1
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
Rojas MG, Zigmond ZM, Pereira-Simon S, Santos Falcon N, Suresh Kumar M, Stoyell-Conti FF, Kosanovic C, Griswold AJ, Salama A, Yang X, Tabbara M, Vazquez-Padron RI, Martinez L. The intricate cellular ecosystem of human peripheral veins as revealed by single-cell transcriptomic analysis. PLoS One 2024; 19:e0296264. [PMID: 38206912 PMCID: PMC10783777 DOI: 10.1371/journal.pone.0296264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024] Open
Abstract
The venous system has been historically understudied despite its critical roles in blood distribution, heart function, and systemic immunity. This study dissects the microanatomy of upper arm veins at the single cell level, and how it relates to wall structure, remodeling processes, and inflammatory responses to injury. We applied single-cell RNA sequencing to 4 non-diseased human veins (3 basilic, 1 cephalic) obtained from organ donors, followed by bioinformatic and histological analyses. Unsupervised clustering of 20,006 cells revealed a complex ecosystem of endothelial cell (EC) types, smooth muscle cell (SMCs) and pericytes, various types of fibroblasts, and immune cell populations. The venous endothelium showed significant upregulation of cell adhesion genes, with arteriovenous zonation EC phenotypes highlighting the heterogeneity of vasa vasorum (VV) microvessels. Venous SMCs had atypical contractile phenotypes and showed widespread localization in the intima and media. MYH11+DESlo SMCs were transcriptionally associated with negative regulation of contraction and pro-inflammatory gene expression. MYH11+DEShi SMCs showed significant upregulation of extracellular matrix genes and pro-migratory mediators. Venous fibroblasts ranging from secretory to myofibroblastic phenotypes were 4X more abundant than SMCs and widely distributed throughout the wall. Fibroblast-derived angiopoietin-like factors were identified as versatile signaling hubs to regulate angiogenesis and SMC proliferation. An abundant monocyte/macrophage population was detected and confirmed by histology, including pro-inflammatory and homeostatic phenotypes, with cell counts positively correlated with age. Ligand-receptor interactome networks identified the venous endothelium in the main lumen and the VV as a niche for monocyte recruitment and infiltration. This study underscores the transcriptional uniqueness of venous cells and their relevance for vascular inflammation and remodeling processes. Findings from this study may be relevant for molecular investigations of upper arm veins used for vascular access creation, where single-cell analyses of cell composition and phenotypes are currently lacking.
Collapse
Affiliation(s)
- Miguel G. Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Zachary M. Zigmond
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Maya Suresh Kumar
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Filipe F. Stoyell-Conti
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alghidak Salama
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
3
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Vazquez-Padron RI, Duque JC, Tabbara M, Salman LH, Martinez L. Intimal Hyperplasia and Arteriovenous Fistula Failure: Looking Beyond Size Differences. KIDNEY360 2021; 2:1360-1372. [PMID: 34765989 PMCID: PMC8579754 DOI: 10.34067/kid.0002022021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of venous intimal hyperplasia (IH) has been historically associated with failure of arteriovenous fistulas (AVF) used for hemodialysis. This long-standing assumption, based on histological observations, has been recently challenged by clinical studies indicating that the size of the intima by itself is not enough to explain stenosis or AVF maturation failure. Irrespective of this lack of association, IH is present in most native veins and fistulas, is prominent in many cases, and suggests a role in the vein that may not be reflected by its dimensions. Therefore, the contribution of IH to AVF dysfunction remains controversial. Using only clinical data and avoiding extrapolations from animal models, we critically discuss the biological significance of IH in vein remodeling, vascular access function, and the response of the venous wall to repeated trauma in hemodialysis patients. We address questions and pose new ones such as: What are the factors that contribute to IH in pre-access veins and AVFs? Do cellular phenotypes and composition of the intima influence AVF function? Are there protective roles of the venous intima? This review explores these possibilities, with hopes of rekindling a critical discussion about venous IH that goes beyond thickness and AVF outcomes.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, New York
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
5
|
Vazquez-Padron RI, Martinez L, Duque JC, Salman LH, Tabbara M. The anatomical sources of neointimal cells in the arteriovenous fistula. J Vasc Access 2021; 24:99-106. [PMID: 33960241 PMCID: PMC8958841 DOI: 10.1177/11297298211011875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neointimal cells are an elusive population with ambiguous origins, functions, and states of differentiation. Expansion of the venous intima in arteriovenous fistula (AVF) is one of the most prominent remodeling processes in the wall after access creation. However, most of the current knowledge about neointimal cells in AVFs comes from extrapolations from the arterial neointima in non-AVF systems. Understanding the origin of neointimal cells in fistulas may have important implications for the design and effective delivery of therapies aimed to decrease intimal hyperplasia (IH). In addition, a broader knowledge of cellular dynamics during postoperative remodeling of the AVF may help clarify other transformation processes in the wall that combined with IH determine the successful remodeling or failure of the access. In this review, we discuss the possible anatomical sources of neointimal cells in AVFs and their relative contribution to intimal expansion.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, NY, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Ross JL. Hemodialysis Arteriovenous Fistulas: A Nineteenth Century View of a Twenty First Century Problem. J Vasc Access 2018; 6:64-71. [PMID: 16552687 DOI: 10.1177/112972980500600204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This is a literature review which approaches the problem of successful use of arteriovenous fistulas for dialysis within the construct of Virchow's triad. By organizing the literature with regard to Virchow's concepts of blood flow, vascular injury, and thrombophilia an improved understanding arteriovenous fistula placement, maintenance and repair can be obtained. This process is designed to increase understanding and options for treatment by looking at this problem and using scientific knowledge gained in cardiology, oncology and vascular surgery medicine. Future approaches to fistulas will hopefully be a multifaceted and based in cellular pathophysiology as well as surgical and radiologic interventions and repairs.
