as a solvent for spray adhesives in foam cushion fabrication. Exposure to 1-BP was assessed from personal-breathing zone samples collected for 1-3 days up to 8h per day for calculation of 8h time weighted average (TWA) 1-BP concentrations. Bromide (Br) was measured in blood and urine as a biomarker of exposure. Overall, 1-BP TWA concentrations ranged from 0.2 to 271 parts per million (ppm) at facility A, and from 4 to 27 ppm at facility B. The highest exposures were to workers classified as sprayers. 1-BP TWA concentrations were statistically significantly correlated with blood and urine Br concentrations. The comet assay was used to estimate DNA damage. In vitro, 1- or 2-BP induced a statistically significant increase in DNA damage at 1mM. In 1-BP exposed workers, start-of- and end-of-workweek comet endpoints were stratified based on job classification. There were no significant differences in DNA damage in leukocytes between workers classified as sprayers (high 1-BP exposure) and those classified as non-sprayers (low 1-BP exposure). At the facility with the high exposures, comparison of end-of-week values with start-of-week values using paired analysis revealed non-sprayers had significantly increased comet tail moments, and sprayers had significantly increased comet tail moment dispersion coefficients. A multivariate analysis included combining the data sets from both facilities, log transformation of 1-BP exposure indices, and the use of multiple linear regression models for each combination of DNA damage and exposure indices including exposure quartiles. The covariates were gender, age, smoking status, facility, and glutathione S-transferase M1 and T1 (GSTM1, GSTT1) polymorphisms. In the regression models, start-of-week comet tail moment in leukocytes was significantly associated with serum Br quartiles. End-of-week comet tail moment was significantly associated with 1-BP TWA quartiles, and serum Br quartiles. Gender, facility, and GSTM1 had a significant effect in one or more models. Additional associations were not identified from assessment of dispersion coefficients. In vitro and in vivo results provide limited evidence that 1-BP exposure may pose a small risk for increasing DNA damage.
Collapse
Affiliation(s)
- Mark Toraason
- National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Takeuchi Y. Control of hazardous substances at small workplaces. INDUSTRIAL HEALTH 2006; 44:48-52. [PMID: 16610533 DOI: 10.2486/indhealth.44.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lots of chemicals are produced in chemical industry and used everywhere as convenient and indispensable materials in daily life and industry. Moreover, many new chemicals are needed to produce competitive new goods such as new medicines, new dyestuffs, new agricultural chemicals and others. Main chemicals used in industry have reached to more than 50,000 kinds. And many workers are exposed to chemicals and injured all over the world. To protect the workers in small workplaces against hazardous chemicals is one of the most important tasks of occupational health. n-Hexane, lead and 1-bromopropane poisoning are shown as examples for health hazards and preventive measures in small workplaces. Preventive measure such as TLV or OEL, Material Safety Data sheets, health check-up, comprehensive cooperation among employers, workers, researchers, industrial physicians and administrative officers, and information on toxicity are discussed.
Collapse
Affiliation(s)
- Yasuhiro Takeuchi
- Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
48
|
Stelljes ME, Wood RR. Development of an occupational exposure limit for n-propylbromide using benchmark dose methods. Regul Toxicol Pharmacol 2005; 40:136-50. [PMID: 15450717 DOI: 10.1016/j.yrtph.2004.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Indexed: 11/30/2022]
Abstract
This paper presents the development of an occupational exposure level (OEL) for n-propylbromide (nPB) using benchmark dose methods. nPB is a non-ozone depleting solvent, proposed under the Significant New Alternatives Policy (SNAP) for use as a precision vapor degreaser. OELs have generally been developed on the basis of a NOAEL or LOAEL and application of uncertainty factors; this paper represents a departure from historic methods. Six recently completed toxicological studies were critically reviewed to identify (1) toxicologically significant endpoints, (2) dose-response information on these endpoints, and (3) uncertainties and limitations associated with the studies. Dose-response data were compiled and entered into the USEPA's benchmark dose software for calculation of a benchmark dose (BMD) and a benchmark dose low (BMDL). Once values were estimated for all relevant studies, they were then incorporated into a weight-of-evidence approach to develop a single BMD and BMDL representative of nPB. This approach is similar to that recently taken by USEPA to develop their own recommended OEL for nPB. USEPA's approach is compared and contrasted with ours, particularly in relation to the application of uncertainty factors (UFs) to generate a final OEL. There are no published criteria for application of UFs in developing an OEL. Although USEPA recommends utilizing a UF of 9, based on intraspecies variability and pharmacokinetic differences between rats and humans, to meet the goal of protecting healthy adult in a workplace setting, no uncertainty factor was deemed necessary for nPB in this paper. Therefore, the BMDL was recommended as the OEL.