Collapse
Affiliation(s)
- J L Ross
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, USA.
| |
Collapse
|
7
|
Gołębiowski T, Kusztal M, Letachowicz K, Augustyniak-Bartosik H, Szymczak M, Krajewska M, Marcinkowski W, Weyde W, Klinger M. Dialysis-Related Parameters Influence Remodeling in the Venous Part of the Native Arteriovenous Fistula. Ann Vasc Surg 2017. [PMID: 28648652 DOI: 10.1016/j.avsg.2017.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the association of hemodynamic parameters related to hemodialysis and antropometric parameters of patients with changes in the venous part of the arteriovenous fistula (AVF) at points of needling. METHODS Two hundred forty-two hemodialysis (HD) patients (60.3% men), with median age 65 (interquartile range [IQR] 56-75) years, on HD treatment for a median of 49 (IQR 20-88) months with functioning fistula were recruited for the study. The history of vascular access, comorbidity, antropometric (body mass index, body surface area, and body composition), and dialysis-related parameters were analyzed. The cross-sectional area of upper extremity vessels were measured using ultrasound and included 2 points: A (arterial point for blood aspiration) and V (venous point for returning the blood after purification). The difference between A and V (A-V) was calculated. RESULTS The median cross-sectional area of A was larger than V (1.04 [IQR 0.58-1.7] vs. 0.74 cm2 [IQR: 0.41-1.39], P <0.0001). The median difference between A and V (A-V) was 0.17 cm2 and positively correlated with mean blood flow (Qb), effective Kt/V, and time of AVF use. Other analyzed factors had no influence on A-V. In the multivariate analysis, the independent factor increasing the difference (A-V) was mean blood flow measured during HD sessions. CONCLUSIONS The needling and utilization of AVF for hemodialysis may affect vein anatomy, namely causing dilatation at the arterial point and narrowing at venous point of AVF. We suggest that blood pump velocity of the dialysis machine may have an impact on these changes, but practical importance of these findings has to be elucidated. The significance of (A-V) factor in the prognosis of fistula complications should be further studied and confirmed in the prospective trials.
Collapse
Affiliation(s)
- Tomasz Gołębiowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Mariusz Kusztal
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Letachowicz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Maciej Szymczak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Wacław Weyde
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland; Fresenius Medical Care Polska S.A., Poznań, Poland
| | - Marian Klinger
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
8
|
Vascular inflammation and media calcification are already present in early stages of chronic kidney disease. Cardiovasc Pathol 2017; 27:57-67. [DOI: 10.1016/j.carpath.2017.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/01/2023] Open
|
9
|
Vazquez-Padron RI, Allon M. New Insights into Dialysis Vascular Access: Impact of Preexisting Arterial and Venous Pathology on AVF and AVG Outcomes. Clin J Am Soc Nephrol 2016; 11:1495-1503. [PMID: 27401525 PMCID: PMC4974874 DOI: 10.2215/cjn.01860216] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite significant improvements in preoperative patient evaluation and surgical planning, vascular access failure in patients on hemodialysis remains a frequent and often unforeseeable complication. Our inability to prevent this complication is, in part, because of an incomplete understanding of how preexisting venous and arterial conditions influence the function of newly created arteriovenous fistulas and grafts. This article reviews the relationship between three preexisting vascular pathologies associated with CKD (intimal hyperplasia, vascular calcification, and medial fibrosis) and hemodialysis access outcomes. The published literature indicates that the pathogenesis of vascular access failure is multifactorial and not determined by any of these pathologies individually. Keeping this observation in mind should help focus our research on the true causes responsible for vascular access failure and the much needed therapies to prevent it.
Collapse
Affiliation(s)
- Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Vein dissection, a rare complication of a fistula puncture readily distinguished by ultrasound. J Vasc Access 2016; 17:e12-4. [PMID: 26450082 DOI: 10.5301/jva.5000476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2015] [Indexed: 11/20/2022] Open
|
11
|
Remuzzi A, Ene-Iordache B. Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. Clin J Am Soc Nephrol 2013; 8:2186-93. [PMID: 23990161 PMCID: PMC3848396 DOI: 10.2215/cjn.03450413] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Failure of hemodialysis access is caused mostly by venous intimal hyperplasia, a fibro-muscular thickening of the vessel wall. The pathogenesis of venous neointimal hyperplasia in primary arteriovenous fistulae consists of processes that have been identified as upstream and downstream events. Upstream events are the initial events producing injury of the endothelial layer (surgical trauma, hemodynamic shear stress, vessel wall injury due to needle punctures, etc.). Downstream events are the responses of the vascular wall at the endothelial injury that consist of a cascade of processes including leukocyte adhesion, migration of smooth muscle cells from the media to the intimal layer, and proliferation. In arteriovenous fistulae, the stenoses occur in specific sites, consistently related to the local hemodynamics determined by the vessel geometry and blood flow pattern. Recent findings that the localization of these sites matches areas of disturbed flow may add new insights into the pathogenesis of neointimal hyperplasia in the venous side of vascular access after the creation of the anastomosis. The detailed study of fluid flow motion acting on the vascular wall in anastomosed vessels and in the arm vasculature at the patient-specific level may help to elucidate the role of hemodynamics in vascular remodeling and neointimal hyperplasia formation. These computational approaches may also help in surgical planning for the amelioration of clinical outcome. This review aims to discuss the role of the disturbed flow condition in acting as upstream event in the pathogenesis of venous intimal hyperplasia and in producing subsequent local vascular remodeling in autogenous arteriovenous fistulae used for hemodialysis access. The potential use of blood flow analysis in the management of vascular access is also discussed.
Collapse
Affiliation(s)
- Andrea Remuzzi
- Biomedical Engineering Department, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri,” Bergamo, Italy; and
- Engineering Department, University of Bergamo, Bergamo, Italy
| | - Bogdan Ene-Iordache
- Biomedical Engineering Department, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri,” Bergamo, Italy; and
| |
Collapse
|
12
|
McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 2013; 50:357-71. [PMID: 23887139 PMCID: PMC3884171 DOI: 10.1159/000353883] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 12/29/2022] Open
Abstract
The diversity of mitochondrial arrangements, which arise from the organelle being static or moving, or fusing and dividing in a dynamically reshaping network, is only beginning to be appreciated. While significant progress has been made in understanding the proteins that reorganise mitochondria, the physiological significance of the various arrangements is poorly understood. The lack of understanding may occur partly because mitochondrial morphology is studied most often in cultured cells. The simple anatomy of cultured cells presents an attractive model for visualizing mitochondrial behaviour but contrasts with the complexity of native cells in which elaborate mitochondrial movements and morphologies may not occur. Mitochondrial changes may take place in native cells (in response to stress and proliferation), but over a slow time-course and the cellular function contributed is unclear. To determine the role mitochondrial arrangements play in cell function, a crucial first step is characterisation of the interactions among mitochondrial components. Three aspects of mitochondrial behaviour are described in this review: (1) morphology, (2) motion and (3) rapid shape changes. The proposed physiological roles to which various mitochondrial arrangements contribute and difficulties in interpreting some of the physiological conclusions are also outlined.
Collapse
Affiliation(s)
- John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
- Department of Biomedical Engineering, University of Strathclyde Wolfson Centre, Glasgow, UK
| | - Mairi E. Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Marnie L. Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - John M. Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK
| | - Christopher Saunter
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| |
Collapse
|
13
|
Stolic R. Most important chronic complications of arteriovenous fistulas for hemodialysis. Med Princ Pract 2013; 22:220-8. [PMID: 23128647 PMCID: PMC5586732 DOI: 10.1159/000343669] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022] Open
Abstract
The aim of this review was to highlight the most important complications of arteriovenous fistulas (AVFs) for hemodialysis (HD). The quality of vascular access for HD should be suitable for repeated puncture and allow a high blood flow rate for high-efficiency dialysis with minimal complications. The dialysis staff must be well versed in manipulation of the AVF, and there should be a minimal need for corrective interventions. Construction of an AVF creates conditions for increasing the flow of blood through the venous system. Fulfillment of these conditions reduces the risk of turbulence and endothelium injury, which, in turn, minimizes the potential for stenosis. An AVF is closest to the ideal model of vascular access. The most important complications of fistulae for HD are lymphedema, infection, aneurysm, stenosis, congestive heart failure, steal syndrome, ischemic neuropathy and thrombosis. In HD patients, the most common cause of vascular access failure is neointimal hyperplasia. It is important to gain information about early clinical symptoms of AVF dysfunction in order to prevent and adequately treat potential complications.