Collapse
Affiliation(s)
- Mark E Stelljes
- SLR International Corp, 1430 Willow Pass Road, Suite 230, Concord, CA 94520, USA.
| | | |
Collapse
|
49
|
B'Hymer C, Cheever KL. Development of a headspace gas chromatographic test for the quantification of 1- and 2-bromopropane in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 814:185-9. [PMID: 15607724 DOI: 10.1016/j.jchromb.2004.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
A test procedure was developed for the detection and quantification of 1- and 2-bromopropane in human urine. 1-Bromopropane (1-BP) is a commonly used industrial solvent, and 2-bromopropane (2-BP) is often found as an impurity component in industrial grade 1-BP. Both compounds are a health concern for exposed workers due to their chronic toxicity. Bromopropanes have been associated with neurological disorders in both animals and humans. Sample preparation consisted of diluting urine with water and fortification with 1-bromobutane (1-BB), which was used as an internal standard; then each sample was sealed in a headspace vial. A static-headspace sampler (Teledyne-Tekmar Model 7000) was used to heat each sample at 75 degrees C for a 35-min equilibrium time. Quantification was by means of a gas chromatograph (GC) equipped with an electron capture detector (ECD) and a dimethylpolysiloxane (DB-1) capillary column. A recovery study using fortified urine samples at multiple concentrations (0.5-8 microg/ml) demonstrated full recovery; 104-121% recovery was obtained. Precision ranged from 5 to 17% for the 15-20 spiked samples used at each concentration, which were analyzed over multiple experimental trial days. The limit of detection (LOD) for this test procedure was approximately 2 ng/ml 1-BP and 7 ng/ml 2-BP in urine. A recovery study of 1- and 2-BP from fortified urine stored in vials appropriate for field collection was also completed. These results and other factors of the development and validation of this test procedure will be discussed.
Collapse
Affiliation(s)
- C B'Hymer
- U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Taft Laboratory, Cincinnati, OH 45226, USA.
| | | |
Collapse
|
50
|
Ichihara G. Neuro-reproductive toxicities of 1-bromopropane and 2-bromopropane. Int Arch Occup Environ Health 2004; 78:79-96. [PMID: 15812677 DOI: 10.1007/s00420-004-0547-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
2-Bromopropane was used as an alternative to chlorofluorocarbons in a Korean electronics factory and caused reproductive and hematopoietic disorders in male and female workers. This causality was revealed by animal studies, and target cells were identified in subsequent studies. After identification of 2-bromopropane toxicity, 1-bromopropane was introduced to the workplace as a new alternative to ozone-depleting solvents. 1-Bromopropane was considered less mutagenic than 2-bromopropane, but, in contrast, animal experiments revealed that 1-bromopropane is a potent neurotoxic compound compared with 2-bromopropane. It was also revealed that 1-bromopropane has reproductive toxicity, but the target cells are different from those of 2-bromopropane. Exposure to 1-bromopropane inhibits spermiation in male rats and disrupts the development of follicles in female rats, in contrast to 2-bromopropane, which targets spermatogonia and oocytes in primordial follicles. After the first animal study describing the neurotoxicity of 1-bromopropane, human cases were reported. Those cases showed decreased sensation of vibration and perception, paresthesia in the lower extremities, decreased sensation in the ventral aspects of the thighs and gluteal regions, stumbling and headache, as well as mucosal irritation, as the initial symptoms. The dose-response of bromopropanes in humans and mechanism(s) underlying the differences in the toxic effects of the two bromopropanes remain to be determined.
Collapse
Affiliation(s)
- Gaku Ichihara
- Occupational and Environmental Health, Social Life Science, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|