Collapse
Affiliation(s)
- Radojica Stolic
- Faculty of Medicine, University of Pristina, Kosovska Mitrovica, Serbia.
| |
Collapse
|
14
|
Lee T, Chauhan V, Krishnamoorthy M, Wang Y, Arend L, Mistry MJ, El-Khatib M, Banerjee R, Munda R, Roy-Chaudhury P. Severe venous neointimal hyperplasia prior to dialysis access surgery. Nephrol Dial Transplant 2011; 26:2264-70. [PMID: 21220751 DOI: 10.1093/ndt/gfq733] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Venous neointimal hyperplasia is the most common cause of arteriovenous (AV) fistula and graft dysfunction following dialysis access surgery. However, the pathogenetic impact of pre-existing venous neointimal hyperplasia at the time of AV access creation on final clinical success is currently unknown in the setting of advanced chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. The aim of this study was to perform a detailed histological, morphometric, and immunohistochemical analysis of vein specimens in advanced CKD and ESRD patients collected at the time of new vascular access placement. METHODS Vein samples from 12 patients were collected at the time of AV access creation near the site of AV anastomosis. Histological, immunohistochemistry and morphometric studies were performed on these vein samples. RESULTS Examination of the tissue specimens obtained at the time of surgery showed neointimal hyperplasia in 10 of 12 specimens, ranging from minimal to very severe. The majority of cells within the neointima were myofibroblasts with a minority of contractile smooth muscle cells present. CONCLUSION Our work represents a detailed description of the morphometric and cellular phenotypic lesions present in the veins of CKD and ESRD patients, prior to dialysis access placement. These studies (i) suggest the future possibility of a new predictive marker (pre-existing venous neointimal hyperplasia) for AV dialysis access dysfunction and (ii) open the door for the future development of novel local therapies for optimization of the venous substrate on which the dialysis access is created.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Clinical and Experimental Medicine, Federico II University Medical School, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Fistula maturation requires a compliant and responsive vasculature capable of dilating in response to the increased velocity of blood flowing into the newly created low-resistance circuit. Successful maturation to a high volume flow circuit capable of sustaining hemodialysis typically occurs within the first few weeks after creation. Failure to achieve maturation within 4-8 weeks should prompt a search for reversible etiologies; however, an accepted definition of maturation, particularly for patients not yet on dialysis remains elusive. The most commonly identified etiology is neointimal hyperplasia typically occurring in the juxta-anastomotic vein. However, failed maturation has also been reported secondary to impaired arterial and venous dilation and accessory veins. The exact frequency of each of these etiologies is unclear. Understanding the etiologies of impaired fistula maturation will focus future studies of targeted interventions to improve the rate of fistula maturation and increase the number of dialysis patients with a functioning autogenous fistula.
Collapse
Affiliation(s)
- B S Dixon
- Veterans Affairs Medical Center, Nephrology Division, University of Iowa School of Medicine, Iowa city, Iowa 52242-1081, USA.
| |
Collapse
|
16
|
Salgado OJ, Chacón RE, Alcalá A, Alvarez G. Vein wall dissection: a rare puncture-related complication of brachiocephalic fistula. Gray-scale and color Doppler sonographic findings. JOURNAL OF CLINICAL ULTRASOUND : JCU 2005; 33:464-7. [PMID: 16281272 DOI: 10.1002/jcu.20171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We describe a case of brachiocephalic fistula vein wall dissection (VWD) occurring in a 36-year-old female hemodialysis patient. Unlike subcutaneous or subfascial infiltrations for which the mechanism is blood extravasation, VWD seems to be due to disruption of the fistula vein layers caused by misplacement of the outflow (venous) needle bevel. In this setting, the pressure of the dialysis blood pump acts as the driving force of the dissecting column, extending it proximally. Gray-scale and color Doppler sonography proved to be very useful in the differential diagnosis of VWD, particularly with thrombosis of the fistula. Sonography also helped us decide when to resume cannulations.
Collapse
Affiliation(s)
- Octavio J Salgado
- Center of Experimental Surgery and Medicine, University of Zulia, Maracaibo, Venezuela
| | | | | | | |
Collapse
|